
 

 

 

Abstract 

 

Data augmentation is frequently used to increase the 

effective training set size when training deep neural 

networks for supervised learning tasks. This technique is 

particularly beneficial when the size of the training set is 

small. Recently, data augmentation using GAN generated 

samples has been shown to provide performance 

improvement for supervised learning tasks. In this paper 

we propose a method of GAN data augmentation for image 

classification that uses the prediction uncertainty of the 

classifier network to determine the optimal GAN samples 

to augment the training set. We apply the acquisition 

function framework originally developed for active 

learning to evaluate the sample uncertainty. Preliminary 

experimental results are provided to demonstrate the 

benefit of this technique.  

1. Introduction 

Training deep neural networks for image classification 
typically requires a significant amount of labelled data. As 
datasets for specialized domains such as medical radiology 
are generally small and the associated labelling cost is large, 
data augmentation is commonly applied to increase the 
dataset size. Recently, strategies for data augmentation using 
a generative adversarial network (GAN) have been 
proposed and shown to achieve moderate success for 
medical image segmentation [1]. However, a question 
remains as to determining the optimal way to sample from 
the GAN latent space to form the augmented training set. 

A closely related domain of research is known as active 
learning [2]. The purpose of active learning is to maximize 
classification performance while minimizing the amount of 
required labelled data. In active learning, a model is initially 
trained on a small dataset, then using what is known as an 
acquisition function, the prediction uncertainty for each of 
the unlabeled samples is evaluated. The samples with the 
greatest prediction uncertainty are then labelled by an 
external oracle, added to the training set, and the 
classification network is retrained. This process repeats in 
an iterative fashion until the desired performance is 
achieved. 

The purpose of this work is to propose a data 
augmentation strategy that uses the acquisition functions 
developed for active learning to choose samples generated 
by a label conditioned GAN to augment the training set. This 
functionality is used to develop a classification system that 
iterates between training the classifier and expanding the 
training set by selecting GAN samples on the basis of the 
classifier prediction uncertainty. Experimental analysis will 
examine the performance of this technique for classification 
using the MNIST dataset under GAN architectures of 
varying capacity.  

2. Related Work 

Suppose that we have a dataset consisting of input data 
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( )| , ,P y x X Y such that we can make inferences on this 

distribution to find the optimal label to assign to a new data 
point x . Given that the classifier is defined by parameters 
ω , we can expand the discriminative distribution using 
Bayes’ rule as follows 
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A pertinent question is how we can assess the uncertainty 
that the classifier has about the estimates it makes so that we 
can assign a confidence level to the assigned classification 
label. Kendall et al. [3] and Gal et al. [4] show how dropout 
can be used as technique of sampling from a distribution 

which approximates ( )| , ,P ω x X Y by assuming Bernoulli 

prior distributions for the weights. Dropout is a technique 
which was proposed originally to regularize a neural 
network for prevention of overfitting [6]. The basic premise 
is that during training, a Bernoulli random variable is 
sampled for each network parameter where dropout is used. 
This sampled value acts as a multiplicative mask for the 
parameter. In other words, when the sampled value is 1, the 
parameter keeps its value, otherwise the parameter is 
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dropped for the training iteration (assigned a value of 0). 
The motivation behind this technique is to stochastically 
create subnetworks within the larger network, such that the 
network must learn redundancy which combats overfitting. 
For Bayesian uncertainty analysis, when we use dropout, we 
can consider each parameter to be sampled from a scaled 
Bernoulli distribution.  Kendall et al. [3] show how by using 
this formulation, we can develop a Monte Carlo method 
using dropout for sampling from the desired distribution 

( )| , ,P ω x X Y . The final calculation is given as follows 
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Where ˆ
n

ω  are the parameters of the network sampled in the 

nth Monte Carlo dropout sample. We will refer to this 
sampling technique as MC dropout. We can use this 
approximation of the predictive distribution to better 
estimate the network uncertainty. To rank samples by their 
uncertainty we use a scoring metric called an acquisition 
function. The Bayesian Active Learning by Disagreement 
(BALD) acquisition function proposed by Houlsby et al. [8] 
is defined as follows 
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Computationally, this can be approximated using the MC 
dropout samples as  
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where N is the number of MC samples, and 
n

ω are the 

parameters of the network sampled for the nth MC dropout 
sample. Data points with high entropy for the average 
predictive distribution of the MC dropout samples, but low 
average entropy for the entropy of each of the sampled 
predictive distribution will have a high BALD score 
indicating that the network is uncertainty about the 
prediction. The intuition behind this metric is that if the 
dropout sampling of the weights causes the network to 
change its prediction, then the network is considered 
uncertain about the sample prediction. 

The initial paper on GANs was written by Goodfellow et 
al. [10] and the focus of this original work was to describe 
the minimax competition between the discriminator and 
generator networks. An extension was made by Mirza et al. 
[11] to condition both the generator and discriminator 
models on the label of the training data, enabling samples to 
be generated from specific class labels. This work was 
expanded by Radford et al. [12] when the DCGAN 
architecture was developed which used deep convolutional 

neural networks for both the generator and discriminator 
models. Additionally, it was shown how generated samples 
from the trained GANs could be used for semi-supervised 
learning, where the initial layers of the discriminator are 
used as a feature extractor to train a classification model. 
Due to the instability of training GANs using original loss 
function presented by Goodfellow et al. [10], Gulrajani et al. 
[13] released an improved loss function based on the 
Wasserstein distance. Theoretically the Wasserstein loss 
has smoother gradients and greater stability over the loss 
function proposed by [10]. The PGGAN architecture was 
released in 2017 and provided an approach to train a GAN 
architecture by training the discriminator and generator 
models on lower resolution samples before progressively 
growing toward high resolution samples [9]. 

3. System Overview 

Three different GAN models were used for the 
experimental work in this paper, denoted as Small-DCGAN, 
Large-DCGAN, and PGGAN with increasing capacity 
respectively. The Small-DCGAN and Large-DCGAN are 
variants of the original DCGAN model proposed by [12]. 
The PGGAN model closely resembles the model published 
by [9]. The convolutional neural network (CNN) 
architecture for the classifier model was a simple five layer 
network similar to that used by [14]. 

The algorithm for the processing performed during each 
iteration of the classification training loop is shown in 
Figure 3-1. We start iteration step N  in possession of the 
current trained classifier network and the current training 
set. To perform an iteration of the training loop, samples 
from the data source are used to compute the classifier 
network posterior estimates through MC dropout. Next, an 
acquisition function is used to process the posterior 
estimates and assign each image sample a score. The 
samples with the highest scores are added to the training set 
for iteration step 1N +  and used to train the resulting 
classifier for iteration step 1N +  . This process repeats 
until desired convergence is met or the predefined number of 
iterations are completed. For the base case when 0N = , the 
classifier network is initialized with random parameter 
values. The acquisition functions used for this paper are 
random sampling and BALD. Random sampling simply 
involves selecting random images from the data source to 
become part of the training set for the next iteration. BALD 
acquisition involves computing the score described in 
equation (1.4). After the scores are computed, they are 
sorted and the images with the highest scores are sampled 
and added to the training set for the next iteration. The 
overall procedure for this system is described in Algorithm 
1. 
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Figure 1: Overview of the classification training loop. 

 

 

4. Experimental Procedure 

At the start of each iteration, the classification network 
was initialized with a set of new random weights. During 
each iteration the chosen acquisition function was used to 
sample 10 images from the given data source. These new 
images were added to the training dataset. The classification 
network was then trained using this dataset for 100 epochs. 
The resulting final balanced accuracy was then computed 
and stored for each iteration. This process continued for 50 
iterations. At this point the training set size had reached 500 
images. Each experiment examined the performance when 
the GAN data sources were used to augment the raw dataset 
i.e. (the classifier was trained on a dataset consisting of the 
raw MNIST dataset combined with data from one of the 

three possible GAN data sources: Small-DCGAN, 
Large-DCGAN, and PGGAN). For all experiments, 
classification performance was measured using each 
combination of data source and acquisition function. 
Additionally, each experiment was repeated 4 times to 
establish a confidence interval for the accuracy estimate. All 
experiments were performed using the Keras library [7]. 

In Figure 2, the results of training the classifiers under 
BALD acquisition are shown together with the performance 
of the raw data classifier trained under random sampling 
added as a baseline. We see that the performance of the 
classifiers trained using augmentation by BALD acquisition 
outperformed the classifiers trained on the raw datasets. 
From the final test accuracies, we observed that the BALD 
PGGAN augmented dataset had a balanced accuracy 
increase of 3.82 percentage points over the Random Raw 
dataset, and an increase of 0.86 percentage points over the 
BALD Raw dataset. This indicates the potential advantage 
of the proposed method. 

 

 
Figure 2: Plot of the classifiers trained using GAN 
augmented MNIST data. The plot on the left shows the 
balanced accuracy for all training iterations, while the plot 
on the right shows the balanced accuracy for the final 20 
iterations. The shaded area around each line signifies a 
confidence interval of one standard deviation.   

5. Conclusion 

Through the preliminary experimental results, we have 
seen that training a classification network using a dataset 
augmented with synthetic GAN samples can improve the 
overall performance of the classifier. Additionally, the 
acquisition function sampling mechanism was shown to 
further improve the classifier performance, especially for 
the GANs with lower capacity. In conclusion, the 
preliminary experimental results provided in this paper 
demonstrate that GAN augmentation using Bayesian 
uncertainty analysis is advantageous for image 
classification. 
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