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Abstract

In this paper, we propose a self-supervised learning ap-
proach for estimating continuous ego-motion from video.
Our model learns to estimate camera motion by watching
RGBD or RGB video streams and determining translational
and rotation velocities that correctly predict the appear-
ance of future frames. Our approach differs from other
recent work on self-supervised structure-from-motion in its
use of a continuous motion formulation and representation
of rigid motion fields rather than direct prediction of cam-
era parameters. To make estimation robust in dynamic en-
vironments with multiple moving objects, we introduce a
simple two-component segmentation process that isolates
the rigid background environment from dynamic scene ele-
ments. We demonstrate state-of-the-art accuracy of the self-
trained model on several benchmark ego-motion datasets
and highlight the ability of the model to provide superior ro-
tational accuracy and handling of non-rigid scene motions.

1. Introduction

Supervised machine learning techniques based on deep
neural networks have shown remarkable recent progress for
image recognition and segmentation tasks. However, ap-
plication of these powerful learning methods to geomet-
ric tasks such as structure-from-motion has been some-
what slower due to a number of factors. One challenge
is that standard layers defined in convolutional neural net-
work (CNN) architectures do not offer a natural way for
researchers to incorporate hard-won insights about the al-
gebraic structure of geometric vision problems, instead re-
lying on general approximation properties of the network to
re-discover these facts from training examples. This has re-
sulted in some development of new building blocks (layers)
specialized for geometric computations that can function in-
side standard gradient-based optimization frameworks (see
e.g., [10, 11]) but interfacing these to image data is still a
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Figure 1. Overview of network architectures used in our experi-
ments. The top panel shows conventional (baseline) approach that
directly predicts 6DoF camera motion (Lcqm ). The middle panel
displays our proposed single layer model which predicts ego mo-
tion assuming a static (rigid) environment. We train the model
with additional unsupervised losses based on optical flow (Lor),
motion field (£arr), and orthogonal projection (Lor) described
in Section 3.1. Our model supports both supervised (red) and un-
supervised (green) losses during training. The bottom panel shows
a two layered model variant that segments a scene into static and
dynamic components and only uses static component for camera
motion prediction. When input depth is not available, we utilize
an additional monocular depth estimation network to predict it.

challenge.

A second difficulty is that optimizing convolutional neu-
ral networks (CNNss) requires large amounts of training data
with ground-truth labels. Such ground-truth data is often
not readily available for geometric problems (e.g., requir-
ing special-purpose hardware during acquisition rather than
simple image annotations). This challenge has driven re-



cent effort to develop more realistic synthetic datasets such
as Flying Chairs and MPI-Sintel [2] for flow and disparity
estimation, Virtual KITTTI [6] for object detection and track-
ing, semantic segmentation, flow and depth estimation, and
SUNCG [30] for indoor room layout, depth and normal es-
timation.

In this paper, we overcome some of these difficulties by
taking a “self-supervised” approach to learning to estimate
camera motions directly from video. Self-supervision uti-
lizes unlabeled image data by constructing an encoder that
transforms the image into an alternate representation and
a decoder that maps back to the original image. This ap-
proach has been widely for low-level synthesis problems
such as super-resolution [3], image colorization [43] and in-
painting [26] where the encoder is fixed (creating a down-
sampled, grayscale or occluded version of the image) and
the decoder is trained to reproduce the original image. For
estimation tasks such as human pose [34], depth [37, 44],
and intrinsic image decomposition [15], the structure of
the decoder is typically specified by hand (e.g., synthesiz-
ing the next video frame in a sequence based on estimated
optical flow and previous video frame) and the encoder is
learned. Self-supervision is appealing for geometric esti-
mation problems since (a) it doesn’t require human super-
vision to generate target labels and hence can be trained on
large, diverse data, and (b) the predictive (decoder) compo-
nent of the model can incorporate known constraints into
the problem structure.

Our basic model for ego-motion estimation takes a pair
of calibrated RGB or RGBD video frames as input, esti-
mates optical flow and depth, determines camera and ob-
ject velocities, and resynthesizes the corresponding motion
fields. We show that the model can be trained end-to-end
with a self-supervised loss that enforces consistency of the
predicted motion fields with the input frames, yielding a
system that provides highly accurate estimates of camera
ego-motion. We measure the effectiveness of our method
using TUM [31] and Virtual KITTI [6] dataset.

Relative to other recent papers [35, 37, 44, 21, 1] that
have also investigated self-supervision for structure-from-
motion, the novel contributions of our work are:

e We represent camera motion implicitly in terms of
motion fields and depth which are a better match for
CNNss architectures that naturally operate in the im-
age domain (rather than camera parameter space). We
demonstrate that this choice yields better predictive
performance, even when trained in the fully supervised
setting

e Unlike previous self-supervised techniques, our model
uses a continuous (linearized) approximation to cam-
era motion [25, 14] which is suitable for video odome-
try and allows efficient backpropagation while provid-
ing strong constraints for learning from unsupervised

data.

e Our experimental results demonstrate state-of-the-art
performance on benchmark datasets which include
non-rigid scene motion due to dynamic objects. Our
model improves substantially on estimates of camera
rotation, suggesting this approach can serve well as
a drop-in replacement for local estimation in existing
RGB(D) SLAM pipelines.

2. Related Work

Visual odometry is a classic and well studied problem in
computer vision. Here we mention a few recent works that
are most closely related to our approach.

Optical Flow, Depth and Odometry: A number of recent
papers have shown great success in estimation of optical
flow from video using learning-based techniques [4, 12].
Ren et al. introduced unsupervised learning for optical flow
prediction [27] using photometric consistency. Garg et. al.
utilize consistency between stereo pairs to learn monocu-
lar depth estimation in a self-supervised manner [7]. [44]
jointly trains estimators for monocular depth and relative
pose using an unsupervised loss. STM-Net [37] takes a sim-
ilar approach but explicitly decomposes the input into mul-
tiple motion layers. [19] uses stereo video for joint train-
ing of depth and camera motion (sometimes referred to as
scene flow) but tests on monocular sequences. Mahjourian
et al. [21] use 3D ICP loss on top of 2D photometric loss
to predict depth and ego-motion. Our approach differs from
these recent papers in using a continuous formulation ap-
propriate for video. Such a formulation was recently used
by Jaegle et al.[14] for robust monocular ego-motion esti-
mation but with classic (sparse) optical flow as input.

SLAM: While conventional simultaneous localization and
mapping (SLAM) methods estimate geometric information
by extracting feature points [16, 40] or use all information in
the given images [5], recently several learning based meth-
ods have been introduced. Tateno et al. [33] propose a fu-
sion SLAM technique by utilizing CNN based depth map
prediction and monocular SLAM. Melekhov et al. propose
CNN based relative pose estimation using end-to-end train-
ing with a spatial pyramid pooling (SPP) [22]. Other recent
works [17, 20] model static background to predict accurate
camera pose even in dynamic environment. Sun et al. try
to solve dynamic scene problem by adding motion removal
approach as a pre-processing to be integrated into RGBD
SLAM [32]. The work of Wang et al. [38] train a recurrent
CNN to capture longer-term processing of sequences typi-
cally handled by bundle adjustment and loop closure. [42]
use virtual stereo camera based training to achieve photo-
consistency and accurate depth reconstruction. Another re-
cent work done by [1] shows scale-aware camera pose pre-
diction by using spatial and temporal reconstruction losses



simultaneously.

3. Continuous Ego-motion Network

Figure 1 provides an overview of three different types of
architectures we consider in this paper. We take as input a
successive pair of RGB images {1, I;1s} and correspond-
ing depth images {d;, d;+s}. When depth is not available,
we assume it is predicted by a monocular depth estimator
(not shown). The first network, N etposg, directly predicts
6 DoF camera motion by attaching several fully connected
layers at the end of a standard CNN architecture. When
camera motion is known, this baseline can be trained with a
supervised loss Lcam or trained with a self-supervised im-
age warping loss L3pwarp as done in several recent papers
[44, 35, 37].

Instead of directly predicting camera motion parameters,
we advocate utilizing a fully-convolutional encoder/decoder
architecture with skip connections (e.g., [28, 29, 4, 12])
to first predict optical flow (denoted Netor). We then es-
timate continuous ego-motion (¢,w) using weighted least-
squares and resynthesize the corresponding motion field
MF(t,w). These intermediate representations can be
learned using unsupervised losses (Lop,Lmr, Lop) de-
scribed below. When additional moving objects are present
in the scene, we introduce an additional segmentation net-
work, N etsgg, which decomposes the optical flow into lay-
ers that are fit to separate motion models.

In the following sections we develop the continuous mo-
tion formulation, interpret our model as projecting the pre-
dicted optical flow on to the subspace of ego-motion flows,
and discuss implementation of segmentation into layers.

3.1. Estimating Continuous Ego-motion

Consider the 2D trajectory of a point in the image x =
{z,y} as a function of its 3D position X = {X,Y, Z} and
motion relative to the camera. We write

twlpon = { 0 O,

where f is the camera focal length. To compute the pro-
jected velocity in the image v(z) = (v;,v,)" € R? as a
function of the 3D velocity V' (X) we take partial deriva-
tives. For example, the  component of the velocity is:
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Dropping ¢ for notational simplicity, we can thus write the
image velocity as:

v(z) = ——<Ax)V(X) ey

where the matrix A(x) is given by:
0 —
Aw) = |7 o

0 f -y

In the continuous formulation, the velocity of the point
relative to the camera V' (X)) arises from a combination of
translational and rotational motions,

VIX)=7+ X xw

where w = (wg,wy,w;)" € R? is unit length axis rep-
resentation of rotational velocity of the camera and 7 =
(T2, Ty, =) T € R? is the translation. Denoting the inverse
depth at image location x by p(z) = %, we can see
that the projected motion vector v is a linear function of
the camera motion parameters:

v@) = p@)Ae)r+ Blaw
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where the matrix B includes the cross product
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To describe motion field for the whole image, we con-

catenate equations for all N pixel locations and write U =
OT where
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We assume the focal length is a fixed quantity and in the fol-
lowing write the motion field as a function!d = M F(p, T
which is linear in both the inverse depths p and camera mo-
tion parameters 7T'.
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Figure 2. Schematic interpretation of different loss functions. (a) Supervised training of direct models utilize a loss defined on camera pose
space. (b) Our approach defines losses on the space of pixel flows and considers losses that measure the distance to the true motion field, the
sub-space of possible ego-motion fields (blue), and its orthogonal complement (gray dashed). The model is also guided by photometric or
scene-flow consistency between input frames (yellow) (c) shows prediction error for supervised models trained with different combinations

of these losses and indicates that using losses defined in flow-space outperforms direct prediction of camera motion.

To infer the camera motion T' given inverse depths p and
image velocities I/, we use a least-squares estimate:

N

t*, wr=arg rilin Z w(x;)||v(e;)— LA(wi)t + B(x;)w]||?

P Z(x;)

where w(x;) is a weighting function that models the relia-
bility of each pixel velocity in estimating the camera mo-
tion. The solution to this problem can be expressed in
closed from using the pseudo inverse of matrix Q. We de-
note the mapping from U/ to estimated camera motion as
T = MF'(p,U,w).

In our model we utilize M FT(p,U,w) to estimate cam-
era model and M F'(p, T') to resynthesize the resulting mo-
tion field. Both functions are differentiable with respect to
their inputs (in fact linear in ¢/ and T respectively) mak-
ing it straightforward and efficient to incorporate them into
a network that is trained end-to-end using gradient-based
methods.

3.2. Projecting optical flow onto ego-motion

Given the true motion field U, it is straight forward to
estimate the the true camera motion 7. In practice, the
motion must be estimated from image data which is often
ambiguous (e.g., due to lack of texture) and noisy. Typically
there is a large set of image flows that are photometrically
consistent from which we must select the true motion field.
Our architecture utilizes a CNN to generate an initial flow
estimate from image data, then uses M F't(p,U,w) to fit
a camera motion and finally reconstructs the image motion
field corresponding to the camera motion. The composi-
tion of M F' and M F can be seen as a linear projection of
the initial flow estimate into the space of continuous motion
fields.

A key tenant of our approach is that it is a better match
to convolutional feature extractors to predict the ego mo-
tion field in the image domain (and subsequently estimate
camera motion) rather than attempting to directly regress

camera pose. In particular, this allows for richer loss func-
tions that guide the training of the network. We illustrate
this idea schematically for the case of supervised learning
in Figure 2. Panel (a) depicts the direct approach in terms
of a loss function whose gradient pulls the predicted pose
towards the true pose.

We display the relationship between optical flow, mo-
tion field and camera pose in Figure 2(b). Among all pos-
sible image flows ¢, we indicate in yellow the set which
are photometrically valid (i.e., have a zero warping loss
Lor < €). The blue line indicates the 6-dimensional sub-
space consisting of those motion fields that can be gener-
ated by all possible camera velocities (conditioned on scene
depth). Introducing a loss on the camera pose (either di-
rectly on the prediction 7,w, or on the resynthesized mo-
tion field M F(7,w) serves to pull the flow prediction to-
wards the orthogonal complement of this space (i.e., the set
{¢: MFT(¢) = 7*,w*} denoted by the gray vertical line).

Our approach allows the consideration of two other loss
functions that can provide additional guidance. When su-
pervision is available, we can utilize a loss which directly
measures the distance between the predicted flow and the
true motion field (L, in the figure). In the self-supervised
setting, we can approximate this with the photometric warp-
ing loss Lo r. In either supervised or unsupervised settings,
we can include an orthogonal projection loss Lo p, which
encourages the model to predict flows that are close to the
space of motion fields. In section , we describe how these
losses are computed and adapted to the unsupervised set-
ting.

While all of these losses are minimized in a perfect
model, Figure 2(c) shows that this choice of loss during
training has a substantial practical effect. In the supervised
setting, optimizing the direct loss in the camera pose space
(using generic fully connected layers), or in the flow space
(using our least-squares fitting) results in similar prediction
errors. However, adding the projection loss or directly min-
imizing the distance to the true motion field yields substan-



tially better predictions (i.e., halving average camera trans-
lation error).

3.3. Static and Dynamic Motion Layers

So far, our description has assumed a camera moving
through a single rigid scene. A standard approach to mod-
eling non-rigid scenes (e.g., due to relative motion of mul-
tiple dynamic objects in addition to ego-motion) is to split
the scene into a number of layers where each layer has a
separate motion model [39]. For example, Zhou et al. use
a binary “explainable mask” [44] to exclude outlying mo-
tions, and Vijayanarasimhan ef al. segment images into K
regions based on motion [37]. However, in the later-case,
there is no distinction between object motion and ego mo-
tion making it inappropriate for odometry.

We use a similar strategy in order to separate motion
into two layers corresponding to static background and dy-
namic objects (outliers). We feed a pair of images and their
predicted optical flow into a u-net-like segmentation net-
work [28] to predict this separation which then defines the
weights used for camera motion estimation using pseudo
inverse function M F'f(-) described in Section 3.1.

Consider a scene divided into K regions corresponding
to moving objects and rigid background. Let Seg;(z) €
{0, 1} denote a mask that indicates the image support of re-
gion 4 and U/* denote the corresponding rigid motion field
for that object considered in isolation. The composite mo-
tion field for the whole image I/ can be written as:

K
U= ZSegi U,

In the odometry setting, we are only interested in the motion
of the camera relative to static background. We thus collect
any dynamic objects into a single motion field and consider
a single binary mask:
U(x;) ~ Segs (@)U + Sega(a:)U".

In our training with this segmentation network, we use the
approximated motion field I/ for the photometric warping
loss described below. For simplicity, we refer our single
layer model as CeMNet' and dual layer model as CeMNet?

In Figure 3, we illustrate intermediate results demon-
strating how the 2 layer model can better estimate camera
motion in the presence of dynamic objects. Since the single
layer model cannot distinguish background and foreground,
the quality of predicted camera pose is bad. Excluding the
dynamic scene components from the camera motion esti-
mation provides substantially better pose estimation as seen
in panels (i) and (1) which show less photometric warping
error on the scene background relative to the single layer
model shown in (f).
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Figure 3. A sample result on a dynamic sequence from TUM [31].
From an input frame pair (a) and (b), Netor predicts optical
flow (d). Both camera and object motion are visible in the frame
difference (c). A single motion field (e) is dominated by large ob-
ject motions and yields poor warping error (f), particularly on the
background. Our model includes a segmentation network N et ¢4
that divides the image into dynamic and static masks (g.j) and fits
corresponding motion fields (h,k). These provide better warping
error on the objects (i) and background (1) respectively.

Hard assignment to layers: Previous work such as [37]
uses a soft probabilistic prediction of layer membership
(i.e., using a softmax function to generate layer weights).
However, such an approach introduces degeneracy since it
can utilize weighted combinations of two motions to match
the flow (e.g., even in a completely rigid scene). We find
that using hard assignment of motions to layers yields su-
perior camera motion estimates. We utilize the “Gumbel
sampling trick” described in [36] to implement hard assign-
ment while still allowing differentiable end-to-end training
of both the flow and segment networks.

4. Training Losses

Losses for Self-supervision As described in Section 3.2,
there are several different losses which can be applied to
predicted flows. Here we adapt them to the self-supervised
setting. The basic building block is to check if a pre-
dicted flow is photometrically consistent with the input im-
age pairs.

For a given optical flow U and source image I; s
then we can synthesize warped image 1, tW ©F and check if it
matches I;. As described in [13], this type of spatial trans-
formation can be carried out in a differentiable framework
using bilinear interpolation:

" ay= Y

ie{t,b},je{l,r}

w9 Tyyps (s +UF (27)),

where w% denotes the bilinear weighting of the four
. .. . OF

For simplicity, we write I}V (z;) =

) to denote the warping of ;s using flow

sample points.
W(It+5 ’ UOF
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Figure 4. Camera motion error on held-out test data as a function of training set size for TUM (top) and Virtual KITTI (Bottom) RGBD
datasets. The blue line denotes training a supervised model that can’t exploit unlabeled data. Introducing self-supervised warping losses
yields much better performance when either using only unsupervised training (yellow) or semi-supervised training (green). Surprisingly,
unsupervised training is actually competitive with supervised training for estimating rotation (b) but performs worse for translation (a).

UOF. We then define the self-supervised flow loss using
the photometric error over all pixels:

N

Lor = |Melz;) — 1"

i=1

(i)l

This loss serves as an approximation of Lo when the pre-
dictions are far from the true motion field.

We can similarly apply warping loss is possible to the re-
constructed motion field rather than the initial prediction. If
the motion field we found is correct, then again, the warped
image should be matched with the target image. We can
build motion field loss by using motion-field warped image

IV = W5, UMF ) as:

N
Lar =Y Pl@)|To(w:) = 1V (@)l
i=1

where the mask P;(x;) is 1 when the depth at z; is valid,
0 otherwise. This is necessary when using a depth sensor
which doesn’t provide depths at every image location. This
loss acts as a proxy for minimizing the camera motion esti-
mation error by lifting the prediction back to the flow space.
When we predict camera motion for static scene, we use the
global motion field, and for the dynamic scene, we use com-
posite motion field U.

Finally, we can utilize the orthogonal projection loss to
minimize the distance between predicted optical flow and
its projection onto the space of motion fields via:

N
Lop =Y [UT —uM"||,

(a) I
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Figure 5. Visualizations of our single layered model. Top three
rows come from TUM [31] dataset and bottom three come from
Virtual KITTI [6]. From the input images (a) and (b), the pre-
dicted flow, and recovered motion field are displayed in (c) and
(d) respectively. Since motion field is derived from camera pose
estimate, the error between I; and motion field based warped im-
age ItW ME reflects the accuracy of predicted camera motion. If
the predicted camera pose and depth is ideal, then the error in (e)
should be zero.

By combining three above losses, we can define the final
self-supervised loss function

LFinal = ANorLor + AvrLyr + XorLop,

where Aor, Ay and App weigh relative importance (we
use 1, 0.1 and 0.1 respectively in our experiments).

Semi-supervision for symmetry breaking In our seg-
mentation network, we predict two layers corresponding to
static and dynamic parts. However, in the unsupervised set-
ting, the loss is symmetric with respect to which segment la-
bel is considered background. This symmetry problem can



DVO-SLAM  Kintinuous  ElasticFusion ~ ORB2
[16] [41] [40] [23]

CeMNet(RGBD)
Seq.

fr1/desk 0.021 0.037 0.020  0.016 0.0089
fri/desk2  0.046 0.071 0.048 0.022 0.0129
fr1/room 0.043 0.075 0.068 0.047 0.0071
fr2/xyz 0.018 0.029 0.011 0.004 0.0009
frl/office  0.035 0.030 0.017 0.010 0.0041
frl/nst 0.018 0.031 0.016  0.019 0.0117
fr1/360 0.092 - - - 0.0088
fr1/plant 0.025 - - - 0.0061
fr1/teddy 0.043 - - - 0.0139

Table 1. Relative translation error on TUM [31] static dataset.
Most of the methods in this table use RGBD frames camera for
pose prediction. Our model is trained without any supervised data.

interfere with training of the model and affect final perfor-
mance. To break this symmetry, we found it most effective
to utilize a small amount of supervised data where camera
motion is known. For the supervised data we use an ad-
ditional loss term on the camera motion estimated for the
background layer.

Our network predicts camera motion in an axis-angle
representation that includes translation part ¢ € R? and ro-
tation w € R3. For supervised loss, we treat these two
components separately in order to match the criteria typi-
cally used in benchmarking pose estimation performance.

Following [31], we compute the difference between
our predicted camera motion and the ground truth Q¢ =
(QP)~1QY" where Q@ € R*** and penalize the translation
and rotation components respectively by:

1Q7 112

Etrans =

»C'r‘ot

5. Experimental Results

For the following experiments, we use the synthetic Vir-
tual KITTI dataset [6] depicting street scenes from a moving
car, and the TUM RGBD dataset [31] which has been used
to benchmark a variety of RGBD odometry algorithms. To
measure performance, we use relative pose error protocol
proposed in [31].

Self-supervised learning improves model performance:
To show the benefits of self-supervision, we assume that
only 10% of each dataset has ground-truth available. We use
11 different sequences from the TUM dataset as training,
choose a random ordering of frame pairs over the whole
dataset and train models with increasingly large subsets of
the data and test on a separate held-out collection of frames.
This allows us to evaluate the effect of growing the amount
of supervised/unsupervised training data in a consistent way
across models.

In Figure 4, we plot the relative translation/rotation er-
rors as a function of training data size. The supervised ver-

arccos (min (1,max ( -1 TT(QEH>>>

S TUM [31] SfM-Net [37] CeMNet(rGB)
eq.

Trans Rot Trans Rot Trans Rot

fr1/desk 0.008  0.495 0.012 0.848 | 0.0113  0.6315
frl/desk2 | 0.099 0.61 0.012 0974 | 0.0133  0.7548

r1/360 0.099 0474 0.009 1.123 | 0.0091  0.5455
fr1/plant 0.016  1.053 0.011 0.796 | 0.0083  0.5487
fri/teddy | 0.020 1.14 0.0123  0.877 | 0.0113  0.6460

Table 2. To compare our model to RGB odometry methods, we use
an off-the-shelf monocular depth estimator [18].

Training Testing
GT Depth GT Cam GT Depth Trans Rot
Geometric [14] - - 0.4579 0.3423
AIGN-SfM [35] v v 0.1247 0.3333
CeMNetrasp) v v 0.0878 0.0781
CeMNetran) 0.0941 0.1079

Table 3. Relative pose error comparison using Virtual KITTI [6].
Both with (CeMNet(RGBD)) and without (CeMNet(RGB)) depth in-
puts, our models outperform previous methods.

sion of the model (CeM-Sup) can only be trained on the first
10% of the dataset and makes no use of the unsupervised
data. In this setting it outperforms the unsupervised model
(CeM-Unsup). However, as the amount of unsupervised
training data continues to grow, CeM-Unsup eventually out-
performs the supervised model. For a clear comparison, the
unsupervised losses are not used in training (CeM-Sup). We
also compare a model which uses both supervised and unsu-
pervised loss (CeM-SemiSup) which generally yields even
better performance. We note that because the real world
depth data in TUM is incomplete, limiting performance of
the supervised model while the supervised model shows ex-
pected decreasing errors on Virtual KITTL

Motion field and warping: In Section 4, we describe how
a predicted camera pose is used to generate motion field and
used in the warping loss. In Figure 5, we plot the per-pixel
warping loss for several inputs. Left two (a-b) show the
input RGB frames, (c) shows predicted optical flow. (d) is
regenerated motion field. (e) shows differences between the
target image and warped image. Note that blue color means
lower differences between those two images.

Camera motion error comparison: To measure the qual-
ity of predicted camera pose, we compare our single layer
model (CeMNet) with previous RGBD SLAM methods on
the TUM dataset in Table 1. CeMNet(RGBD) shows the best
average performance among tested methods in terms of rel-
ative translation error. Several previous methods of interest,
including [44, 37] do not utilize depth as an input, instead
predicting it directly from input images.

For fair comparison, we also test our model with
predicted depth (CeMNet(RGB)) using off-the-shelf the
monocular depth prediction model introduced by Iro er
al. [18] which was trained using NYU Depth dataset
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@I, (b) Optical © MF
flow (all)

s Baseline CeMNet* CeMNet? CeMNet? semi)

i Trans Rot ‘ Trans Rot ‘ Trans Rot ‘ Trans Rot
fr3/sit_static 0.0134 0.5724 | 0.0025 0.1667 | 0.0016 0.1573 | 0.0010 0.1527
fr3/sit_xyz 0.0179 0.7484 | 0.0070 0.2645 | 0.0068 0.2653 | 0.0064 0.2612

fr3/sit_halfsph 0.0104 1.0135 | 0.0081 0.5272 | 0.0080 0.5820 | 0.0074 0.5552
fr3/walk_static 0.0149  0.5703 | 0.0103 0.2107 | 0.0030 0.1610 | 0.0019 0.1583
fr3/walk xyz 0.0174 0.7952 | 0.0128 0.3338 | 0.0079 0.2915 | 0.0078 0.2921
fr3/walk_halfsph | 0.0166 0.9426 | 0.0147 0.4698 | 0.0107 0.4120 | 0.0102 0.3989

Table 4. Relative pose error comparison using TUM dynamic
dataset [31]. Generally, the two layered model shows better per-
formance than single layered model. Including a small amount of
supervision (CeMNet? (Sems)) yields equivalent or better perfor-
mance by breaking the symmetry of the unsupervised loss.

V2 [24]. We rescale the predictions by 0.9 to match the
range of depths in TUM (presumably due to differences in
focal length) but otherwise leave the model fixed. As shown
in Table 2, our method continues to outperform others in
terms of rotation and shows comparable translation errors.
Additionally, we show performance on the Virtual KITTI
dataset in Table 3. We specify how each method uses the
available ground truth depth and camera pose data available
for train and test. Using the true depth at test time results
in strong performance from our model. For fair compari-
son, we also evaluate our model using the monocular depth
prediction model of [9] trained with KITTI [8] dataset and
converted from the predicted disparity to depth!. The re-
sults show better performance than previous self-supervised
approaches even without using ground-truth depth.

Static/Dynamic segmentation: In Figure 6, we visualize
the results of breaking the input into static and dynamic
layers. From the RGB input pair at [; (a) and I;4s, pre-
dicted optical flow is shown in (b). While single layered
model generates motion field using the complete flow, the
two layer model fits separate motions which segments mov-
ing objects and yields reduced warping error ((c) vs (f)),

'We use 0.54 as baseline distance and 725 for focal length

(OWE

(d) Seg
(static) (static) (static)

Figure 6. Intermediate results of two layered model for dynamic scene camera pose prediction. Without separating static and dynamic
components, it is difficult to get good camera motions (high error in (c)). However, as shown in (f), it is possible to predict camera motion
for background by fitting only the static segment (d).

(e) MF HWE

especially in the static background region.

We perform a quantitative comparison on the TUM dy-
namic dataset which includes both object and camera mo-
tion. The results results are shown in Table 4. While single
layered models such as the baseline direct prediction model
and CeMNet! are sensitive to dynamic objects, two layered
model CeMNet?® shows less pose error. However, as noted
previously, the unsupervised loss suffers from a symmetry
as to which layer correspond to ego-motion. We evaluate
the use of a small amount of supervised data (10%) to break
this symmetry in the segmentation prediction network. This
yields the the lowest resulting motion errors across nearly
all test sequences.

6. Conclusion

In this paper, we have introduced a novel self-supervised
approach for ego-motion prediction that leverages a contin-
uous formulation of camera motion. This allows for linear
projection of flows into the space of motion fields and (dif-
ferentiable) end-to-end training. Compared to direct pre-
diction of camera motion (both our own baseline imple-
mentation and previously reported performance), this ap-
proach yields more accurate two-frame estimates of camera
motions for both RGBD and RGB odometry. Our model
exploits self-supervised training, allowing it to make effec-
tive use of “free” unsupervised data. Finally, by utilizing a
two-layer segmentation approach makes the model further
robust to the presence of dynamic objects in a scene which
otherwise interfere with accurate ego-motion estimation.
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