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Abstract

The ability of identifying changes or transformations in
a scene and to reason about their causes and effects, is a
key aspect of intelligence. In this work we go beyond re-
cent advances in computational perception, and introduce
a more challenging task, Image-based Event-Sequencing
(IES). In IES, the task is to predict a sequence of actions
required to rearrange objects from the configuration in an
input source image to the one in the target image. IES also
requires systems to possess inductive generalizability. Mo-
tivated from evidence in cognitive development, we com-
pile the first IES dataset, the Blocksworld Image Reasoning
Dataset (BIRD) which contains images of wooden blocks in
different configurations, and the sequence of moves to re-
arrange one configuration to the other. We first explore the
use of existing deep learning architectures and show that
these end-to-end methods under-perform in inferring tem-
poral event-sequences and fail at inductive generalization.
We propose a modular two-step approach: Visual Percep-
tion followed by Event-Sequencing, and demonstrate im-
proved performance by combining learning and reasoning.
Finally, by showing an extension of our approach on natu-
ral images, we seek to pave the way for future research on
event sequencing for real world scenes.

1. Introduction

Deep neural networks trained in an end-to-end fashion
have resulted in exceptional advances in computational per-
ception, especially in object detection, semantic segmenta-
tion, and action recognition. Given this capability, a next
step is to enable vision modules to reason about perceived
visual entities such as objects and actions. Some works [15]
approach this problem by inferring spatial, temporal and se-
mantic relationships between the entities. Other works deal
with identifying changes in these relationships (spatial [7]
or temporal [10]). Spatial reasoning has been explored in
the context of Visual Question Answering (VQA) via the
CLEVR dataset [8]. Relation Networks (RN) proposed in
[12] augment image feature extractors and language embed-

ding modules with a relational reasoning module, to answer
questions about attributes and relative locations of blocks.

In this work, we go beyond and present a new task,
Image-based Event Sequencing (IES). Given a pair of im-
ages, the goal is to predict a temporal sequence of events or
moves needed to rearrange the object-configuration in the
first image to that in the second. An important requirement
for potential IES solvers is inductive generalizability, the
ability of predicting an event-sequence of any length, even
when trained only on samples with shorter lengths. A sim-
ple analogy is about sorting a list; a correct program should
be able to sort irrespective of the number of swaps required.

To validate IES systems, no public testbed (with de-
tailed annotations about spatial configurations and event-
sequences) exists to the best of our knowledge. While
CLEVR [8] and Sort-of-CLEVR [12] also contain images
of block-configurations, they are artificially generated and
more importantly do not include detailed sequences be-
tween pairs of images. The blocks in these datasets are
never stacked or in contact and so there are no constraints on
movement of these blocks. However in real world scenes,
objects do impose constraints on one another, for instance a
book which has a cup on top of it, cannot be moved with-
out disturbing the cup. Thus, we compile the Blocksworld
Reasoning Image Dataset (BIRD) that includes 1 million
samples containing a source image, a target image and all
possible sequences of moves to rearrange source into target.

To tackle the IES challenge, we propose a modular ap-
proach and decompose the problem into two stages, Visual
Perception and Event-Sequencing. Stage-I is an Encoder
network that converts each input image into a vector repre-
senting the spatial configuration of the image. Stage-II uses
these vectors to generate event-sequences. This decompo-
sition makes the sequencing module standalone and repro-
ducible. While the encoder can change based on domain,
the sequencing module once learned on the blocksworld do-
main, can be reused on more complex domains. We com-
pare this two-stage approach with several existing end-to-
end baselines, and show significant improvement.

To test for inductive generalization, we train our mod-
els on data containing true sequences with an upper bound
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Figure 1. Illustration of two event-sequences between an image-
pair (with intermediate configurations shown for clarity).

on length, and test them on samples that require sequences
of longer lengths. We observe that end-to-end methods fail
to generalize while two-stage methods exhibit inductive ca-
pabilities. Inductive Logic Programming [9] which com-
bines learning and reasoning by using background knowl-
edge, performs the best under this setting, and can be used
to learn event-sequences with unbounded lengths.

Thus, our contributions are fourfold; (1) we introduce
the first IES challenge and compile the BIRD dataset as a
testbed, (2) we show that end-to-end training fails at event-
sequence generation and inductive generalization, (3) we
show the benefits of a two-stage approach, and (4) we show
that a sequencing module learned on the BIRD data can be
re-used on natural images, yielding a capability towards hu-
man level intelligence [13].

2. Image-based Event Sequencing (IES)

The input to the IES task is a pair of images (source I
and target Ir), that contain objects appearing in different
configurations. The goal of the IES task is to find an event
sequence M = [m,,...,my], such that performing M on
Ig leads to Ip. Here L is the length of sequence M and
my is the move at time ¢ € {1,...,L}. Figure 1 shows
an example. Note that a pair of images can have multiple,
unique or no permissible event-sequences.

3. Blocksworld Image Reasoning Dataset
3.1. Motivation for BIRD

In this work, we focus on the “Blocksworld” setting
where every image contains blocks of different colors ar-
ranged in various configurations. What’s so special about
blocks? Our motivation for constructing a curated dataset of
blocksworld images comes from literature in cognitive de-
velopment. Extensive studies such as [1 1, 1] show that play-
ing with wooden blocks benefits the early stages of devel-
opment of a child’s sensorimotor, symbolic, logical, math-
ematical as well as abstract and causal reasoning abilities.
[13] have argued that building with blocks enables children
to mathematize the world around them in terms of physics,
geometry, visual attributes, and semantics.

The crucial insight from these works is that the task of
reasoning about a complex visual scene benefits from ab-
stractions in terms of blocks; when every object in a scene
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Figure 2. Images with their arrangement and color vector

is treated as a block, the entire scene can be re-imagined
in the blocksworld framework. [4] use an “Interpretation-
by-Synthesis” approach to progressively build up represen-
tations of images. We propose a similar construct for vi-
sual perception that could aid in reasoning tasks such as the
one in IES. With the claim that the IES task can be learned
on the blocksworld domain, and extended and reused on
other domains seamlessly, we introduce a new dataset — the
Blocksworld Image Reasoning Dataset (BIRD).

3.2. Constructing BIRD

BIRD consists of 7267 images of blocks arranged in dif-
ferent configurations that we captured in white background
and uniform lighting conditions. We use wooden blocks
from a set of six colors C and arrange them in various per-
mutations with two constraints — an image contains no more
than five blocks, and no two blocks of the same color.

Annotation: We annotate each image with two vectors
that uniquely represent the configuration of blocks as shown
in Figure 2. The “color-blind arrangement vector” repre-
sents the locations of blocks in a grid. The “color vector”
represents colors of the blocks from bottom-to-top and left-
to-right, with each color represented as a 3-bit binary vector.

For every pair of source and target images, we assign all
possible minimal-length event-sequences, with each move
in the sequence given by:

move(X,Y,t);t € {0,1,..., 7}, X #Y .
where X € C,Y € CU {“table” } U {“out”}. W

For example, move(R, G, 2) implies that a red block is
moved on top of a green block at the second time-step. We
pair every image in the dataset with every other image and
use the CLINGO [3] Answer Set Programming solver to gen-
erate a dataset of (image-image-sequence) triplets as shown
in Figure 1, uniformly sampled across all sequence lengths.

Background Knowledge: To reason about the config-
urations, we use the following background knowledge to
delineate the conditions under which each move is legal:

IBIRD is available publicly at https://asu-active-perception-
group.github.io/bird_dataset_web/



Approach Human

End-to-End Deep Neural Networks

Perfect Recognition + Stage-II Stage-I + Stage-11

Resnet-50  PSPNet RN FC QL ILP FC QL ILP
FSA (%) 100 30.52 35.04 34.37 68.87 84.10 100 56.25 6898 83.60
SLA (%) 100 36.26 56.69 52.09 72.58 87.83 100 60.24 71.17 88.53

Table 1. Comparison of all methods with respect to our FSA and SLA metrics

Exogeneity: Block A can be moved at time t <= it exists
in the configuration V < t.
Freedom of Blocks:

1. Block A is free at time t < VB, —on(B, A, t).

2. Block A can be moved < A is free.

3. Block B can be placed on block A < A is free.

4. A block that is “out of table” cannot be moved.
Inertia: A block unless moved doesn’t change location.
Sequentialism: At most one move can be performed at each
time instance.

4. Methods

Armed with our novel dataset, we test two approaches to
attempt the Image-based Event Sequencing (IES) task.

End-to-End Learning: We train deep neural network
architectures that can leverage spatial context such as
Resnet-50 [6], PSPNet [14] and Relational Networks (RN)
[12], to directly generate event-sequences from image pairs

Modular Methods: We decompose the task into Stage-
I (Visual Perception) and Stage-II (Event Sequencing).
Stage-I is trained to encode input images into an inter-
pretable representation; the configuration of blocks is given
by an arrangement vector, and their characteristics, given
by a color vector. We train a 8-layer convolutional network
to encode this arrangement vector, and a Resnet-50 based
color grounding module as in [2] to obtain the color vec-
tor. Stage-II is trained to use the encoded representation of
images to generate minimal-length sequences of moves to
reach the target from the source configuration. We compare
the efficacy of Fully Connected Neural Networks (FC), re-
inforcement learning using the Q-Learning algorithm (QL)
and rule-based Inductive Logic Programming (ILP).

5. Experiments

Results on Blocksworld Image Reasoning Data: We
evaluate and compare end-to-end and two-stage methods
in Table 1. Two-stage methods significantly outperform all
end-to-end methods, even with imperfect Stage-1 encoders
(Enc). Since the output space is exponentially large, we
postulate that end-to-end networks lack the ability to map
from pixel-space to this large sequence-space.

If an image-pair requires more number of moves than
present in the training data, our system should inductively
infer this longer sequence of steps. We test this Inductive
Generalizability with an ablation study; we create datasets
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Figure 3. Inductive capability of each method, shown in terms of
FSA on the test set containing sequences longer than those used
for training. (Best when viewed in color).

Approach PR + Stage-11 Stage-I + Stage-11
FC QL ILP FC QL ILP

FSA (%) 5534 9220 100 47.47 6426 75.55

SLA (%) 61.06 9642 100 51.71 69.16 80.57

Table 2. Results of using BIRD sequencing module for natural im-
ages (with Perfect Recognition or Mask-RCNN as Stage-I)

such that the training set has samples with maximum length
¢ and the test set with minimum length ¢ + 1. Figure 3 il-
lustrates that end-to-end methods do not possess this ability,
while two stage methods generalize well to some degree; as
£ increases, the inductive capability of QL and FC increases.
Inductive Logic Programming with perfect recognition (PR)
is able to generalize irrespective of the value of /.

Metrics: Full Sequence Accuracy (FSA) is the percent-
age of exact matches, and Step Level Accuracy (SLA) is the
percentage of common moves between y (ground-truth se-
quence) and g (predicted sequence).
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Results on Natural Images: We collected a set of 30
images which contain the object classes “Person”, “TV”,
“Suitcase”, “Table”, “Backpack™ and “Ball” as a prototype
to test the hypothesis that the sequencing module trained on
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Figure 4. Experiments on Natural Images: Given a source and target image we get object detections using a Mask-RCNN. These detections
are re-imagined in the blocksworld framework on which we perform event-sequencing using models trained on BIRD to get output moves.

BIRD can be reused for natural image inputs. We used a
pre-trained Mask-RCNN [5] network to produce object de-
tections and re-imagined the image in the blocksworld set-
ting, by using a one-to-one mapping from each object to a
block-type in BIRD. Thus for a pair of natural images, we
can test various sequencing modules trained on BIRD by di-
rectly using the corresponding blocksworld re-imaginations
to generate event-sequences as shown in Figure 4. Table 2
shows a comparison of our Stage-II baselines.

6. Conclusion

In this extended abstract, we introduced the Image-based
Event Sequencing challenge along with the Blocksworld
Image Reasoning Dataset that we believe has the potential
to open new research avenues in cognition-based learning
and reasoning. Our experiments show that end-to-end deep
neural networks fail to reliably generate event-sequences
and do not exhibit inductive generalization. We propose
a modular approach that has multiple advantages. First,
the sequencing module benefits from the interpretable en-
codings generated by the perception module. Next, the
sequencing module trained on BIRD can be reused in the
natural image domain, by simply replacing the perception
module with object detectors. Finally, our experiments
show that modular methods possess inductive generaliz-
ability, opening up promising avenues for visual reasoning.
Our future work would include relaxing the constraints on
BIRD, allowing a larger variety of actions, and extending
this approach to complex real-world environments.
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