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Abstract

Recently, low-level vision problems has been addressed

using residual learning that can learn a discrepancy be-

tween hazy and haze-free images. Following this approach,

in this paper, we present a new dehazing method based on

the proposed bidirectional residual learning. Our method is

implemented by generative adversarial networks (GANs),

consisting of two components, namely, haze-removal and

haze-reconstruction passes. The method alternates between

removal and reconstruction of hazy regions using the resid-

ual to produce more accurate haze-free images. For effi-

cient training, we adopt a feature fusion strategy based on

extended tree-structures to include more spatial informa-

tion and apply spectral normalization techniques to GANs.

The effectiveness of our method is empirically demonstrated

by quantitative and qualitative experiments, indicating that

our method outperforms recent state-of-the-art dehazing al-

gorithms. In particular, our approach can be easily used to

solve other low-level vision problems such as deraining.

1. Introduction

Owing to the emergence of deep learning, high-level vi-

sion methods have made a remarkable progress. However,

they still suffer from many obstacles contained in real-world

images (e.g. the shortage of light and bad weather such as

haze, rain, night), leading to worse results in the real envi-

ronments than those in ideal environments. In particular, a

haze extremely reduces visibility of images, resulting in the

degradation of the performance of most vision methods. In

this context, dehazing is being very important as a prepro-

cessor of high-level vision tasks. There are two non-deep-

learning approaches to dehazing. One is to utilize additional

information such as 3d model, numerous sensors, and mul-

tiple images for dehazing [23, 34, 38]. The other is based on

only a single image which has been actively studied, show-

ing its effectiveness. The most important factor in dehaz-

ing is the estimation of transmission and atmospheric light,

making the performance of traditional dehazing methods

to highly depend on the accuracy of the estimation. While

Figure 1. Illustration of the proposed dehazing method incor-

porating our residual learning. Residual refers to the difference

between hazy and haze-free images. Thus, a haze-free image can

be obtained by subtracting the residual from the haze image. Con-

versely, addition of the residual to a haze-free image can produce a

haze image. Our method aims to generate realistic hazy and haze-

free images by learning them in an alternating manner.

end-to-end deep learning methods can alleviate this prob-

lem, they typically require haze-free images as ground-truth

that are very difficult to acquire in real-world. To solve this

problem, ground-truth has been synthesized by generating

transmission either using the haze model or using depth in-

formation, where depth information can be obtained by sin-

gle image depth estimation techniques or specific sensors.

With these synthesized training data, deep learning methods

have shown remarkable improvements in the application of

dehazing.

Recently, generative adversarial network (GANs) have

driven advanced performance in a variety of applications of

computer visions such as image generation [27, 35], style

transfer [7, 18, 41], segmentation [11], and object detec-

tion [42]. In particular, successful applications of GANs to

dehazing have been also presented. The optimization in the

GAN applications often involve residual learning that can

alleviate gradient vanishing problems, in which gradients

converge to zeros as the network becomes deeper. Residual

is indicative of fitness between the input image and ground
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truth. In the application of dehazing, residual can be con-

sidered as differences between hazy and hazy-free images.

Thus, by using simple arithmetic operations (e.g. sum and

subtraction of residuals), we can generate hazy and hazy-

free images in an alternating manner, as shown in Fig.1.

In this paper, we propose a GAN-based dehazing method

that considers residuals in the generation of hazy and haze-

free images. Although residual learning is a well-known

technique, using the residual for dehazing has not been

actively studied. In contrast to traditional dehazing meth-

ods, our method directly applies residuals to images in a

bidirectional way to generate both hazy and haze-free im-

ages, leading to more accurate results. For this bidirectional

generation, we adopt a deep neural architecture similar to

CycleGAN [48]. Fig.2 shows the overall procedure of our

method.

The contributions of our method are threefold.

• We propose a bidirectional residual learning method for

dehazing, in which the haze-removal pass network gen-

erates haze-free images from hazy images and the haze-

reconstruction pass network recovers hazy images from

generated haze-free images.

• We present a feature fusion method for efficient residual

learning, which is based on the extended tree-structure.

• We demonstrate the effectiveness and applicability of our

bidirectional residual learning method by using the method

to solve other low-level vision tasks such as deraining.

In the remainder of this paper, we relate our method to

the prior works in Sec. 2 and propose the bidirectional resid-

ual learning method in Sec. 3. The implementation of our

bidirectional residual learning is presented in Sec. 4.1. Ex-

perimental results are provided in Sec. 4 and the conclusion

follows in Sec. 5.

2. Related Work

While there have been a variety of algorithms that use

additional information for dehazing [23, 34, 38], we discuss

in more detail the closely related works to our method, in

which only a single image is used for dehazing (e.g. dark

channel prior [16]).

Koschiederet al. [24] defined the haze model as:

I(x) = J(x)t(x) +A(1− t(x)), (1)

where I is the haze image, J is the haze-free image, A is

the atmospheric light, and t is the transmission. The trans-

mission map keeps depth information of the image, thus at-

mospheric scattering can be represented as:

t(x) = e−βd(x), (2)

where β is a scattering parameter and d is depth. Color-

line [13] and Haze-line [4] gained impressive dehazing re-

sults, especially in color restoration and accuracy. Kim et

al. estimated atmospheric light effectively with quad-tree

searching [22]. Ancuti et al. conducted haze region detec-

tion with the semi-inverse method and applied multi scale

fusion [2]. Additionally, they proposed another scheme that

employs multiple features [3]. Kim and Kwon made use of

the illumination map as pixel-wise atmospheric light based

on retinex theory. Meng et al. suggested boundary constant

and contextual regularization methods [30]. Choi et al. pre-

sented the referenceless evaluation method for dehazing in

which ground-truth is not required [8]. Zhu et al. proposed

the color attenuation prior method [49]. To restrain the halo

effect (i.e. remained haze after dehazing), Chen et al. at-

tempted to reduce various artifacts with gradient residual

minimization [6].

Deep neural networks for transmission and atmospheric

light estimation [28, 36, 5] have emerged as a way to de-

haze images. DehazeNet [5] was the first end-to-end de-

hazing algorithm based on the regression network. Ren et

al. developed the multi-scale convolutional neural network

(MSCNN) [36] via a coarse-to-fine approach for dehazing

and introduced the fusion-based method that uses multi-

ple inputs: white balancing, gamma correction, and con-

trast enhancing [37]. Zhang and Patel removed haze by

the dense connection and pyramid method [47]. AOD-

Net [25] reformulated the atmospheric scattering model

for the end-to-end dehazing algorithm and showed that

joint learning of detection and dehazing can improve the

performance of object detection. A successful example of

image-to-image translation methods [47, 46] for deahzing is

Cycle-Dehaze [12] that adopted the CycleGAN architecture

in [48] to dehazing. Du and Li used residual learning [10]

for dehazing, which is generally used in super resolution

problems. They presented POGAN [9] combined with ad-

versarial learning. A advantage of residual learning is that

the estimation of transmission and atmospheric light is not

required and the haze model is not necessary in the course

of dehazing. Thus, it can simplify the deep neural architec-

ture and utilize a variety of existing techniques.

We consider POGAN [9] as a baseline. Unlike POGAN,

we present the bidirectional residual learning method for

dehazing, adopting both residual learning (e.g. ResNet [17])

and consistency learning (e.g. CycleGAN [48]) to remove

haze.

3. Residual Learning for Dehazing

Residual learning has been used widely in computer vi-

sion problems with deep learning [21, 10, 9, 14]. It has been

adopted first to super resolution problems but other prob-

lems in computer vision have started to be considered as a

form: Y = X −R. Y is the clear image that we want to ob-

tain, while X is the image with haze, rain, or snow. We can

acquire the clear image by removing the residual (e.g. haze,

rain or snow). In particular, this idea has mostly been used
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Figure 2. Overall architecture of the proposed method.

in deraining [9, 44, 45], because rain streak fits with the

residual learning setting. The method in [10] firstly consid-

ers haze as residual, implying that the estimation of trans-

mission and atmospheric light is not required in the course

of dehazing.

For dehazing, residual learning is reformulated as fol-

lows:

J(x) = I(x)−R(x), (3)

where J(x) is the haze-free image, I(x) is the hazy image,

and R(x) is residual image. The residual image is repre-

sented as the discrepancy map between haze-free and haze

images. Then, the loss function for residual learning in de-

hazing can be designed as:

L(θ) = ‖F (I(x))− (I(x)− J(x))‖2, (4)

where θ indicate parameters to train and F (·) is a generator

network. With the loss function in (4), we can train the deep

neural network for dehazing because the estimated residual

can be used to obtain the haze-free image by subtracting

residual from the hazy image. While traditional convolu-

tional neural networks has several limits in the estimation of

residual for dehazing, we introduce the GAN based residual

learning method for dehazing.

3.1. Bidirectional Residual Learning using GAN

In this paper, we propose a bidirectional residual learn-

ing method that can be applicable for both haze removal and

haze reconstruction. In our method, residual features are ob-

tained in bidirectional ways and two different arithmetic op-

erations are applied to residual learning. We assume that

residual features to obtain haze-free images should be same

as those to obtain hazy images.

For bidirectional residual learning, we define two di-

rections, namely, haze-removal pass G : X− > Y and

haze-reconstruction pass F : Y− > X , respectively.

X and Y are hazy and haze-free images, respectively. G

and F are generator networks for haze-removal and haze-

reconstruction passes, respectively. R(x) and R(x)′ are

residual features for haze-removal and haze-reconstruction

passes, respectively. Then, the adversarial loss function for

the haze-removal pass is as follows:

LGAN =
N
∑

n=1

−DX

(

G(I(x))
)

+

N
∑

n=1

−DY

(

F (G(I(x)))
)

,

(5)

where D(·) is a discriminator network. For stable training,

we use WGAN-GP [15] and spectral normalization [33].

Our method also uses the content loss function that mea-

sures the the discrepancy between two images at the feature

level via the l2 norm, as follows:

Lcontent = ‖φ(G(I(x)))− φ(J(x))‖2+

‖φ(F (G(I(x))))− φ(I(x))‖2, (6)

where φ is the 51st layer of the VGG network [39], which

is a more deeper layer than that used in the perceptual

loss [20]. The feature map has a lot of information, lead-

ing to slow learning in some cases. Thus, we use the deeper

layer with prominent features and obtain the content loss on

the high level feature map. Note that the contents loss in (6)

prevents the generation of blurry images by imposing more

powerful constraints compared with pixel level losses.
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Figure 3. Our feature fusion method based on extended tree-

structure and inverse residual blocks.

For spatial smoothness, the total variation loss function

is defined as follows:

Ltv = ‖ ▽x G(I(x)) +▽yG(I(x))‖2+

‖ ▽x F (G(I(x))) +▽yF (G(I(x)))‖2, (7)

where ▽x and ▽y denote gradients in x and y directions,

respectively. The following function calculates the L1 loss

between generator outputs and ground-truth:

Ll1 = ‖G(I(x))− J(x)‖1 + ‖F (G(I(x)))− I(x)‖1. (8)

While conventional L2 loss functions induce blurry images,

the L1 loss function in (8) can produce clearer images. Be-

fore passing through the final tanh layer, the haze-removal

pass network applies element-wise subtraction, whereas

the haze-reconstruction pass network applies element-wise

summation. Since the residual features obtained by two net-

works must be equal to each other, we add the consistency

loss function Lconsistency for residual features, R(x) and

R(x)′:
Lconsistency = ‖R(x)−R(x)′‖1. (9)

The total loss function for the proposed bidirectional

residual learning is defined as follows:

Ltotal = LGAN + λ1 · Lcontent + λ2 · LSSIM+

λ3 · Ll1 + λ4 · Ltv + λ5 · Lconsistency, (10)

where the SSIM loss function [43] makes structures of the

estimated image and ground-truth similar. Using The SSIM

loss, our method can preserve local details that can be lost

by the content and L1 loss functions. λ1, λ2, λ3, λ4, and λ5

in (10) are control parameters, balancing weights of differ-

ent loss functions. These parameters are empirically deter-

mined and fixed to 50, 1, 0.05, 0.1, 0.05, respectively. Note

that the weight ratio of the contents loss to the GAN loss is

typically set to 100 : 1.

3.2. Tree­Residual Block

Feature fusion techniques yield better training results.

For example, JORDER et al. [45] concatenated multiple

features extracted by using different dilated convolutions.

Fu et al. [14] fused multiple features in the form of a tree-

structure. In contrast to the above methods, we present a

(a) Haze removal (b) Haze reconstruction
Figure 4. Residual feature maps estimated by haze-removal pass

network and haze-reconstruction pass network on buildings image.

tree-residual structure that can more accurately preserve

spatial information by applying residual blocks to feature

extraction. The basic tree-structure formula is as follows:

Z = σ(Wfuse ∗ concat(Z1, Z2) + b), (11)

where Z1 and Z2 are adjacent features and have the same di-

mension. Wfuse combines two feature maps with the 1× 1
convolution. After activation, the fused feature Z has the

same dimension as original features Z1 and Z2. Our method

uses residual blocks to extract features such as Z1 and Z2

and makes tree structures inside of each residual block and

between multiple residual blocks. Fig.3 illustrates the pro-

posed tree-residual structure.

3.3. Network Architecture

The proposed generator network is illustrated in Fig.2.

The network contains six tree-residual blocks after the first

conv-relu layer and four inverse residual blocks for each

tree-residual block. For short-cut connection of a resid-

ual block, element-wise summation is replaced by element-

wise subtraction [17]. It is experimentally demonstrated that

element-wise subtraction is better than element-wise sum-

mation operation for our residual learning. The tree-residual

block uses dilated convolutions, in which the dilated fac-

tor is set to 1 ∼ 4 to consider various receptive fields.

In tree-residual blocks and inverse residual blocks, fea-

tures are fused by tree-structures, as explained in Sec. 3.2.

Before the last conv-tanh layer, we perform the element-

wise subtraction (summation) of the residual feature map

and the first convolution layer for the haze-removal (haze-

reconstruction) pass network. With these operations, our

network can produce both the hazy and haze-free images.

We use 16 channels for each feature map.

The discriminator network uses the Wasserstein GAN

with gradient penalty [15], PatchGAN [19], and spectral

normalization [33]. α in LeakyReLU is set to 0.2. Table 1

describes detailed network structures.
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Table 1. Parameter settings on the generator network. ”conv” denotes the convolution layer. Other layers (e.g. batch normalization and

activation function) are omitted and repeated layers are mentioned only once in the table. The detailed connection for feature fusion is

illustrated in Fig 2.

residual block residual block residual block residual block Feature fusion Residual feature Reconstruction

Layer conv conv conv conv conv conv conv conv

Kernel size 3x3 3x3 3x3 3x3 3x3 1x1 3x3 1x1

Stride 1 1 1 1 1 1 1 1

Pad 1 1 2 3 4 0 1 0

Channel 16 16 16 16 16 16 16 3

Dilated factor 1 1 2 3 4 1 1 1

Figure 5. Intermediate haze-removed G(I(X)) and haze-

reconstructed F (G(I(X))) images generated in the course of

our bidirectional residual learning.

4. Experimental Results

4.1. Implementation Details

Training dataset: It is difficult to make ground-truth

for real-world hazy images. For indoor images, we can ex-

tract the depth maps of images via depth sensors and use

these maps as ground-truth for hazy regions. However, these

maps typically are dissimilar to real hazy regions. Recently,

depth estimation algorithms [29] have been proposed to

synthesize hazy images from haze-free images (i.e. ground-

truth) based on the haze model, in which the transmission

parameter β in (2) ranges 0.5 to 1.5 with the step size of 0.1
and the atmospheric light A in (1) is randomly selected over

a range of values from 0.7 to 1.0. For haze synthesis, we

used DIV2K dataset [1] . We randomly cropped 100× 100
patches using 900 images to make 230, 000 patches. To pre-

Table 2. Quantitative evaluation of reconstructed haze images

on real-world dataset.

house mountain pumpkins florence ny17

SSIM 0.909 0.948 0.946 0.877 0.88

vent haze-free regions from being saturated, we applied 1.1
gamma correction to 40 percent of the amount of total im-

ages.

Parameter Setting: Patches were resized to 70×70.

Mini-batch size was set to 8. We used the loss function

in (10) and trained the generator network every five times

per iteration. The initial learning rate was set to 1e− 3 and

weight decay was 0.05. We used the ADAM optimizer and

performed a total of 50k iteration. Training was performed

using NVIDIA GeForce GTX TITAN XP GPU and the pro-

posed network was implemented in PyTorch on windows

environment.

Comparison: Our method was compared with state-of-

the-art dehazing methods [36, 5, 25] based on deep learning

and non-deep learning methods [13]. We used real-world

datasets such as Fattal [13] and synthesized datasets pre-

sented in [26] for qualitative evaluation. We utilized three

image quality evaluation methods (i.e. naturalness image

quality evaluator (NIQE) [32], blind/referenceless image

spatial quality evaluator (BRISQUE) [31], and perception

based image quality evaluator (PIQE) [40]), which are no-

reference quantitative evaluation metrics.

4.2. Ablation Study

Fig.4 shows the residual maps produced by haze-

removal pass network and haze-reconstruction pass net-

work, demonstrating that hazy regions were accurately esti-

mated. Fig.5 includes haze-removed and haze-reconstructed

images that were produced in the course of bidirectional

residual training. Our bidirectional residual training method

alternated between removal and restoration of haze in the

determination of hazy regions and generated accurate haze-

free images. Table 2 reports the SSIM scores on test images

used in Fig.5. Most results are close to 0.9 that is close to

those of real-world haze images.
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(a) input (b) Color-line [13] (c) DehazeNet [5] (d) MSCNN [36] (e) AOD-Net [25] (f) Ours

Figure 6. Comparison of dehazing results on real-world images.

Table 3. Quantitative comparison with sate-of-the-art dehazing methods using no-reference image quality measurements on real-world

images. Red and blue numbers denote the best and the second best results, respectively.

Color-line [13] DehazeNet [5] MSCNN [36] AOD-Net [25] Ours

NIQE [32] 3.031 3.238 2.897 3.334 2.967

BRISQUE [31] 18.90 24.75 17.35 17.89 16.40

PIQE [40] 33.23 35.98 30.67 33.23 29.89

4.3. Results on Real­world datasets

We qualitatively compared several dehazing methods

with real-world dataset, Fattal [13], as shown in Fig.6.

While the color-line method produced more colorful re-

sults than other methods, it incurred saturation problems

and artefacts as shown in the river of the first row and left-

hand building of the fourth row, respectively. DehazeNet,

MSCNN, and AOD-Net generally produced accurate de-

hazing results, but generated slightly faded and dark tone

images,as shown in the fourth row. The proposed method

accurately got rid of hazy regions, while images were dark-

ening slightly as the dehazing process proceeded/ However,

the method still preserved a lot of details.

Table 3 includes numerical results of state-of-the-art de-

hazing methods evaluated in term of no-reference image

quality metrics with test images of Fig 6. Our method and

MSCNN show good performance in general.
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(a) Input (b) MSCNN [36] (c) DehazeNet [5] (e) AOD-Net [25] (f) Ours

Figure 7. Comparison of dehazing results on real-world images.

(a) Input (b) DehazeNet [5] (c) MSCNN [36] (d) AOD-Net [25] (e) Ours (f) Ground-truth

Figure 8. Comparison of dehazing results on synthetic images.

4.4. Results on Synthetic datasets

RESIDE [26] presented a variety of synthesized datasets

for dehazing. Since indoor images were not suitable to de-

scribe real-world environments, outdoor images that con-

tain heavy haze were used for evaluation. Fig.8 shows de-

hazing results of several methods. While MSCNN removed

only a part of hazy regions, AOD-Net decreased the bright-

ness of sky areas. In contrast to the above methods, our

method and DehazeNet produced the most natural results.

4.5. Deraining results

A rain streak is also residual that can be obtained by

measuring a discrepancy between rain and clear images.

Thus, for deraining, the residual learning based methods
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(a) Rain images (b) Our deraining results

Figure 9. Results of deraining using proposed residual learning.

have showed good performance [45, 14]. Our bidirectional

residual learning method can be also adopted easily to solve

this deraining problems. For evaluation for deraining, We

used the Rain100H dataset [45]. Fig.9 shows the derain-

ing results. Our method accurately removed the rain streak,

while making other regions clear.

5. Conclusion

In this paper, we proposed a dehazing method using bidi-

rectional residual learning. Our method considered resid-

ual that is a difference between haze images and haze-free

images and alternated between removal and reconstruction

of hazy regions using the residual. For alternative gener-

ation of hazy and haze-free images, we present the haze-

removal pass network and the haze-reconstruction network.

This alternation process helped to improve the quality of

haze-free images. Additionally, the feature fusion method

based on the extended tree-structure was proposed, which

enables our method to use more accurate spatial informa-

tion. Experimental results demonstrated that Our method

outperforms other methods for dehazing. Our method can

be easily adopted to solve various low-level vision such as

deraining.

6. Acknowledgements

This work was supported by Institute for Information

communications Technology Planning & Evaluation(IITP)

grant funded by the Korea government(MSIT) (No.2017-0-

01780)

References

[1] E. Agustsson and R. Timofte. Ntire 2017 challenge on

single image super-resolution: Dataset and study. In

CVPR Workshops, 2017. 5

[2] C. Ancuti, C. Ancuti, C. Hermans, and P. Bekaert. A

fast semi-inverse approach to detect and remove the

haze from a single image. In ACCV, 2011. 2

[3] C. O. Ancuti and C. Ancuti. Single image dehazing

by multi-scale fusion. TIP, 22(8):3271–3282, 2013. 2

[4] D. Berman, T. Treibitz, and S. Avidan. Non-local im-

age dehazing. In CVPR, 2016. 2

[5] B. Cai, X. Xu, K. Jia, C. Qing, and D. Tao. DehazeNet:

An end-to-end system for single image haze removal.

TIP, 25(11):5187–5198, 2016. 2, 5, 6, 7

[6] C. Chen, M. N. Do, and J. Wang. Robust image and

video dehazing with visual artifact suppression via

gradient residual minimization. In ECCV, 2016. 2

[7] Y. Chen, Y.-K. Lai, and Y.-J. Liu. Cartoongan: Gen-

erative adversarial networks for photo cartoonization.

In CVPR, 2018. 1

[8] L. K. Choi, J. You, and A. C. Bovik. Referenceless

prediction of perceptual fog density and perceptual

image defogging. TIP, 24(11):3888–3901, 2015. 2

[9] Y. Du and X. Li. Perceptually optimized generative

adversarial network for single image dehazing. arXiv

preprint arXiv:1805.01084, 2018. 2, 3

[10] Y. Du and X. Li. Recursive deep residual learning for

single image dehazing. In CVPR Workshops, 2018. 2,

3

[11] K. Ehsani, R. Mottaghi, and A. Farhadi. Segan: Seg-

menting and generating the invisible. In CVPR, 2018.

1
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