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Abstract

Supervised learning of classification from annotated im-

ages develops a latent feature representation that cap-

tures semantic visual similarity. We propose an unsuper-

vised metric learning method that develops apparent vi-

sual similarity from images alone. Our method maps high-

dimensional visual data onto a low-dimensional hyper-

sphere and consolidate such feature representations into a

visual memory representation. Optimizing the feature map-

ping and visual memory on a hypersphere achieves maximal

discrimination among instances. Our formulation and so-

lution is not only more principled in theory than closely re-

lated unsupervised instance discrimination algorithms, but

also better in practice in terms of classification accuracy,

convergence rate, and feature transferability. We also show

that our learned feature can be very useful for vision-based

reinforcement learning tasks to improve sample efficiency.

1. Introduction

Supervised learning with deep neural nets (DNN) has

made a significant progress in various computer vision

tasks [5, 3]. The features learned often implicitly capture

visual similarities among the input data. As supervised

learning methods require labeled data and obtaining big la-

beled data is labor and time intensive, unsupervised learning

methods that can learn from unlabeled data have received

wide attention recently [14, 1, 4].

Our approach towards unsupervised learning from visual

data is inspired by the fact that learned feature representa-

tions on deep neural networks for image classification tasks

usually implicitly cluster images of the similar classes to-

gether. Similar images of different classes can sometimes

be mis-classified due to their visual similarity [14]. In-

tuitively, by mapping images to a low dimensional hyper-

sphere and forcing the distance between features of all im-

ages to be as far as possible, the learned feature representa-

tion will cluster similar images together while putting dis-

tinctive images apart.

Similar ideas have been explored in previous works [14,

Figure 1: Visualization of learned low dimensional feature

representations on CIFAR10 dataset. Left: ours; Right:

Wu et al. [14]. The visualization is done using t-SNE di-

mension reduction [9]. Different colors indicate different

image classes.

1, 2]. In particular, Wu et al. [14] explored instance-wise

discriminative learning as the approach towards unsuper-

vised feature learning and has achieved superior results on

image classification tasks. However, the instance-wise dis-

criminative method does not guarantee that image features

will be distributed onto the low dimensional hyper-sphere

appropriately. Since the features are on a unit hyper-sphere,

euclidean distance used in their method fails to capture sim-

ilarities between features. In this work, we propose a novel

unsupervised learning method based on Riemannian opti-

mization on hypersphere. Our proposed algorithm maps

training data onto a unit hyper-sphere and then do the opti-

mization on the hypersphere. In Fig. 1 we show the compar-

ison of the learned feature representation by our proposed

approach and Wu et al. [14]. Clearly, features learned by

our method are distributed appropriately on hyper-sphere

and images of the same class are clustered together while

the features learned by Wu et al. [14] mix together for im-

ages of different classes.

2. Related Works

Unsupervised feature learning has received increasing

attention in recent years. Related approaches included

generative models such as Auto-Encoders [13], Restricted

Bolztmann Machines (RBMs) [12], generative adversarial

networks [4] and Variational Auto-Encoders [6]; met-

ric learning models, for example, Wu et al. [14] gives a
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non-parametric instance discrimination based unsupervised

learning method.

3. Unsupervised Learning on A Hypersphere

Our model can be formulated as a neural network that

takes in images and outputs a low dimensional vector rep-

resentation. The optimization goal is to maximize the fea-

ture difference between different image instances as much

as possible. Specifically, our model has two sets of pa-

rameters: one is the parametric feature mapping function

f(x; θ) that takes an image to a point on a unit hyper-

sphere (denoted by Sm), and the other is the non-parametric

feature memory bank V that stores the consolidated rep-

resentation for all the training instances. Let {xi}
n
i=1 be

the set of images. We use fi = f(xi; θ) to denote the

feature corresponds to image xi. As each fi lies on Sm,

‖fi‖ = 1, for all xi. For a self-contained model deriva-

tion, we first review the Riemannian geometry of the hy-

persphere Sm. Tangent space: TpS
m at p ∈ Sm is

defined by TpS
m =

{

u ∈ Rm+1|utp = 0
}

.Riemannian

metric: Given p ∈ Sm and u,v ∈ TpS
m, the Rieman-

nian metric gp : TpS
m × TpS

m → R is (u,v) 7→ utv

Note that this is the induced metric from the Euclidean

metric on the ambient space Rm+1. Geodesic distance:

The geodesic distance on Sm induced by the above Rie-

mannian metric is d (p,q) = arccos (ptq). where p,q ∈
Sm. Riemannian exponential map: Given p ∈ Sm and

u ∈ TpS
m, the Riemannian exponential map, Expp (u)

is: Expp (u) = cos (‖u‖)p + sin (‖u‖) u
‖u‖ Riemannian

inverse exponential map: Given p ∈ Sm, let Br (p) =
{q ∈ Sm|d (p,q) < r} be the geodesic ball of radius r cen-

tered at p. If r < π/2, then inside Br (p), Expp is a diffeo-

morphism and hence has an inverse. The inverse exponen-

tial map is given by: Exp
−1
p (q) = θ

sin(θ) (q− p cos(θ)) ,

where, θ = d(p,q) and q ∈ Br (p) ⊂ Sm. Note

that r is the injectivity radius of Sm at p. With image x
mapped to feature f(x; θ), the probability of x as an ob-

servation of instance class vi in memory depends on the

distance between x and vi and is given by: P (x; θ, V ) =
exp(−d2(f(x;θ),vi)/T )∑

n
j=1

exp(−d2(f(x;θ),vj)/T ) , where, T is the tunable hyper-

parameter. Observe that the key difference between the for-

mulation of [14] and our is that in our case, the probabil-

ity depends on the arc cosine distance while the probabil-

ity in [14] depends on the cosine similarity. Assume that

x1, · · · , xn are i.i.d. samples. The joint probability of draw-

ing samples x1, · · · , xn is given by:

P (x1, . . . , xn; θ, V ) =
n
∏

i=1

P (xi; θ, V )

=
n
∏

i=1

exp(−d2(fi,vi)/T )
∑n

j=1 exp(−d2(fi,vj)/T )
. (1)

The optimal feature mapping θ∗ and visual memory V ∗
should be obtained by maximizing the above likelihood or

equivalently minimizing the negative log likelihood ℓ(θ, V )
as given below:

(θ∗, V ∗) = argmax
θ,V

P (x1, . . . , xn; θ, V )

= argmin
θ,V

ℓ(θ, V )

ℓ(θ, V ) = − logP (x1, . . . , xn; θ, V )

=

n
∑

i=1



d2(fi,vi)/T + log





n
∑

j=1

exp(−d2(fi,vj)/T )







 .

Minimizing the objective function ℓ(θ, V ): Now, we

give the steps to optimize the objective function ℓ. We

will use SGD to learn θ. As each column of V lies on

Sm, we will use Riemannian stochastic gradient descent

(SGD) to optimize {vi}. Notice that although we have used

Jensen’s inequality to lower bound the objective function,

we have minimized the original objective function instead

of the lower bound. In contrast to the method by [14], our

method has the flexibility to learn both the parameters (θ) as

well as the memory bank (V ). And we will emperically see

that this gives better feature learning. By taking gradient of

ℓ(θ, V ) with respect to vi, we get:

∂ℓ

∂vi
= −Logvi

(fi)+

n
∑

j=1

exp
(

−d2(fj ,vi)/T
)

∑n
k=1 exp (−d2(fk,vi)/T )

Logvi
(fj) (2)

Now we state and prove some propositions that we will need

to show the convergence of the Riemannian SGD.

3.1. kNearest Neighbor Classifiers

In order to perform classification at the testing time, we

use k nearest neighbor (k-NN) method. Namely, we cal-

culate the similarity between the input instance’s feature

vector fθ(x) and all other training instances {xi}
N
i=1’s fea-

ture vectors {fθ(xi)}
N
i=1: w(fθ(x), fθ(xi)) = fθ(x)

T fθ(xi).
Then we select the top k instances within the N training

data points that have the largest w(fθ(x), fθ(xi)), and then

calculate the weighted class score, where every class gets a

score S(c) =
∑k

i=1 w(fθ(x), fθ(xi))1(ci = c). Here ci is

the class label for the i-th instance. The class with the max-

imum score will be assigned as the prediction of the class

of the input testing instance.

4. Experiments

We investigate the difference between our method and

Wu et al.’s work [14] in unsupervised image classification

in terms of image classification accuracy, convergence rate
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and cross dataset generalization ability. We will introduce

the experimental set up and the dataset we use in our ex-

periments. In addition to unsupervised image classification

problems, we also evaluate the quality of the learned repre-

sentation by applying it as an initialization for a reinforce-

ment learning task and also compare with [14]. We investi-

gate whether the learned feature representation can be ben-

eficial for improving sample effeciency for general vision

based reinforcement learning tasks.

4.1. Experimental Setup

The purpose of our experiment is to investigate the fol-

lowing questions. Does our method achieve better image

classification accuracy than Wu et al. [14] within the same

number of epochs? Does our method converge faster than

Wu et al. [14]? Given the model trained, can the learned

feature extraction method be generalized to another distinct

dataset? Given the feature representation learned, is the fea-

ture representation useful for other task other than image

classification? To answer the above questions, we designed

the following evaluation experiments.

Unsupervised Image Classification. We compare with

Wu et al. [14] on unsupervised image classification task.

Since in [14] they already compared with existing unsuper-

vised learning approaches, we only need to compare with

this baseline approach. We consider network architecture

of ResNet-50 [5] for learning the low dimensional feature

representations. For both methods, the network is randomly

initialized. We consider the following datasets for this ex-

periment: the MNIST dataset [8]; the CIFAR-10 [7] dataset;

the street view house number (SVHN) dataset [11]. We use

a temperature T = 1.0 after tuning that hyperparameter.

We train the unsupervised feature learning network on these

datasets using both methods, and evaluate the accuracy on

the held-out testing datasets after every epoch. The best ac-

curacy within the first 400 epochs are compared.

Convergence Evaluation. We evaluate on MNIST,

CIFAR-10, SVHN of the convergence rate using our meth-

ods and the baseline methods to investigate whether our

method performs better than the baseline in terms of con-

vergence. We compare the convergence rate of our model

versus Wu et al. [14] by comparing the per epoch best ac-

curacy. Specifically, the best accuracy for both methods up

till epoch t are compared and plotted.

Transfer Learning. We evaluate whether the learned

feature representation can be generalizable between dif-

ferent datasets and evaluated the transfer from MNIST to

SVHN dataset, and SVHN to MNIST, as well as MNIST to

a new dataset, the FashionMNIST dataset [15]. The final

best accuracy among the first 400 epochs is obtained and

compared against Wu et al. [14]. The convergence of the

transfer learning is also evaluated.

Unsupervised Feature Learning for Deep Reinforce-

(a) (b) (c)

(d) (e) (f)

Figure 2: Results on convergence rate. (a) MNIST, (b)

CIFAR10, (c) SVHN, (d) MNIST transfer to SVHN, (e)

SVHN transfer to MNIST, (f) MNIST transfer to Fashion-

MNIST.

ment Learning. In this work, we also apply the feature to a

reinforcement learning task to help reduce sample complex-

ity in deep reinforcement learning. We focus on training a

deep Q learning policy (DQN) [10]. We first train the fea-

ture extractor with visual data collected int he simulation

environment. Then we use the feature extractor to serve as

the first several layers for the policy network and then train

the policy together with the pretrained feature extractor. To

show the improvement of sample efficiency, we compare

this with the case where the network is randomly initial-

ized. The policy network is composed of the convolutional

neural network used in [10] as a feature extractor followed

by two fully connected layers of output dimensions 512 and

na, where na is the number of discrete actions in the envi-

ronment that we evaluate.
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Figure 3: Reinforcement learning task training reward curve

for Enduro (first), Pong (second), and TORCS (third) envi-

ronment.

4.2. Results and Analysis

We show in Table 1 the results of evaluating model’s ac-

curacy on MNIST, CIFAR10 and SVHN datasets. It can
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be seen from the table that our methods outperforms Wu et

al. [14] on all three datasets, and the gap on SVHN is signif-

icant. In Figure 2’s first three sub-figures, we show the con-

vergence curve of accuracy for our method and the method

from Wu et al. [14]. Our method still outperforms Wu et

al. [14] on MNIST, CIFAR10 and SVHN, with a large gap

in SVHN dataset. In Table 2, we show the transfer learn-

ing final accuracy for both methods on MNIST, SVHN and

the Fashion MNIST dataset. To compare the transfer learn-

ing convergence rate, we show in Figure 2 the convergence

curve for both methods on all three target datasets. From

these results, it’s clear that our method outperforms Wu et

al. [14] in terms of image classification accuracy, conver-

gence rate, as well as transferability.

Table 1: Comparison of image classification accuracy on

various image classification datasets.

Method MNIST CIFAR10 SVHN

Ours 98.51% 82.53% 91.39%

[14] 97.85% 80.65% 88.84%

Table 2: Transfer Learning Results. Columns correspond to

the source dataset, and rows correspond to the target dataset.

Target\Source MNIST SVHN

MNIST (Ours) - 72.74%

SVHN (Ours) 40.63% -

FashionMNIST (Ours) 98.37% -

MNIST [14] - 71.88%

SVHN [14] 39.41% -

FashionMNIST [14] 98.21% -

Reinforcement Learnign Results. In terms of improv-

ing sample efficiency in DRL, we put in Fig. 3 the illus-

tration that our approach helps to improve the sample ef-

ficiency of vision based reinforcement learning tasks, with

comparison with Wu et al. [14].

5. Conclusion

In this work, we propose a novel manifold hypersphere

unsupervised learning method for feature representation

learning. We compared with one of the state of the art

method in this field and our results show that our method

exceeds the performance of [14] in terms of better accu-

racy, convergence rate and also transferability. Moreover,

we show by experiments in reinforcement learning that our

learned feature extractor can help to improve sample effi-

ciency in vision based reinforcement learning tasks.
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