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Abstract

Deep neural networks (DNNs) provide state-of-the-art

results for a multitude of applications, but the approaches

using DNNs for multimodal audiovisual applications do not

consider predictive uncertainty associated with individual

modalities. Bayesian deep learning methods provide prin-

cipled confidence and quantify predictive uncertainty. Our

contribution in this work is to propose an uncertainty aware

multimodal Bayesian fusion framework for activity recogni-

tion. We demonstrate a novel approach that combines deter-

ministic and variational layers to scale Bayesian DNNs to

deeper architectures. Our experiments using in- and out-of-

distribution samples selected from a subset of Moments-in-

Time (MiT) dataset show a more reliable confidence mea-

sure as compared to the non-Bayesian baseline and the

Monte Carlo dropout (MC dropout) approximate Bayesian

inference. We also demonstrate the uncertainty estimates

obtained from the proposed framework can identify out-

of-distribution data on the UCF101 and MiT datasets. In

the multimodal setting, the proposed framework improved

precision-recall AUC by 10.2% on the subset of MiT dataset

as compared to non-Bayesian baseline.

1. Introduction

Vision and audio are complementary inputs and fusing

these modalities can greatly benefit an activity recognition

application. Multimodal audiovisual activity recognition

using deep neural network (DNN) architectures are not suc-

cessful in modeling the inherent ambiguity in the correla-

tion between two modalities. One of the modalities (e.g.,

sneezing in audio, writing in vision) can be more certain

about the activity class than the other modality. It is im-

portant to model reliable uncertainty estimates for the indi-

vidual modalities to benefit from multimodal fusion. Proba-
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Figure 1: Uncertainty aware audiovisual activity recognition

bilistic Bayesian models provide principled ways to gain in-

sight about data and capture reliable uncertainty estimates

in predictions. Bayesian deep learning [1, 2] has allowed

bridging DNNs and probabilistic Bayesian theory to lever-

age the strengths of both methodologies.

Multimodal models have been proposed for audiovisual

analysis tasks such as emotion recognition [3], audiovisual

speech recognition [4], speech localization [5, 6], cross-

modal retrieval [7]. These audiovisual methods apply joint

modeling of the audio and vision inputs during the train-

ing phase for better generalizability of the models, but then

use single modality during the inference phase. None of the

methods listed here provide a quantifiable means to deter-

mine the relative importance of each modality.

Our main contributions in this work include: a) A mul-

timodal fusion framework based on predictive uncertainty

estimates applied to activity recognition: To the best of our

knowledge, this is the first work on multimodal fusion based

on uncertainty estimates using Bayesian deep learning with

variational inference. (b) A scalable Bayesian variational

inference by combining deterministic and variational layers

in DNNs. (c) Identifying out-of-distribution data for activ-

ity recognition using uncertainty estimates: We demonstrate

the uncertainty estimates obtained from the proposed archi-

tecture can identify out-of-distribution data in Moments-in-

Time (MiT) and UCF-101 action recognition datasets.
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Figure 2: Bayesian audiovisual activity recognition: ResNet-101 C3D and VGGish DNN architectures are used to represent vision and

audio information, respectively. The final layer of the DNN is replaced with three fully connected variational layers followed by categorical

distribution. The Bayesian inference is applied to the variational layers through Monte Carlo sampling on the posterior of model parameters,

which provides the predictive distribution.

2. Bayesian Multimodal DNN Architecture

We present a Bayesian multimodal fusion framework

based on uncertainty estimates for audiovisual activity

recognition. The block diagram of the proposed audiovisual

activity recognition using Bayesian variational inference is

shown in Figure 2. We use the ResNet-101 C3D [8] and

VGGish [9] architectures for visual and audio modalities,

respectively. We replace the final fully connected layer for

both vision and audio DNN models with three fully con-

nected variational layers followed by the categorical distri-

bution.

The weight and bias parameters in the fully connected

variational layers are modeled through mean-field Gaussian

distribution, and the network is trained using Bayesian vari-

ational inference based on KL divergence [10, 11]. In order

to learn the posterior distribution of model parameters w,

we train Bayesian DNN with variational inference method.

The objective is to optimize log evidence lower bound

(ELBO) [12] as the cost function. The model parameters

of the fully connected variational layers are parametrized

by mean µ and variance σ2, i.e. qθ(w) = N (w|µ, σ2).
These parameters in the variational layers are optimized

by minimizing the negative ELBO loss (Lv) [12]. We

use Flipout [13], which is an efficient method that corre-

lates the gradients within a mini-batch by implicitly sam-

pling pseudo-independent weight perturbations for each in-

put. The parameters in deterministic layers are optimized

using cross-entropy loss (Ld) [14]. The model parameters

for variational and deterministic DNN layers are obtained

by applying stochastic gradient descent optimizer [15] to

the loss functions (details are in Appendix A). During pre-

diction stage we perform multiple Monte Carlo forward

passes on the final variational layers by sampling the pa-

rameters from learned posteriors to measure uncertainty es-

timates [16].

In [17], an accuracy vs uncertainty (AvU ) metric is pro-

posed obtained from the confusion matrix values: num-

ber of accurate-certain (nac), inaccurate-uncertain (niu),

accurate-uncertain (nau) and inaccurate-certain(nic) pre-

dictions. A reliable model will provide higher AvU score.

An uncertainty threshold value that maximizes AvU metric

from individual modalities is the optimal threshold, which

is used for multimodal fusion. We perform average pool-

ing of the audio-vision predictive distributions if the uncer-

tainty measures in both modalities are below the optimal

threshold values, else we rely on the single modality that has

lower uncertainty measure. For comparison with the non-

Bayesian baseline, we maintain the same model depth as

the Bayesian DNN model and use three deterministic fully

connected final layers for the non-Bayesian DNN model.

Dropout layer is used after every fully connected layer to

avoid over-fitting of the model. In the rest of the document,

we refer the non-Bayesian DNN model as simply the DNN

model.

3. Results

We analyze the model performance on the Moments-in-

Time (MiT) [18] dataset. The MiT dataset consists of 339

classes, and each video clip is 3 secs (˜90 frames) in length.

In this work, we considered a subset of 54 classes as in-

distribution and another 54 classes as out of distribution
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Model Top1 (%) Top5 (%)

Vision

DNN 52.65 79.79

Bayesian DNN (MC Dropout) 52.88 80.10

Bayesian DNN (Stochastic VI) 53.3 81.20

Audio

DNN 34.13 61.68

Bayesian DNN (MC Dropout) 32.46 60.97

Bayesian DNN (Stochastic VI) 35.80 63.40

Audiovisual

DNN 56.61 79.39

Bayesian DNN (MC-Dropout) 55.04 80.34

Bayesian DNN (Stochastic VI) 58.2 83.8

Table 1: Comparison of accuracies for DNN, Bayesian DNN MC

Dropout and Stochastic Variational Inference (Stochastic VI) mod-

els applied to subset of MiT dataset (in-distribution classes).

samples. The selected dataset for both the categories in-

clude audio information.

We trained the ResNet101-C3D vision and VGGish

audio architectures using the in-distribution MiT dataset,

which includes ˜150K training and ˜5.3K validation sam-

ples. We select individual vision and audio paths from the

model shown in Figure 2 to obtain single modality results.

In the case of Bayesian DNN stochastic VI model, we per-

form multiple stochastic forward passes on the final three

fully connected variational layers with Monte Carlo sam-

pling on the weight posterior distributions. In our experi-

ments, 40 forward passes provide reliable estimates above

which the final results are not affected. Bayesian DNN

model predictive mean is obtained by averaging the confi-

dence estimates from the Monte Carlo sampling predictive

distributions.

3.1. Uncertainty and confidence measures

We compare BALD uncertainty measure (details are

in Appendix A) using in- and out-of-distribution classes

from the subset of MiT dataset. The density histogram

is a histogram with area normalized to one. The con-

fidence measure density histogram plots for DNN model

(Figure 5 (a)) indicate higher confidence for both in- and

out-of-distribution classes. A peak is observed near higher

confidence values for out-of-distribution samples indicat-

ing incorrect confidence predictions. The uncertainty es-

timates obtained from the Bayesian DNN models (Fig-

ure 5 (b) and (c)) indicate higher uncertainty for the out-

of-distribution samples and lower uncertainty values for the

in-distribution samples. A peak is observed near higher un-

certainty values for out-of-distribution samples indicating

reliable predictions.

Figure 3: Density histogram of BALD uncertainty measure ob-

tained from Bayesian DNN stochastic VI model.

3.2. Model performance comparison

The classification accuracy for MiT in-distribution sam-

ples is presented in Table 1. Bayesian DNN stochastic VI

model consistently provides higher accuracies for individ-

ual and combined audio-vision modalities. Bayesian DNN

stochastic VI audiovisual model provides an improvement

of 9.2% top1 and 3.2% top5 accuracies over the Bayesian

DNN visual model. Bayesian DNN stochastic VI model

(audiovisual) provides an improvement of 2.8% top1 and

5.6% top5 accuracies over the baseline DNN model (au-

diovisual). The accuracies for Bayesian DNN MC dropout

model are lower than the proposed Bayesian stochastic VI

model.

Figure 4 shows the comparison of precision-recall (top)

and ROC (bottom) plots using the confidence measures for

DNN and Bayesian DNN models. It is observed from the

plots that Bayesian DNN model consistently outperforms

the DNN model for the individual modalities and also for

the combined audiovisual modalities. The Precision-Recall

AUC plot for the audiovisual Bayesian-DNN model shows

an improvement of 10.2% over the audiovisual DNN model

and an improvement of 9.5% over the vision only Bayesian

DNN model.

We also compared the uncertainty estimates obtained

from the proposed Bayesian DNN stochastic VI model us-

ing two separate datasets (UCF-101 as in-distribution and

MiT as out-of-distribution). The comparison of uncertainty

measures for in-distribution and out-of-distribution samples

obtained from Bayesian DNN are shown in Figure 3. BALD

density histogram indicates a clear separation of uncertainty

estimates for in- and out-of-distribution samples.

These results confirm that the proposed Bayesian DNN

stochastic VI model provides reliable confidence measure

than the conventional DNN for the audiovisual activity

recognition and can identify out-of-distribution samples.
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Figure 4: Precision-Recall (left) and ROC (right) plots micro-averaged over all the MiT in-distribution classes. The audiovisual Bayesian

DNN model shows an improvement of 10.2% Precision-Recall AUC and 2.7% ROC AUC over the audiovisual DNN model.

(a) DNN

confidence measure

(b) Bayesian DNN (MC Dropout) uncertainty

measure

(c) Bayesian DNN (Stochastic VI) uncertainty

measure

Figure 5: Density histograms obtained from in- and out-of-distribution samples for the subset of MiT dataset. (a) DNN confidence measure,

(b) Bayesian DNN MC Dropout uncertainty measure and (c) Bayesian DNN (Stochastic VI) uncertainty measure.
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Appendix A. Background

Given training dataset D = {x, y} with inputs x =
x1, ..., xN and their corresponding outputs y = y1, ..., yN ,

in parametric Bayesian setting we would like to infer a dis-

tribution over parameters w as a function y = fw(x) that

represents the DNN model. With the posterior for model pa-

rameters inferred during Bayesian neural network training,

we can predict the output for a new data point by propagat-

ing over the model likelihood p(y|x,w) while drawing sam-

ples from the learned parameter posterior p(w|D). Comput-

ing the posterior distribution p(w|D) is often intractable,

some of the previously proposed techniques to achieve an

analytically tractable inference include: (i) Markov Chain

Monte Carlo (MCMC) sampling based probabilistic infer-

ence [1, 19] (ii) variational inference techniques to infer the

tractable approximate posterior distribution around model

parameters [10, 11, 20] and (iii) Monte Carlo dropout ap-

proximate inference [21].

Variational inference [22, 23] approximates a complex

probability distribution p(w|D) with a simpler distribution

qθ(w), parameterized by variational parameters θ while

minimizing the Kullback-Leibler (KL) divergence [12].

Minimizing the KL divergence is equivalent to maximizing

the log evidence lower bound [12, 21].

L :=

∫
qθ(w) log p(y|x,w) dw

−KL[qθ(w)||p(w)]

(1)

Predictive distribution is obtained through multiple

stochastic forward passes through the network during the

prediction phase while sampling from the posterior distri-

bution of network parameters through Monte Carlo estima-

tors. Equation 2 shows the predictive distribution of the

output y∗ given new input x∗:

p(y∗|x∗, D) =

∫
p(y∗|x∗, w) qθ(w)dw

p(y∗|x∗, D) ≈
1

T

T∑
i=1

p(y∗|x∗, wi) , wi ∼ qθ(w)

(2)
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(a) DNN model (b) Bayesian DNN (MC Dropout) model (c) Bayesian DNN (Stochastic VI) model
Figure 6: Density histogram of confidence measures for subset of MiT dataset in-distribution true (correct) and false (incorrect) predictions:

where, T is number of Monte Carlo samples.

We evaluate the model uncertainty using Bayesian ac-

tive learning by disagreement (BALD) [16] for the activity

recognition task. BALD quantifies mutual information be-

tween parameter posterior distribution and predictive dis-

tribution, which captures model uncertainty, as shown in

Equation 3.

BALD := H(y∗|x∗, D)− Ep(w|D)[H(y∗|x∗, w)] (3)

where, H(y∗|x∗, D) is the predictive entropy given by:

H(y∗|x∗, D) = −
K−1∑
i=0

piµ log piµ (4)

piµ is predictive mean probability of ith class from T

Monte Carlo samples and K is the total number of output

classes.

Appendix B. Model training

The weights and bias parameters in the fully connected

variational layers (shown in Figure 2) are modeled through

mean-field Gaussian distribution, and the network is trained

using Bayesian variational inference based on KL diver-

gence [10, 11]. In order to learn the posterior distribu-

tion of model parameters w, we train Bayesian DNN with

variational inference method. The objective is to optimize

log evidence lower bound (ELBO) (Equation 1) as the cost

function. The model parameters of the fully connected vari-

ational layers are parametrized by mean µ and variance

σ2, i.e. qθ(w) = N (w|µ, σ2). These parameters in the

variational layers are optimized by minimizing the negative

ELBO loss (Lv) [12]:

Lv = −Eqθ(w)[log p(y|x,w)] +KL[qθ(w)||p(w)] (5)

µi+1 ← µi − α∆µL
v
i σi+1 ← σi − α∆σL

v
i

where, i is the training step, α is the learning rate, ∆µL
v

and ∆σL
v are gradients of the loss function computed w.r.t

µ and σ, respectively. We use Flipout [13], which is an ef-

ficient method that correlates the gradients within a mini-

batch by implicitly sampling pseudo-independent weight

perturbations for each input.

The parameters in deterministic layers are optimized us-

ing cross-entropy loss (Ld) [14] given by:

Ld = −
∑
c

yc log ŷc (6)

where, yc and ŷc are true and predicted label distributions,

respectively. The model parameters for variational and de-

terministic DNN layers are obtained by applying stochastic

gradient descent optimizer [15] to the loss functions given

in Equation 5 and 6, respectively. During prediction stage

we perform multiple Monte Carlo forward passes on the

final variational layers by sampling the parameters from

learned posteriors to measure uncertainty estimates using

Equation 3.

Appendix C. Additional Results

The density histograms for the DNN confidence mea-

sure and Bayesian DNN uncertainty measure are plotted

in Figure 6. In the case of false (incorrect) predictions,

the DNN model still shows confidence measure density

histograms peaked near 1.0. On the contrary, Bayesian

DNN models show confidence measure density histograms

skewed towards lower values indicating more reliable pre-

dictions. The proposed stochastic VI model shows a more

pronounced peak towards lower values for false predic-

tions indicating better predictive confidence measure than

the MC dropout model.
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