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Abstract

In integrated surveillance systems based on visual cam-

eras, the mitigation of adverse weather conditions is an

active research topic. Within this field, rain removal al-

gorithms have been developed that artificially remove rain

streaks from images or video. In order to deploy such rain

removal algorithms in a surveillance setting, one must de-

tect if rain is present in the scene.

In this paper, we design a system for the detection of

rainfall by the use of surveillance cameras. We reimple-

ment the former state-of-the-art method for rain detection

and compare it against a modern CNN-based method by uti-

lizing 3D convolutions. The two methods are evaluated on

our new AAU Visual Rain Dataset (VIRADA) that consists of

215 hours of general-purpose surveillance video from two

traffic crossings. The results show that the proposed 3D

CNN outperforms the previous state-of-the-art method by a

large margin on all metrics, for both of the traffic crossings.

Finally, it is shown that the choice of region-of-interest has

a large influence on performance when trying to generalize

the investigated methods.

The AAU VIRADA dataset and our implementa-

tion of the two rain detection algorithms are publicly

available at https://bitbucket.org/aauvap/

aau-virada.

1. Introduction

Varying weather and illumination conditions are a chal-

lenge for general-purpose outdoor surveillance systems [7].

In order to deal with these challenges, several image and

video optimization techniques have been proposed. The

purpose of these techniques is to artificially remove haze

and rain from the post-processed images or video. These

techniques regularize the image in order to suppress the

detrimental effects of the selected weather phenomena. As

a side bonus, the appearance of objects of interest in the
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Figure 1. The proposed system at-a-glace. For rain removal algo-

rithms to be effective in an integrated surveillance framework, the

presence or absence of rain must be detected in a pre-processing

step.

scene should be enhanced with respect to observation by a

human observer or a computer vision system.

Because the haze and rain removal algorithms are built

to improve the visibility of weather-beaten surveillance

footage, they are reliant on other algorithms to detect the

presence or absence of adverse weather conditions. As haze

and rain removal algorithms are not general-purpose image

enhancement algorithms, they will consistently deteriorate

the output if either haze or rain streaks are not present in the

scene. The decision process is especially important if real-

time detection and tracking systems are built on top of the

output of the rain removal algorithms [3, 21]. An example

of such a pipeline is illustrated in Figure 1.

A prototype system for modelling the dynamic be-

haviour of outdoor surveillance scenes has been proposed

in [2]. In this work, observations from a nearby weather

station is used to guide a foreground detection algorithm.

However, the applicability of the method is limited by the

dependence on external weather data. It is infeasible to

place a weather station alongside every surveillance cam-

era, and the correlation of the weather data and the observa-

tions by the camera is limited if the two sensors are not in

close proximity.

We would ultimately want the cameras and algorithms
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to be as self-reliant as possible such that they may operate

without external input. A prototype of such a system was

built in [16] in which the input to a foreground segmentation

algorithm was pre-processed by either a rain or fog removal

algorithm.

The aim of this work is to investigate the use of exist-

ing surveillance cameras as surrogate rain detectors. As

opposed to existing works on detection of rain, the pri-

mary purpose of our cameras is general-purpose surveil-

lance. This implies that we have not adjusted the camera

parameters to emphasize the appearance of rain drops. Our

contributions are the following:

1. A new publicly available rain dataset, the AAU Vi-

sual Rain Dataset (VIRADA), consisting of 215 hours

of recorded video from general-purpose surveillance

cameras. Ground truth measurements of rainfall are

provided by a nearby laser disdrometer and a conven-

tional tipping-bucket rain gauge.

2. A new rain detection algorithm based on the 3D CNN

architecture of Tran et al. [33].

3. An open-source implementation of the rain level de-

tection algorithm of Bossu et al. [6].

4. Evaluation of the aforementioned methods on the pro-

posed dataset.

2. Related Work

The detection of rain streaks in images and video has

been tightly coupled to the removal of the very same rain

streaks since Garg and Nayar published their studies on the

appearance, detection, and removal of rain in the beginning

of the millenium [12, 13]. The detection of rain streaks was

seen as an intermediate step in order to suppress the streaks

in the final, rain-removed image or video.

Garg and Nayar noted that rain streaks appear brighter

than their background and that the fast motion of the

streaks imply that each streak is only visible in a single

frame. Combined with the assumption of a quasi-static

background, they detected rain streaks by using the pho-

tometric constraint:

∆I = In − In−1 = In + In+1 ≥ c (1)

where c is a threshold and In denotes the image at frame

n. Because the candidate streak image ∆I contains many

false positives, different post-processing steps are required

to filter the candidates. The photometric constraint of Equa-

tion 1 is commonly used for the initial segmentation of

rain streaks in many video-based rain removal algorithms

[6, 23, 31, 35].

Other approaches for detecting rain in the image space

include morphological component analysis [19] or matrix

decomposition [20]. These methods may be applied either

on single images [9, 19] or video streams [18, 20, 30].

Recently, the popularity of convolutional neural net-

works (CNNs) has reached the rain removal community.

Amongst those works, some architectures explicitly pro-

duce a rain image that is used to refine the rain removal

process [22, 37]. These methods might be applicable for

stand-alone rain detection if their training process is tuned

to the estimation of rain density and not the restoration of

the rain-removed image.

A different approach for detecting rain in a video was

proposed by Barnum et al. [4] who noted that the direc-

tional uniformity of the rain streaks was ideal for detection

in the frequency space. They thus transferred the image

into the Fourier domain where rain streaks were lying along

an elongated ellipsis. However, the authors did not investi-

gate if the volume of rain can be estimated in the frequency

space.

For readers interested in a detailed overview of rain re-

moval algorithms, we refer to a dedicated survey [3].

2.1. Rain Density Estimation

Bossu et al. [6] pioneered in using the detected rain

streaks as a surrogate rain gauge. Motivated by the pho-

tometric constraint of Equation 1, they used a Mixture of

Gaussians (MoG) [32] to model foreground and background

objects. The candidate streaks were found by the following

rule:

∆I = IFG − IBG ≥ c (2)

where IFG and IBG are the foreground and background im-

ages of the MoG model, respectively. False positives in ∆I

are suppressed based on their size. The rotation of the re-

maining streaks are used to construct a Histogram of Orien-

tation of Streaks (HOS). The appearance of the histogram

is modelled using a Gaussian-uniform distribution, and the

relationship between the Gaussian and the uniform parts of

the distribution is used to detect the presence or absence of

rain.

The work of Allamano et al. [1] utilizes rigorous formu-

lations of camera geometry to estimate the real-world vol-

ume of the detected rain drops. The photometric constraint

is used to segment candidate streaks. The width and height

of these streaks together with the focal length of the camera

are used to estimate the rain rate.

The subsequent work of Dong et al. [11] filters the can-

didate streaks by orientation and discards streaks not within

the dominant orientation. Focused and unfocused streaks

are distinguished based on intensity and edge information

and used for estimating the length of each streak. The

rain rate is estimated from the streak diameters by using

a Gamma distribution.
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Recent work of Jiang et al. [17] uses matrix decompo-

sition to segment rain streaks from the background. The

width of the detected streaks and the number of streaks are

used to infer the rain rate. The authors use a Gamma distri-

bution similar to [11].

The rain detection algorithm of Bossu et al. [6] is eval-

uated on footage from a general-purpose surveillance cam-

era whereas the approaches of [1, 11, 17] are evaluated on

footage from videos cameras whose parameters are tuned

with the sole purpose of emphasizing the visual appearance

of rain streaks.

3. The AAU Visual Rain Dataset

To the best of our knowledge, there is currently no pub-

licly available dataset for benchmarking the detection of

rain with general-purpose surveillance cameras. In order

to fill this gap, we present the new publicly available AAU

Visual Rain Dataset (VIRADA) that contains a total of 215

hours of surveillance video from two different locations in

Aalborg, Denmark. The cameras are configured and posi-

tioned for traffic surveillance applications and not specifi-

cally configured for the task of detecting rain.

We obtain ground-truth precipitation data from two dif-

ferent rain gauges: a traditional, mechanical tipping-bucket

rain gauge and a more advanced laser disdrometer [24]. The

two measurement devices are explained in the following.

3.1. Rain Measurement Devices

Tipping-bucket rain gauge In the tipping-bucket rain

gauge, rain drops are collected by a funnel that channels the

water into one of two seesaw-like buckets. When a bucket

is full, it dumps the water and leaves the collection of water

to the second bucket. An electric signal is generated when-

ever a container is full and the water is dumped. This type

of measurement device is widely used and large networks

of the devices have been utilized for different engineering

domains [25, 26].

The resolution of the buckets is 0.2 mm which means that

the bucket only tips once 0.2 mm of rain has passed trough

the funnel. This implies that for low-intensity rainfall, e.g.

0.1 - 2 mm/hour, it might take several minutes or even hours

for the bucket to tip and for rain to be detected [14]. The

signals generated by the tipping scales are post-processed in

order to generate per-minute estimates of the precipitation

level.

Laser disdrometer The laser disdrometer is an optical

sensor that is capable of detecting single rain drops [24].

A laser transmitter that transmits a sheet of light in free-air

is located at the left side of the device. The sheet of light

is detected on the right side of the device by an optical re-

ceiver. Because the laser disdrometer is capable of detect-

(a) Crossing1

(b) Crossing2

Figure 2. Sample views of the traffic crossings from the AAU

VIRADA dataset. Discarded regions are shown with a semi-

transparent overlay. We denote the upper region of Crossing2 as

Crossing2-brick whereas the lower region is denoted as Crossing2-

asphalt.

ing individual rain drops, the temporal resolution is supe-

rior compared to the mechanical tipping-bucket rain gauge.

Therefore, the laser disdrometer may be used for ground

truth measurements when validating radar precipitation es-

timates [27, 28].

3.2. Video Surveillance Sequences

We have collected video footage from two different traf-

fic crossings, in the following denoted as Crossing1 and

Crossing2. The Crossing2 sequence is recorded in 2013

using an AXIS M114-E camera whereas the Crossing1 se-

quence is recorded in 2018 using a newer AXIS Q1615-E

camera. Sample footage from the two crossings are shown

in Figure 2. In order to ease the task at hand, we only con-

sider regions in the video with few moving objects due to

the following reasons:

1. The detection of rain from general-purpose surveil-

lance cameras is hard. In order to solve the problem,

we should first solve the simpler sub-problem.

2. For many surveillance applications, it is possible to se-

lect a region of interest where objects are mostly static,

for instance the facade of a building.

3. The selection of a region with no moving road users

allows the public release of the dataset.
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Dataset Duration Frames Frame Native Cropped Camera model Distance to gauge

(hh:mm) rate resolution resolution Mech. Laser

Crossing1-trn 87:38 9,276,654 30 1024 × 640 700 × 612 AXIS Q1615-E 580 m 1230 m

Crossing1-val 20:37 2,184,499 30 1024 × 640 700 × 612 AXIS Q1615-E 580 m 1230 m

Crossing2-tst 106:59 9,463,287 25 640 × 480 276 × 338,

276 × 112

AXIS M114-E 1820 m 970 m

Table 1. Overview of the AAU VIRADA dataset. Mech. denotes the mechanical tipping-scale rain gauge whereas Laser denotes the laser

disdrometer. The two noted cropped resolutions for the Crossing2-tst dataset are for the asphalt and brick crops, respectively.

Detected rain %

Measurement device Laser Mech.

Crossing1-trn 19.67 17.97

Crossing1-val 20.86 14.63

Crossing2-tst 8.68 1.65
Table 2. Overview of the ratio of detected rain for the AAU VI-

RADA dataset, per measurement device. Mech. denotes the me-

chanical tipping-scale rain gauge whereas Laser denotes the laser

disdrometer.

The discarded regions are masked out in Figure 2 with

a semi-transparent overlay. A single region is chosen

for Crossing1, whereas Crossing2 is split into two re-

gions, Crossing2-brick and Crossing2-asphalt. Due to pri-

vacy concerns, only the parts of Crossing2-asphalt with no

pedestrians are publicly available.

The footage from Crossing1 is split into a training (trn)

and a validation (val) set whereas the Crossing2 is used in

its entirety for testing. An overview of the dataset and the

distance from the cameras to the dedicated rain measure-

ment devices is found in Table 1. The ratio of rain detected

by the rain measurement devices is listed in Table 2.

4. Methods

We evaluate two different methods for detecting rain

from surveillance video: Bossu et al. rain detection [6] and

the C3D CNN architecture by Tran et al. [33], each repre-

senting a different paradigm. The rain-detection algorithm

by Bossu et al. represents a hand-crafted algorithm specif-

ically designed for this task. On the other hand, the C3D

CNN was originally developed for action recognition, scene

classification and object recognition where temporal infor-

mation is encoded through 3D network layers.

4.1. Bossu Rain Detection

Bossu et al. [6] propose a rain detection algorithm which

in its core is based on detecting the approximate angle of

the rain streaks in an image. This is done by assuming the

rain streaks to be Gaussian distributed around a center angle

θ with uncertainty dθ. Based on the estimated distribution

parameters, it can be decided whether rain is present or not.

The algorithm is illustrated in Figure 3.
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Figure 3. Activity diagram of the rain detection algorithm by

Bossu et al. [6].

streaks are described in Section 2.1 and Equation 2. In

the following, the remaining steps of the algorithm are de-

scribed. We refer the reader to the original article [6] for a

complete reference.

Histogram of Orientation of Streaks In order to deter-

mine the general orientation of the rain streaks, we create

a 180-bin histogram in the range [0, 179]. We approximate

the rain streak BLOBs as ellipses. To determine the orienta-

tion of the ellipses, we compute the geometric moments of

the ith BLOB based on the central second-order moments,

m20
i , m11

i , and, m02
i . This leads to the calculation of θi,

dθi, and, wi as shown in Equation 3-5. dm is an empiri-

cally chosen scaling constant of the uncertainty, and λ1
i is

the largest eigenvalue of the matrix

[

m20
i m11

i

m11
i m02

i

]

.

θi =
1

2
tan−1(

2m11
i

m02
i −m20

i

) (3)

dθi =

√

(m02
i −m20

i )2 + 2(m11
i )2

(m02
i −m20

i )2 + 4(m11
i )2

dm (4)

wi =
√

λ1
i (5)

The Histogram of Orientation of Streaks (HOS) can then

be computed, where B is the total amount of BLOBs:
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h(θ) =
B
∑

i

wi

dθi
√
2π

e
−

1

2
(
θ−θi

dθi
)2

(6)

HOS quality estimation The HOS is built on the assump-

tion that all BLOBs in the image are representations of ac-

tual rain streaks and that the orientation of the rain streaks

follows a Gaussian distributed. BLOBs that represent noise

in the foreground segmentation or stem from other non-

rain scene elements thus have to be removed. We assume

that non-rain BLOBs in the image are uniformly distributed

which means that the HOS can be modeled by a Gaussian-

uniform distribution:

y(θ) ∼ Π N (θ|µ, σ) + (1−Π)U[0,179](θ) (7)

where Π denotes the ratio of the Gaussian distribution in

the HOS. We assume that the rain streaks contribute to the

Gaussian part of the distribution.

The parameters µ, σ and Π are estimated through an

Expectation-Maximization (EM) algorithm based on the

computed HOS in Equation 6.

When the EM algorithm has converged, the final HOS

has to be evaluated. If the EM determined parameters does

not result in a distribution that is close to the actual ob-

served histogram h(θ), then the frame is discarded from

further processing. In order to quantify this statement, a

Kolomogrov-Smirnov goodness-of-fit test is performed:

D = sup
θ

|Fn(θ)− F (θ)| (8)

where F (θ) is the cumulative distribution function of a

Gaussian with the EM-estimated parameters and Fn(θ) is

the accumulated HOS histogram h(θ), an empirical cumu-

lative distribution function.

If D is above some threshold Dc, it is determined that

it is not raining in the frame. If D ≤ Dc, we estimate the

temporal consistency in the following.

Temporal consistency In order to be temporally consis-

tent in the detection of rain, a Kalman filter is used to track

and smooth the EM estimated parameters. If the estimated

Gaussian ratio, Π, is larger than some threshold Πrain, the

Kalman filter is updated and rain is detected.

4.2. C3D Convolutional Neural Network

The use of 3D convolutions to encode temporal infor-

mation has been an ongoing topic in the research commu-

nity since Tran et al. [33] proposed their C3D architecture.

Some of the recent advances include more complex net-

works [36], residual networks [15], and separable convo-

lutional layers [34]. However, in order to provide a base-

line for video-based rain detection, we investigate the well-

established original C3D network.

The C3D CNN architecture builds on the concept of us-

ing series of consecutive video frames as input and utilizing

3D convolutions instead of 2D convolutions. Specifically,

each input is changed from a 3D tensor of size c× h×w to

a 4D tensor of size c× l× h×w. The parameters c, w, and

h are the number of channels and the height and width of

the the input whereas l is the length of the input sequence.

The receptive field of the filters is also changed from k × k

to d × k × k, where k and d are the spatial and temporal

extent of the filter, respectively.

The original C3D network ends with two fully-

connected layers of size 4096, a dropout rate of 50%, and a

softmax layer. This has the disadvantage of forcing a spe-

cific input size for the image, meaning the input should be

cropped or resized. In order to get a single output for the en-

tire image, we convert the network to a fully-convolutional

network (FCN) by replacing the fully-connected layers with

2D convolutional layers and adding a global averaging layer

on top of the softmax layer. The two new convolutional lay-

ers, Conv6a and Conv6b, have filter sizes of 512 × 4 × 4
and 4096× 1× 1 in order to function in a similar way as a

fully-connected layer. The modified network architecture is

shown in Figure 4. By converting the network to a FCN, it

effectively applies a sliding window approach with a spatial

stride of 32.

5. Implementation

In the following, we will guide the reader through the

most important implementation details of the investigated

methods. Due to the inherently higher precision of the laser

disdrometer, as discussed in Section 3, only labels from the

laser disdrometer are utilized for training and evaluation in

this work. Our implementation is publicly available.

5.1. Bossu

As the method from Bossu et al. [6] was not publicly

available, we have implemented it from scratch in C++ with

the OpenCV framework. We use the first 500 frames of

each video to initialize the background model of MoG. The

EM algorithm is initialized according to the instructions

of Bossu et al. [5]. The process and measurement noise

covariance matrices of the Kalman filter are initialized with

a variance of 0.01 and 0.1, respectively, and a covariance of

0, as per the original authors [6].

In order to determine the remaining parameter values,

we perform a parameter search on six video snippets from

the Crossing1 dataset with an equal amount of rain and non-

rain videos. The duration of the snippets vary from 5 to 20

minutes. A total of 9600 parameter combinations are in-

vestigated and the specific values included in the search are

shown in Table 3. We selected the final parameters based

on the following criteria:
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Figure 4. Overview of the modified C3D CNN architecture. 3D conv and 2D conv denotes 3D and conventional 2D convolutions, respec-

tively. Pool denotes max pooling and the number of filters are denoted in the bottom of each box. Our modifications of the network are

marked in grey. Figure adapted from [33].

Parameter Search space Selected

value

MoG warm-up frames [500] 500

c [3, 5] 3

Minimum BLOB size [4] 4

Maximum BLOB size [50:50:200] 200

dm [0.5:0.5:2.0] 0.50

EM max iterations 100 100

Dc [0.01:0.01:0.20] 0.19

Πrain [0.20:0.02:0.50] 0.40

Table 3. Values and search space for the Bossu parameter search.

The ranges in the search space follow the python convention, with

[3,5] being a list of parameters and [0.5:0.5:2.0] referring to values

in the range from 0.5 to 2.0 with an interval of 0.5

• For rain sequences, the Bossu algorithm should detect

rain for at least 60 % of the frames, preferably more.

• For no-rain sequences, the Bossu algorithm should de-

tect rain for maximum 40 % of the frames, preferably

less.

The collection of parameters that performs most consis-

tently under these criteria is listed in the rightmost column

of Table 3.

5.2. C3D

We train the C3D network from scratch on the train-

ing/validation split of the Crossing1 videos, utilizing 2 Tesla

V100 graphic cards. The network is trained as a binary clas-

sification problem on 112×112 sized crops from the videos

in order to maintain a reasonable batch size. We load video

sequences with a temporal stride of 8 frames.

We use a stochastic gradient descent optimizer with

momentum, weight decay, and a step-based learning rate

scheduler for training. The learning rate scheduler multi-

plies the learning rate by γ every s epochs. The set of hy-

perparameters used during training are listed in Table 4. The

PyTorch deep learning framework [29] is used for creating

and training the model and the sequence loading was han-

dled using the NVIDIA Video Loader framework [8]. We

augment the data by randomly chosen crops and random

flipping along the vertical axis with 50% chance.

Validation For the Crossing1 videos, the FCN structure

results in a 19 × 17 patch grid being investigated while for

Hyperparameter Value

Batch size 128

Sequence stride 8

Learning rate 0.01

Momentum 0.9

Weight decay 0.0001

γ 0.1

s 5

Table 4. C3D hyperparameters.

the Crossing2-tst videos, a 6 × 8 and 6 × 1 patch grid is

investigated for the asphalt and brick crops, respectively.

Each patch outputs a vector containing the output of the

softmax layer. These vectors are subsequently averaged and

thresholded in order to get the final binary prediction for the

video sequence.

The network is trained for 57 epochs and reached a

training accuracy of 94.03% and a validation accuracy of

87.38%. The accuracy and loss plots are shown in Figure 5

and Figure 6.

0 10 20 30 40 50
Epoch

0.775

0.800

0.825

0.850

0.875

0.900

0.925

Ac
cu

ra
cy

 (%
)

Train Validation

Figure 5. Average accuracy per epoch for the trained C3D CNN.

6. Experimental Results

The trained algorithms are evaluated on the AAU VI-

RADA dataset presented in Section 3. In order to get a

quantitative measure of the rain detection performance, sev-

eral metrics are used. First, the values of the confusion ma-

trix are reported: True Positive (TP), True Negative (TN),
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Sequence Method TP TN FP FN Acc F1 MCC

Crossing1-trn

C3D-FCN 215244 923596 7766 12802 0.9823 0.9544 0.9435

C3D-Center 202932 920692 10672 25114 0.9691 0.9190 0.9007

Bossu-EM 1096369 3498967 3915541 719777 0.4978 0.3211 0.0603

Bossu-Kalman 1119361 3460093 3954415 696785 0.4961 0.3249 0.0663

Crossing1-val

C3D-FCN 30126 208447 7405 27042 0.8738 0.6362 0.5821

C3D-Center 25320 199555 16298 31847 0.8237 0.5126 0.4159

Bossu-EM 263008 912983 805113 192395 0.5411 0.3453 0.0887

Bossu-Kalman 267253 909237 808859 188150 0.5413 0.3490 0.0945

Crossing2-asphalt

C3D-FCN 0 1069231 0 102717 0.9124 0.0000 0.0000

C3D-Center 245 1039578 40409 102474 0.8792 0.0034 -0.0837

Bossu-EM 224853 6335804 2257136 591994 0.6972 0.1363 0.0080

Bossu-Kalman 234181 6264711 2328229 582666 0.6907 0.1386 0.0010

Crossing2-brick

C3D-FCN 72619 729561 350381 30095 0.6783 0.2763 0.2248

C3D-Center 75690 720369 359557 27024 0.6731 0.2814 0.2359

Bossu-EM 281084 5837499 2755441 535763 0.6502 0.1459 0.0141

Bossu-Kalman 290583 5762519 2830421 526264 0.6433 0.1476 0.0158
Table 5. Rain detection results on the AAU VIRADA dataset, using labels from the laser disdrometer.
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Figure 6. Average loss per epoch for the trained C3D CNN.

False Positive (FP), and False Negative (FN). In this case

a True Positive is when rain is correctly detected, while a

True Negative is when no rain is correctly detected. Based

on these quantities, the Accuracy (Acc), F1 Score (F1), and

Matthews Correlation Coefficient (MCC) are calculated

as follows:

Acc =
TP + TN

TP + TN + FP + FN
(9)

F1 =
2 TP

2 TP + FP + FN
(10)

MCC =
TP · TN − FP · FN

√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(11)

The accuracy metric is an often used metric which di-

rectly indicates the correct percentage of assigned frames.

However, it is not a good indicator for imbalanced datasets

and can in these cases be misleading. The F1 score and

MCC try to counteract this problem.

The F1 score provides a metric where true negatives are

not considered, which for datasets skewed towards a high

amount of trivial true negatives results in a more fair repre-

sentation.

In the same sense, the MCC metric tries to provide a fair

single value representation of the confusion matrix, even for

imbalanced datasets, by providing a value in the range [-1;

1]. -1 indicates total disagreement, 0 indicates pure guess-

work, and 1 indicates perfect predictions. If any of the sums

in the denominator results in 0, the resulting value is set

to 0. The MCC metric is a measure which have been rec-

ommended for computational biology and biomedical and

health informatics due to its built-in considerations for both

positive and negative predictions in imbalanced datasets

[10]. MCC will be used as the primary evaluation metric.

The method evaluation is not a one-to-one comparison,

as the Bossu rain detection algorithm works on a per-frame

basis while the C3D CNN analyse 16 frames at a time, with

a 8 frame stride. Therefore, there will be fewer predictions

for the C3D CNN. In order to demonstrate the effect of the

FCN structure, the C3D CNN will be evaluated when ap-

plied on the entire frame, utilizing the FCN structure, and

evaluated with a 112×112 center patch of the frame. These

are denoted C3D-FCN and C3D-Center, respectively. Fur-

thermore, the Bossu algorithm is evaluated in two ways, by

investigating the rain detection capabilities when using ei-

ther the per-frame EM estimated HOS parameters, or the

Kalman smoothed HOS parameters. These are denoted
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Bossu-EM and Bossu-Kalman, respectively. The laser dis-

drometer labels have been converted from per-minute to

per-frame representations. The results are shown in Table 5.

The best performing metrics are highlighted in bold.

From the results it is evident that the C3D CNN outper-

forms the Bossu algorithm on all of the Crossing1 videos.

The Bossu rain detector algorithm provides nothing more

than a random guess, as shown by the accuracy values near

50% and MCC values near 0. On the other hand, the mod-

ified C3D CNN achieves a near perfect accuracy of 98 %

and MCC of 0.94 on the training set whereas a 87% accu-

racy and MCC of 0.58 is scored on the validation set. This

indicates that while it performs well, performance can be

improved, as shown by the large amount of false negative

predictions. Comparatively, if only the center is evaluated

with the C3D CNN, the performance drops drastically to a

MCC of 0.90 and 0.41 on the training and validation sets,

respectively. As we trained the C3D CNN on a subset of

the Crossing1 dataset and determined the parameters of the

Bossu algorithm on the very same dataset, the difference in

performance is striking.

On the Crossing2 videos, two crops are tested: One with

asphalt background and one with a brick house background.

It is shown that neither the C3D CNN nor the Bossu al-

gorithm generalize well when tested on the asphalt back-

ground. The C3D CNN evaluating the entire frame predicts

no rain, while the Bossu algorithm predicts rain approxi-

mately one third of the time. The C3D CNN evaluated on

just the center patch does predict rain in some instances,

but due to the large discrepancy between true and false pre-

dictions, it results in a MCC of -0.08. When tested on the

brick house background, however, the C3D CNN outper-

forms the Bossu rain detector on all metrics. This indicates

that the C3D CNN can generalize somewhat when evalu-

ated on surfaces similar to the one it was trained on. It is

also found that by just evaluating the center patch with the

C3D CNN, the MCC increases by 0.01.

The results also show that the Bossu algorithm works

better on the brick house background but that the perfor-

mance is still affected by a large amount of false positives

and negatives.

We hypothesize that the reason C3D-Center performs

better than C3D-FCN on the Crossing2 data, is due to the

dynamic effects that occurs in the regions. In Crossing2-

asphalt there are many cars with reflections, while in

Crossing2-Brick there are pedestrians walking by along the

sidewalk. By using just the center patch, some of these

dynamic effects may be avoided. Further investigation is

needed in order to be certain.

7. Conclusion

In this work we investigated detection algorithms for

general-purpose surveillance cameras. The current state-

of-the-art method and a data-driven 3D CNN method were

implemented and compared on a new publicly available

dataset, the AAU Visual Rain Dataset (VIRADA), consist-

ing of 215 hours from two separate traffic crossings, mak-

ing it by far the biggest rain dataset captured by general

purpose surveillance cameras. A subset of one of the traffic

crossing videos was used to train the algorithms. When test-

ing on unseen data from the traffic crossing the algorithms

were trained on, we found that our modified 3D CNN al-

gorithm outperformed the previous state-of-the-art method.

However, when testing on data from a new traffic cross-

ing, the performance of the algorithms were dependent on

the similarity of the investigated region-of-interest and the

training data. Using a similarly textured region-of-interest,

our 3D CNN outperformed the previous state-of-the-art by

a large margin. Comparatively, when using a region-of-

interest with a very different kind of texture, our 3D CNN

failed to function. From these observations it is clear that

our modified 3D CNN outperforms the previous state-of-

the-art, but also that the task of rain detection for general-

purpose surveillance cameras is not yet solved.

Future work could include an in-depth comparison be-

tween the laser disdrometer and the mechanical tipping-

scale rain gauge in order to determine the effect of the label

quality on the evaluated results.

.
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