
 

 

 

Abstract 

 

Despite the progress made in AI, especially in the 

successful deployment of deep learning for many useful 

tasks, the systems involved typically require a huge number 

of training instances, and hence a long time for training. As 

a result, these systems are not able to rapidly adapt to 

changing rules and constraints in the environment. This is 

unlike humans, who are usually able to learn with only a 

handful of experiences. This hampers the deployment of, 

say, an adaptive robot that can learn and act rapidly in the 

ever-changing environment of a home, office, factory, or 

disaster area. Thus, it is necessary for an AI or robotic 

system to achieve human performance not only in terms of 

the “level” or “score” (e.g., success rate in classification, 
score in Atari game playing, etc.) but also in terms of the 

speed with which the level or score can be achieved. In 

contrast with earlier DeepMind’s effort on Atari games, we 

describe a system that is able to learn causal rules rapidly 

in an Atari game environment and achieve human-like 

performance in terms of both score and time. 

 

1. Introduction 

Artificial intelligence (AI) has taken great strides in many 

domains of applications. However, there has been 

realization that even though many AI systems can perform 

certain tasks very well that normally require human 

intelligence, and sometimes even superseding human 

abilities in those tasks, their performance is not 

“human-like” in some aspects. For example, when deep 

learning is applied to pattern classification and recognition, 

the accuracy is very high and sometimes outstrips human 

performance. However, humans usually require only a few 

instances of training examples to learn to classify and 

recognize the objects involved with high accuracy, whereas 

deep learning systems typically require many orders of 

magnitude of the number of training examples needed by 

humans. Thus, we can distinguish two aspects of judging the 

capability of an intelligent system, human or artificial. 

There is the level of performance, which is often a 

percentage score on the success on some tasks, such as 

classification, and the other is the time taken to learn. 

Human-like performance means the system must perform 

well on both measures and this is critical in many real-world 

applications. 

One notable example recently is the DeepMind’s 
seemingly successful attempt in using deep reinforcement 

learning to play Atari games [1]. Their measure of success 

in playing these games focuses on the “score” measure – 

i.e., is the system able to score well, at human score levels. 

By that measure, they succeeded reasonably well - in more 

than 50% of the games involved, the system was able to 

score higher than that of humans. However, by the measure 

of time, DeepMind’s system plays at a speed many orders of 

magnitudes slower than that of human players - Tsividis [2] 

pointed out this large discrepancy. 

Instead of reinforcement learning, we believe human 

players use the learning and understanding of causality to 

learn how to play Atari games. Ho and Zhu’s groups have 

developed a framework and method to learn causality from 

visual input [3-12]. In this paper, an Atari game, Space 

Invaders, is used to demonstrate that a framework based on 

learning of causal rules from the visual environment 

together with an AI problem solving process can achieve 

human-like performance both in terms of level (score) and 

time taken [12]. 

2. A Causal Learning and Problem Solving Framework 

2.1. Basic Idea Behind Causal/Temporal Learning 

Statistics takes a conservative stance with regards to 

correlations without intervention, which is that it may not 

imply causality [13]. Yang and Ho [14] take the stance that 

both causality and temporal correlations are important for 

AI’s purposes. If one can establish the correlation between 

an intervention/action and a subsequent effect, thus 

establishing the causality between them, one can use it for 

(i) prediction – if the action is taken, the effect is expected; 

and (ii) problem solving – to achieve the effect, one can take 

the action. On the other hand, if a temporal correlation is 

observed between two events, the first of which is not an 

intervention/action taken by the system/human, then the 
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temporal correlation is useful only for prediction – if the 

first event is observed, the second event is likely to follow.  

2.2. Causal/Temporal Rule Learning 

Fig. 1 illustrates the basic causal/temporal learning 

method used by Ho’s group [6, 7, 14]. 

Figure 1: See text for explanation. 

 

In Fig. 1(a) it is shown that an Agent explores around in 

an environment and accidentally Touches a piece of Food at 

time T1 and at location L1 and it finds itself experiencing an 

increase in energy. A causal rule can be learned as such: 

At(Agent, L1, T1) & Touch(Agent, Food, L1, T1) ➔ 

Energy_Increase(Agent, L1, T1+Δ ). This is a specific 

causal rule: it says as currently understood, the 

Energy_Increase can take place if the Agent Touches the 

Food at location L1 and time T1.  

After another instance of the event shown in Fig. 1(b), a 

general rule At(Agent, Any L, Any T) & Touch(Agent, Food, 

Same Any L, Same Any T) ➔ Energy_Increase(Agent, same 

Any L, Same Any T) is learned. 

2.3. The Atari Game Space Invaders 

In this section, we describe the basic approach of the 

game playing system [12]. Fig. 2(a) shows a screen shot of 

the Space Invaders game. In Fig. 2(b), we show that the 

symbolic predicate description of the scene of the Space 

Invaders game is extracted through a “vision module.” The 

data is organized in a temporal form: at each time frame, 

there is a predicate description of every entity and their 

associated parameters (Fig. 1, previous section). So, for 

example, the description of a few of the Space Invaders and 

the Player at time frame Time(t1) would be: Time(t1) – 

At(Invader(ID=10), x1, y1), (At(Invader(ID=11), x2, y2)… 
At(Player( x10, y10))…. Learning then takes place on this 

level of environmental description. 

Figure 2: (a) The Space Invaders Game. (b) The symbolic 

predicates extracted from the scene.  

 

2.4. A System for Causal/Temporal Learning, Reasoning, 

and Problem Solving 

In traditional AI, a General Problem Solver (GPS) acts on 

the facts and knowledge involved in particular domains to 

derive solutions for particular situations [15]. Our approach 

is similar here, except that the knowledge, in the form of 

causal rules, is learned from causal/temporal learning, while 

in traditional AI, the knowledge involved was typically 

hand-coded. Fig. 3(a) shows this basic structure [12]. 

Figure 3: (a) The basic overall causal learning and problem 

solving framework. (b) The detailed processing modules of the 

Human-like Causal Learning and Problem Solving System 

(HLCLPSSS). [12] 

 

Fig. 3(b) shows that the processing begins with the 

Environment, which for Space Invaders would be the Space 

Invaders’ visual scene. A Visual Processing module 

converts that to a time-based, episodic form as described 

above (Fig. 2(b)). 

Next, causal rules, much like those discussed in 

connection with Fig. 1 are learned and encoded. The system 

also learns and encodes Scripts - sequences of any 5 actions 

observed in the environment are stored as Scripts. This 

vastly cuts down the search space of the problem solving 

process. Following this, the system carries our reasoning 

and problem solving, including mental simulation. 

2.5. Goal-Directed Problem Solving 

There are two kinds of goals - Goal to achieve a desired 

state (Increase of Score) and Goal to avoid an undesired 

state (Destruction of Player). These are described as 

follows: 

 

Goal to Achieve a Desired State and the Associated 

Learning Process 

 

Fig. 4 illustrates a typical situation in Space Invaders in 

which there is a desired Goal to achieve. 
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Figure 4: To achieve a desired goal in Space Invaders: See text for 

explanation 

 

In Fig. 4(a), it is shown that the Player is not in a position 

to fire a bullet to destroy an Invader. The Player carries out 

a backward chained problem solving process and obtains a 

solution – move to a location at which the Invader is in the 

direct line of fire and fire a bullet to destroy the Invader. 

The learning process proceeds as follows. In an initial 

“exploration phase” (much like the exploration phase of 

reinforcement learning), the Player fires at random, and 

occasionally a bullet would hit an Invader and destroy the 

Invader. After a few instances of similar experience, a 

causal rule such as this is learned: At(Player_Bullet, Any 

Location, Any Time) & Contact(Player_Bullet, 

Invader(Any ID), Any Same Location, Any Same Time) ➔ 

Destroyed(Invader(Any Same ID), Any Same Location, Any 

Same Time + 1). (In our implemented system, the learned 

rules may not look as “clean”, as there are other “noisy” 
conditions that “creep” into the rule, but they suffice for 

problem solving purposes and this clean rule is good for 

illustrating the basic idea here.). When an Invader is 

destroyed, the Score goes up, and that is a desired Goal. 

After all these causal rules have been learned, the system 

is ready to carry out backward chained problem solving. At 

all times, the system is in the mode of looking for ways to 

achieve a desired Goal, and in this case, it would be 

Increase_Score or Destroyed(Invader(Any ID, Any 

Location, Any  Time).  

 

Goal to Avoid an Undesirable State and the Associated 

Learning Process 

 

Fig. 5 illustrate a typical situation in Space Invaders in 

which there is an undesired Goal to avoid. 

In Fig. 5(a), it is shown that an Invader fires a bullet at the 

Player. Using mental simulation based on the earlier 

learned, known rules of the bullet’s behavior, the system 

knows that some time in the future the bullet will hit the 

Player (because it is in the bullet’s path) and the Player will 

be destroyed. The system therefore concocts a plan to 

prevent this from happening. The solution is to move left a 

little bit as shown in Fig. 5(b). In Fig. 5(c) it is shown that 

the bullet and hence the destruction of the player is 

successfully avoided. 

Figure 5: Player avoids an undesired goal. See test for 

explanation. 

 

In the beginning of the Space Invaders game, the situation 

of experiencing the undesired goal is first learned in a few 

instances in which the Invaders fire bullets and they destroy 

the Player (this is not random – the game engine deliberately 

does that). The entire script learned is:  

 

Appear(Bullet, Loc1) and Move(Bullet, Loc2) and 

Move(Bullet, Loc3) and… 

Contact(Bullet, Player, Loc10) ➔ Destroyed(Player, 

Loc10)                                                                             (1)                    

 

Through contrapositive reasoning, this is converted into: 

 

Not(Destroyed(Player, Loc10) ➔  

Not(Appear(Bull Appear(Bullet, Loc1) or 

Not(Move(Bullet, Loc2) or 

Not(Move(Bullet, Loc3) or 

Not(Contact(Bullet, Player, Loc10))                               (2) 

 

which means that any of the actions taken to negate the 

original events in the sequence is sufficient to achieve a 

negation of Destroyed(Player, Loc10), which is the desired 

Goal of avoiding an undesired state. 

The system then queries its Causal Rule and Script Base 

(CRSB) in Fig. 3 to see if there is any ready solution to 

effect at least one of the negations. If not, then it attempts 

random actions to see if that can achieve the Goal. It turns 

out that in this case by randomly emitting a sequence of left 

and right movements of the Player, a Not(Contact(Bullet, 

Player, Loc10)) can be achieved – typically by moving left 

or right by a few pixels. This involves a search process with 

a small state space. 

3. Results of Human-like Performance Space Invaders 

Game Playing System 

The various causal learning, reasoning, and problem 

solving processes, including internal mental simulations 

processes (Fig. 3(b)), have been implemented and tested on 

the Space Invaders game [12]. Fig. 6 shows the results. 

 In Fig. 6, the results from 3 trials played by our 

Human-like Causal Learning and Problem Solving System 
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(HLCLPSS), are shown along with (i) human novice 

performance; and (ii) DeepMind’s deep reinforcement 

learning results, as reported in their paper [1], time-scaled 

based on the total number of video frames needed before 

certain performance is achieved (video frame is 30 frames 

per second). We also executed DeepMind’s publicly 

accessible code to obtain its performance in the early part of 

the game – up to 20 hours of play time. There is a level of 

score, about 200, when the Player shoots at random with no 

goal-directed behavior, and it is shown as a line labeled 

“Avg Random Play”. 

Figure 6: Results. See text for explanation [12]. 

 

 The results show that HLCLPSS is able to achieve very close to 

novice human player’s performance with respect to score and 

speed, the speed of which is many orders of magnitude faster than 

that of DeepMind’s system. 

4. Conclusion 

In this paper, we first define what we mean by human-like 

performance AI, which is a system that is not only able to 

achieve human performance in terms of “level” or “score” 
(like the percentage accuracy in classification or the game 

score in a computer game), but it must also achieve the level 

or score in reasonably short, human-like time frame. Then 

we describe a causal learning and problem solving 

framework to demonstrate how, when applied to an Atari 

game Space Invaders, it is able to achieve human-like 

performance – achieving human-like game score in 

human-like time frame. 

What have demonstrated in this paper is the ability of the 

system to reach human-like performance at the human 

novice level. We are currently continuing to enrich the basic 

framework of Fig. 3 to allow the system to reach human 

expert level performance, within human-like learning time 

frames. 

Future research will apply the basic system to more Atari 

games to further explore some fundamental issues, as well 

as to apply the basic causal learning and problem solving 

framework to real world robotic situations. 
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