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Abstract

We present an approach which takes advantage of

both structure and semantics for unsupervised monoc-

ular learning of depth and ego-motion. More specif-

ically we model the motions of individual objects and

learn their 3D motion vector jointly with depth and ego-

motion. We obtain more accurate results, especially for

challenging dynamic scenes not addressed by previous

approaches. This is an extended version of Casser et

al. [1]. Code and models have been open sourced at:

https://sites.google.com/corp/view/struct2depth.

1. Introduction

Predicting scene depth and agent ego-motion from input im-

agery is important for robot navigation, both for indoors and

outdoors settings. While supervised dense depth prediction

has been successful [3], we here consider joint learning of

depth and ego-motion from monocular input videos only.

Unsupervised monocular or stereo-based learning has also

shown progress recently [22, 7], but prior work has not been

successful at dynamic scenes.

We present an approach that explicitly models 3D mo-

tions of moving objects, together with camera ego-motion

and scene depth, and adapts to new environments by learn-

ing with an online refinement of multiple frames (Figure 1).

With the newly introduced motion handling and the pro-

posed object size constraint, this approach is the first to

effectively learn from highly dynamic scenes in a monoc-

ular setting. Our approach introduces both structure and

semantics in the learning process by representing objects in

3D and modeling motion as SE3 transforms; this is trained

from uncalibrated monocular videos in a fully differentiable

manner. We further introduce an online refinement method
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Figure 1: Our method utilizes 3D geometry structure and

semantics during learning by modeling motions of individ-

ual objects, ego-motion and scene depth in a principled way.

Furthermore, a refinement approach adapts the model on the

fly in an online fashion.

for domain transfer in this unsupervised learning setting,

which can be applied independently of the base method.

This work is an extended version of [1]. We here present ad-

ditionally new results on the challenging Cityscapes dataset

with prevalent dynamic scenes and on ego-motion. Our al-

gorithm yields significant improvements on two publicly

available datasets and on both depth and ego-motion es-

timation, compared to the state-of-the-art, especially on

dynamic scenes. Furthermore, we evaluate direct domain

transfer, by training on one dataset and testing on another,

without fine-tuning.

Setup: The main learning setup is unsupervised learn-

ing of depth and ego-motion from monocular video [22],

where the only source of supervision is obtained from the

video itself. No depth sensor supervision is used. Objects’

masks are introduced from an off-the-shelf algorithm dur-

ing training only. During inference, only a still input image

is needed to predict depth, and two images to predict ego-

motion. Runtime: our model runs at 50 FPS and 30 FPS

on a Geforce 1080Ti for batch 4 and 1, respectively.

2. Previous work

Recent methods have demonstrated supervised learning

of scene depth from input imagery [3, 11, 10, 12]. Depth in-
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Figure 2: Schematic of the warping sequence for our method: first object masks are used to remove regions with movement;

then object ego-motion is computed; after that individual object motion is computed, but this is done using the output of the

image warped according to ego-motion. The final warped images both previous and next (with a validity mask) are compared

in RGB space to the original image.

formation provided by a sensor, such as a LiDAR, is used as

supervision. In parallel to supervised learning techniques,

unsupervised image-to-depth learning has been proposed

[22, 4, 7, 15, 13], where the only supervision is obtained

from a monocular video. The work of Garg et al. [4] in-

troduced joint learning of depth and ego-motion in a neu-

ral based framework. Zhou et al. [22] proposed the first

fully differentiable deep neural network approach for un-

supervised learning of depth and ego-motion, and showed

it outperforms prior approaches which used depth sensors

as supervision. Many subsequent works have further im-

proved the quality of depth and ego-motion [19, 15, 13, 14,

18, 20, 16, 9]. Some of these approaches have successfully

used stereo pair videos during training [7, 15, 21, 17, 6] to

also produce a single image-based depth estimation. These

methods tend to achieve better quality results, due to the

extra camera input.

3. Depth and ego-motion learning

We here present an approach which is able to model dy-

namic scenes by modeling object motion, and that can op-

tionally adapt its learning strategy with an online refinement

technique. Note that both ideas are tangential and can be

used either separately or jointly. See [1] for details.

During training, the method operates on sequences of

three consecutive RGB images1 (I1, I2, I3) ∈ R
H×W×3,

and camera intrinsics matrix K ∈ R
3×3. Depth is predicted

1While in theory the whole formulation can be done with two consec-

utive frames, for convenience, we consider three images in a sequence and

impose constraints between two pairs of frames.

by learning a depth function θ : R
H×W×3 → R

H×W ,

which is a fully convolutional encoder-decoder neural net-

work producing a dense depth map Di = θ(Ii) from a sin-

gle RGB frame. Ego-motion is predicted by an ego-motion

network ψE : R2×H×W×3 → R
6 which takes a sequence

of two RGB images as input and produces the SE3 trans-

form between the frames, i.e. 6-dimensional transformation

vector E1→2 = ψE(I1, I2) specifying translation and rota-

tion parameters between the frames.

Let us suppose that the depth network output is provid-

ing an adequate depth of the scene per frame, then using

it, we can represent points in 3D space. Further, given the

ego-motion between consecutive frames, we can transform

the scene and project it to obtain the neighbouring frame.

More specifically, by using a differentiable image warping

operator φ(Ii, Dj , Ei→j) → Îi→j , we can inverse-warp any

source RGB-image Ii into Ij given corresponding depth

estimate Dj and an ego-motion estimate Ei→j . Here, φ

performs the warping by reading from transformed image

pixel coordinates, setting Î
xy
i→j = I

x̂ŷ
i , where [x̂, ŷ, 1]T =

KEi→j(D
xy
j · K−1[x, y, 1]T ). The latter construct suc-

cinctly denotes projecting the depth into a 3D point cloud,

then transforming it according to Ei→j and then projecting

the transformed 3D point cloud into image space. In prac-

tice, we always warp the outer images towards the center

frame within a sequence. The supervisory signal is then es-

tablished using a photometric loss comparing the projected

scene onto the next frame Îi→j with the actual next frame

Ij image in RGB space, for example using a reconstruction

loss: Lrec = min(‖Îi→j − Ij‖.



3.1. Motion Model

In order to handle highly dynamic scenes, we model mo-

tions of individual objects. Namely, we introduce a third

component ψM to the model, which is specialized to pre-

dicting motion of objects in 3D (Figure 1). It uses the

same network structure as the ego-motion network ψE but

trains to separate weights. The object motion model takes

an RGB image sequence as input, complemented by pre-

computed instance segmentation masks. The motion model

learns to predict the transformation vectors per each object

in 3D-space, which create the observed object appearance

in the respective target frame when applied to the camera.

In the new model, the final warping result is a combina-

tion of the individual warping from moving objects, and the

ego-motion. (Figure 2). In order to compute ego-motion,

object motions are masked out of the images first, i.e. the

static scene binary mask is applied to all images in the se-

quence by element-wise multiplication, before feeding the

sequence to the ego-motion model. The static background

is generated by a single warp based on ψE , whereas all seg-

mented objects are then added by their appearance being

warped first according to ψE and then ψM . Outlines of po-

tentially moving objects are provided by an off-the-shelf al-

gorithm [8] and are needed only for training (similar to prior

work that use optical flow [17] that is not trained on either

of the datasets of interest). Our approach not only models

objects in 3D but also learns their motion on the fly, together

with scene depth and ego-motion.

3.2. Imposing Object Size Constraints

Previous work has pointed out a significant limitation for

monocular methods [6] [17] [16] - that cars moving in front

at roughly the same speed often get projected into infinite

depth e.g. [6, 17]. This is because the object in front shows

no apparent motion, and if the network estimates it as be-

ing infinitely far away, the reprojection error is almost re-

duced to zero which is preferred to the correct case. Previ-

ously, only methods with stereo images as input were able

to solve this problem. Instead, we propose a different ap-

proach. Since the main problem stems from the fact that if

the model has no knowledge about object scales, it could ex-

plain the same object motion by placing an object very far

away and predicting large motion, or placing it close and

predicting small motion, we here let the model learn the

scales of objects as part of the training process. Assuming

a weak prior on the height of certain objects, we can get an

approximate depth estimation for it given its segmentation

mask and the camera intrinsics using Dapprox(p;h) ≈ fy
p

h

where fy ∈ R is the focal length, p ∈ R our height prior in

world units, and h ∈ N the height of the respective segmen-

tation blob in pixels. A loss term on the scale of each object

i (i = 1 . . . N ) is added to the main loss. Let t(i) : N → N

define a category ID for any object i, and pj be a learnable

height prior for each category ID j. Let D be a depth map

estimation and S the corresponding object outline mask per

object Oi (⊙ is the element-wise multiplication). Then the

loss is:

Lsc =
N∑

i=1

‖
D ⊙Oi(S)

D
−
Dapprox(pt(i);h(Oi(S)))

D
‖

We scale by D, which is the mean estimated depth of the

middle frame, to reduce a potential issue of trivial loss re-

duction by jointly shrinking priors and the depth prediction

range. To our knowledge this is the first method to address

common degenerative cases in a fully monocular training

setup in 3D.

In addition to the above-mentioned losses, the full loss

includes the photometric reconstruction loss, the SSIM loss,

a depth smoothness loss [22, 16]. The loss is also applied

on 4 image resolutions.

3.3. Test Time Refinement Model

With the above-mentioned model, depth can be predicted

from a single, still image during inference. If multi-frames

are available during inference too, one may take advantage

of that and learn on the fly. More specifically, we propose to

further optimize the model weights during inference which

allows the model to adapt to the environment online. Thus,

the model will be training for a number of steps, while per-

forming inference. In doing that, we also show that even

with very limited temporal resolution (i.e., three-frame se-

quences), the quality of depth predictions, both qualitatively

and quantitatively, improves.

4. Experimental Results

We conduct experiments on depth estimation, ego-

motion estimation and on transfer learning to new environ-

ments, using common metrics and protocols for evaluation

adopted by prior methods. We report results on the two

main benchmarks for depth and ego-motion evaluation: the

KITTI dataset [5] and the Cityscapes dataset [2].

Results on the KITTI Dataset. Figure 3 visualizes the

results of our method compared to the ground truth provided

by a sensor and Tables 1 and 2 show quantitative results.

Improvement over the baseline and over previous methods

in the literature is observed. Our method outperforms com-

petitive models that use motion [17] and [20]. Furthermore,

our results which are trained in monocular setup, are close

to methods which use stereo or a combination of stereo and

monocular, e.g. [7, 17, 6]. More results can be seen in [1].

Experimental Results on the Cityscapes Dataset. In

this section we evaluate our method on the Cityscapes

dataset, whhich contains many dynamic scenes. Ta-

ble 3 shows our experimental results when training on the



Figure 3: Example results of depth estimation. Each column shows an input image, depth prediction of our method, and

ground truth depth. KITTI dataset.

Method Supervision? Motion? Cap Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

Eigen [3] Coarse GT Depth - 80m 0.214 1.605 6.563 0.292 0.673 0.884 0.957

Eigen [3] Fine GT Depth - 80m 0.203 1.548 6.307 0.282 0.702 0.890 0.958

Liu [11] GT Depth - 80m 0.201 1.584 6.471 0.273 0.68 0.898 0.967

Zhou [22] - - 80m 0.208 1.768 6.856 0.283 0.678 0.885 0.957

Yang [19] - - 80m 0.182 1.481 6.501 0.267 0.725 0.906 0.963

Vid2Depth [13] - - 80m 0.163 1.240 6.220 0.250 0.762 0.916 0.968

LEGO [18] - Yes 80m 0.162 1.352 6.276 0.252 0.783 0.921 0.969

GeoNet [20] - Yes 80m 0.155 1.296 5.857 0.233 0.793 0.931 0.973

DDVO [16] - - 80m 0.151 1.257 5.583 0.228 0.810 0.936 0.974

Godard [6] - - 80m 0.133 1.158 5.370 0.208 0.841 0.949 0.978

Yang [17] - Yes 80m 0.131 1.254 6.117 0.220 0.826 0.931 0.973

Ours (Baseline) - - 80m 0.1417 1.1385 5.5205 0.2186 0.8203 0.9415 0.9762

Ours (M) - Yes 80m 0.1412 1.0258 5.2905 0.2153 0.8160 0.9452 0.9791

Ours (R) - - 80m 0.1231 1.4367 5.3099 0.2043 0.8705 0.9514 0.9765

Ours (M+R) - Yes 80m 0.1087 0.8250 4.7503 0.1866 0.8738 0.9577 0.9825

Table 1: Evaluation of depth estimation of our method compared to the state-of-the-art. Separate results of the motion model

(M), the online refinement one (R), and both (M+R) are presented. For the purple columns, lower is better, for the yellow

ones higher is better. KITTI dataset.

Cityscapes data, and then evaluating on KITTI (without

fine-tuning). We also show evaluation on the Cityscapes

dataset itself, which contains many moving objects. These

experiments clearly demonstrate the benefit of our method

for dynamic scenes as we see significant improvements in

depth estimation. We observe that the improvements are

due to the appropriate depth learning of many moving ob-

jects (Figure 4) enabled by the motion model. We further

note that these are new results and training and testing on

Cityscapes is not customarily done, as seen in the table,

since the dataset is very challenging.

Motion Model. We here further examine the effects of

the motion model. Figure 4 shows several examples of dy-

namic scenes from the Cityscapes dataset, which contain

many moving objects. We note that our baseline, which is

by itself a top performer on KITTI, is failing on moving

objects. Our method makes a notable difference both qual-

itatively (Figure 4) and quantitatively (see Table 3). Fig-

ure 5 further compares our results with previous monocular

methods in the case of a moving vehicle in front of the ego-

motion vehicle. As seen our approach is the only one that

can extract its depth. Another benefit provided by the mo-

tion model is that it learns to predict motions of individual

objects in 3D, which can be available for inference if an ob-

ject mask is specified [1]. In the general case, object masks

are not needed for depth or ego-motion inference.

Refinement Model. Figure 6 shows results of the re-

finement method only. We can see improvements of the

refinement model on both KITTI and Cityscapes datasets

for a model trained on KITTI. As seen for both evaluating

on KITTI or Cityscapes dataset the refinement is helpful in

recovering the geometry structure better. Of note that in the

case of Cityscape (left), this is testing across datasets. Fig-

ure 8 further shows improvements per frame by the online

refinement model. As seen, most frames benefit from re-

finement and improve their depth estimation. More online

refinement results, demonstrated on an indoor dataset, col-

lected by the Fetch robot are shown in [1].

Visual Odometry Results. The ego-motion results are

shown in Table 4. The experiments are conducted by a stan-

dard protocol adopted by prior work [22, 6] on the KITTI

odometry dataset. As seen our algorithm outperforms state-



Method Supervision? Motion? Cap Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

Garg [4]* - - 50m 0.169 1.08 5.104 0.273 0.740 0.904 0.962

Mahjourian [13] - - 50m 0.155 0.927 4.549 0.231 0.781 0.931 0.975

GeoNet [20] - - 50m 0.147 0.936 4.348 0.218 0.810 0.941 0.977

DDVO [16]† - - 50m 0.1436 0.9348 4.2338 0.2144 0.8267 0.9446 0.9774

Ours (Baseline) - - 50m 0.1343 0.8229 4.1078 0.2038 0.8365 0.9506 0.9802

Ours (R) - - 50m 0.1141 0.9284 3.8777 0.1897 0.8841 0.9571 0.9792

Ours (M) - Yes 50m 0.1350 0.7912 4.0573 0.2031 0.8311 0.9527 0.9822

Ours (M+R) - Yes 50m 0.1030 0.6217 3.5546 0.1749 0.8866 0.9632 0.9846

Table 2: Evaluation of depth estimation of our method compared on the KITTI dataset, for 50 meters range cap. Methods

marked with an asterik (*) use depth computed from disparities as ground truth, and are trained on stereo images. Results

marked with † were computed by us using predictions that the authors provided.

Figure 4: Examples of depth estimation with the motion model (M) on highly dynamic scenes. Cityscapes dataset; from left

to right: image input, baseline, ours, ground truth. A common failure case for dynamic scenes in monocular methods are

objects moving with the camera itself. These objects are projected into infinite depth in prior work. Our method correctly

estimates depth notably here, particularly on moving vehicles and persons.

of-the-art methods, even the ones that use more temporal

information. Handling of motion is the biggest contributing

factor to improving the ego-motion estimation of our algo-

rithm. Figure 7 shows results on the KITTI sequence.

Experiments discussion. As shown previously (in Ta-

bles 1, 2, and 3) our method benefits from both motion and

online refinement, but each component works in different

extents. For example, the motion net although extremely

beneficial for Cityscapes, a dataset with many dynamic

scenes, affects the metrics to moderate amounts in KITTI,

which reflects the scarcity of motion in this dataset.Online

refinement, on the other hand, is generally useful, but some

confusion may arise when applying it solo on a data with

a lot of motion, e.g., Cityscapes. When both online refine-

ment and motion are applied we have much better results

than the baselines.

Figure 9 shows several typical examples of failures for

depth estimation for the motion-only model. These can

generally happen in scenes which are considerably differ-

ent than scenes seen during training, for example scenes in

which the average depth is very low over the full image, or

images with new objects, such as a tank truck or a bridge.

Notes on the evaluation procedure and revised re-

sults. As pointed out by Godard [6], the evaluation code

released by [22] contains an inaccuracy where the depth

ground truth on the KITTI dataset is computed with respect

to the camera instead of the LIDAR. Fortunately, in prac-

tice, the effects of this are rather subtle as the displacement

is not very large. We know that at least the results of Zhou

[22], Mahjourian [13], MonoDepth [7], Pilzer [14] and

GeoNet [20] are affected, as they adopted the same evalu-

ation code. To be able to better compare to these methods,

all numbers reported in the main paper use the old evalua-

tion code for both caps at 50m and 80m. We show results

using the revised evaluation code in Table 5. For all meth-

ods where we have raw predictions available, we recompute

their scores and also include them in the table.

5. Conclusions

This paper addresses the monocular depth and ego-

motion problem by modeling individual objects’ motion in

3D, and an online refinement algorithm which is beneficial



Input Godard [6] Mono GeoNet [20]

DDVO [16] Baseline Ours (M)

Figure 5: Example showing a common failure case for monocular methods, which is handled correctly by our motion model

due to imposed size constraints. KITTI.

Method Train Test Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

Godard [6]* C K 0.233 3.533 7.412 0.292 0.700 0.892 0.953

Ours (R) C K 0.1696 1.7083 6.0151 0.2412 0.7840 0.9279 0.9703

Ours (M) C K 0.1876 1.3541 6.3166 0.2641 0.7135 0.9046 0.9667

Ours (M+R) C K 0.1529 1.1087 5.5573 0.2272 0.7956 0.9338 0.9752

Pilzer [14]* C C 0.440 6.036 5.443 0.398 0.730 0.887 0.944

Pilzer [14]* C C 0.467 7.399 5.741 0.493 0.735 0.890 0.945

Ours (R) C C 0.2218 5.7374 8.6133 0.2584 0.7738 0.9076 0.9542

Ours (M) C C 0.1454 1.7368 7.2798 0.2046 0.8130 0.9415 0.9775

Ours (M+R) C C 0.1511 2.4916 7.0237 0.2023 0.8255 0.9372 0.9721

Table 3: Depth prediction results when training on Cityscapes. Evaluation on both KITTI (K) and Cityscapes (C) is shown

here; 80m range cap. Methods marked with an asterik (*) might use a different cropping as the exact parameters were not

available.

Figure 6: Online refinement model (R). Cityscapes (left

columns), KITTI (right columns). The model is trained on

KITTI.

Method Seq. 09 Seq. 10
Mean Odometry 0.032 ±0.026 0.028± 0.023
ORB-SLAM (short) 0.064± 0.141 0.064± 0.130
Vid2Depth (Mahjourian 2018) 0.013± 0.010 0.012± 0.011
Godard (Godard 2018)† 0.023± 0.013 0.018± 0.014
Zhou (Zhou 2017)† 0.021± 0.017 0.020± 0.015
GeoNet (Yin 2018) 0.012± 0.007 0.012± 0.009
ORB-SLAM (full)* 0.014± 0.008 0.012± 0.011
Ours 0.011± 0.006 0.011± 0.010

Table 4: Quantitative evaluation of odometry on the KITTI

Odometry test sequences. Methods using more information

than a set of rolling 3-frames are marked (*). Models that

are trained on a different part of the dataset are marked (†).

for transfering learned models to new environments. The

algorithm allows application to videos with dynamic scenes

and motion. Results on two major and challenging bench-

marks datasets, KITTI and Cityscapes, for depth and ego-

motion prediction are presented. We also showed successful

transfer across datasets.

Acknowledgments. We would like to thank Ayzaan

Wahid for helping us with data collection, members of the

Brain team for discussions, and Chaoyang Wang, Zhenheng

Yang, Zhichao Yin and Jianping Shi for their generous shar-

ing of results. We also would like to thank Clément Godard

for helping with reproducing some previous results.

References

[1] V. Casser, S. Pirk, R. Mahjourian, and A. Angelova. Depth

prediction without the sensors. AAAI, 2019. 1, 2, 3, 4

[2] M. Cordts, M. Omran, S. Ramos, T. Rehfeld, M. Enzweiler,

R. Benenson, U. Franke, S. Roth, and B. Schiele. The

cityscapes dataset for semantic urban scene understanding.

In CVPR, 2016. 3

[3] D. Eigen, C. Puhrsch, and R. Fergus. Depth map prediction

from a single image using a multi-scale deep network. NIPS,

2014. 1, 4

[4] Ravi Garg, Gustavo Carneiro, and Ian Reid. Unsupervised

cnn for single view depth estimation: Geometry to the res-

cue. ECCV, 2016. 2, 5



Figure 7: Ego-motion results visualized as vehicle speed (in non-metric network units) and turn indicator at the bottom:

driving forward (left), slowing down and taking a turn (middle), stopping for a red light (right).

Method Supervision? Motion? Cap Abs Rel Sq Rel RMSE RMSE log δ < 1.25 δ < 1.252 δ < 1.253

Mahjourian [13]† - - 50m 0.1563 0.9602 4.4051 0.2320 0.7940 0.9323 0.9732

GeoNet [20]† - - 50m 0.1512 0.9455 4.3627 0.2224 0.8023 0.9387 0.9759

DDVO [16]† - - 50m 0.1488 0.9498 4.2551 0.2195 0.8181 0.9423 0.9765

Ours (Baseline) - - 50m 0.1388 0.8344 4.1306 0.2087 0.8291 0.9480 0.9793

Ours (M) - Yes 50m 0.1377 0.7918 4.0514 0.2066 0.8260 0.9506 0.9814

Ours (R) - - 50m 0.1175 0.9398 3.8833 0.1932 0.8799 0.9560 0.9787

Ours (M+R) - Yes 50m 0.1052 0.6231 3.5591 0.1779 0.8834 0.9620 0.9841

Train set mean - - 80m 0.361 4.826 8.102 0.377 0.638 0.804 0.894

Mahjourian [13]† - - 80m 0.1635 1.2467 5.9579 0.2478 0.7752 0.9197 0.9680

GeoNet [20]† - - 80m 0.1590 1.3032 5.8732 0.2379 0.7853 0.9286 0.9713

DDVO [16]† - - 80m 0.1562 1.2750 5.6136 0.2336 0.8015 0.9330 0.9724

Godard [6] - - 80m 0.137 1.153 5.353 0.212 0.836 0.947 0.978

Ours (Baseline) - - 80m 0.1463 1.1506 5.5520 0.2236 0.8127 0.9386 0.9751

Ours (M) - Yes 80m 0.1439 1.0247 5.2914 0.2189 0.8110 0.9429 0.9782

Ours (R) - - 80m 0.1265 1.4453 5.3122 0.2078 0.8663 0.9501 0.9759

Ours (M+R) - Yes 80m 0.1108 0.8254 4.7619 0.1897 0.8704 0.9563 0.9819

Table 5: Evaluation of depth estimation of our method using the revised evaluation code on KITTI, testing individual contri-

butions of motion and online refinement components. We re-evaluate related methods if predictions are available, as marked

with †. As before, our method outperforms every competing one.

0.2

0.0

0.2

0.4

0.6

%
 im

pr
ov

em
en

t i
n 

ab
s_

re
l

Figure 8: Relative improvements achieved by the online re-

finement model per frame. As seen, most frames benefit

from online refinement. The red horizontal line marks the

mean improvement. KITTI dataset.

[5] A. Geiger, P. Lenz, C. Stiller, and R. Urtasun. Vision meets

robotics: The kitti dataset. The International Journal of

Robotics Research, 32(11):1231–1237, 2013. 3

[6] C. Godard, O. Mac Aodha, and G. Brostow. Dig-

ging into self-supervised monocular depth estimation.

arxiv.org/pdf/1806.01260, 2018. 2, 3, 4, 5, 6, 7

[7] Clement Godard, Oisin Mac Aodha, and Gabriel J. Bros-

Figure 9: Example failure cases of our model can be due to

unfamiliar objects, for example, the large tank truck and the

bridge in the right image, or side vegetation (in the middle)

and fence (right image).

tow. Unsupervised monocular depth estimation with left-

right consistency. CVPR, 2017. 1, 2, 3, 5

[8] K. He, G. Gkioxari, P. Dollár, and R. Girshick. Mask r-cnn.

In ICCV. 3

[9] Y. Kuznietsov, J. Stuckler, and B Leibe. Sfm-net: Learning

of structure and motion from video. CVPR, 2017. 2

[10] Iro Laina, Christian Rupprecht, Vasileios Belagiannis,

Federico Tombari, and Nassir Navab. Deeper depth

prediction with fully convolutional residual networks.



arXiv:1606.00373, 2016. 1

[11] F. Liu, C. Shen, G. Lin, and I. Reid. Learning depth from sin-

gle monocular images using deep convolutional neural fields.

PAMI, 2015. 1, 4

[12] Reza Mahjourian, Martin Wicke, and Anelia Angelova.

Geometry-based next frame prediction from monocular

video. Intelligent Vehicles Symposium, 2017. 1

[13] Reza Mahjourian, Martin Wicke, and Anelia Angelova. Un-

supervised learning of depth and ego-motion from monoc-

ular video using 3d geometric constraints. In Proceedings

of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 5667–5675, 2018. 2, 4, 5, 7

[14] A. Pilzer, D. Xu, M. Puscas, E. Ricci, and N. Sebe. Unsuper-

vised adversarial depth estimation using cycled generative

networks. 3DV, 2018. 2, 5, 6

[15] Benjamin Ummenhofer, Huizhong Zhou, Jonas Uhrig, Niko-

laus Mayer, Eddy Ilg, Alexey Dosovitskiy, and Thomas

Brox. Demon: Depth and motion network for learning

monocular stereo. CVPR, 2017. 2

[16] C. Wang, J. Buenaposada, R. Zhu, and S. Lucey. Learning

depth from monocular videos using direct methods. CVPR,

2018. 2, 3, 4, 5, 6, 7

[17] Z. Yang, P. Wang, Y. Wang, W. Xu, and R. Nevatia. Every

pixel counts: Unsupervised geometry learning with holistic

3d motion understanding. ECCV Workshop, 2018. 2, 3, 4

[18] Zhenheng Yang, Peng Wang, Yang Wang, Wei Xu, and Ram

Nevatia. Lego: Learning edge with geometry all at once by

watching videos. CVPR, 2018. 2, 4

[19] Z. Yang, P. Wang, W. Xu, L. Zhao, and R. Nevatia. Unsuper-

vised learning of geometry with edge-aware depth-normal

consistency. arXiv:1711.03665, 2017. 2, 4

[20] Shi J. Yin, Z. Geonet: Unsupervised learning of dense depth,

optical flow and camera pose. CVPR, 2018. 2, 3, 4, 5, 6, 7

[21] H. Zhan, R. Garg, C.S. Weerasekera, K. Li, H. Agarwal, and

I. Reid. Unsupervised learning of monocular depth estima-

tion and visual odometry with deep feature reconstruction.

CVPR, 2018. 2

[22] T. Zhou, M. Brown, N. Snavely, and D. Lowe. Unsupervised

learning of depth and ego-motion from video. CVPR, 2017.

1, 2, 3, 4, 5


