
Accurate Visual Localization for Automotive Applications

Eli Brosh
⋆

, Matan Friedmann
⋆

, Ilan Kadar
⋆

, Lev Yitzhak Lavy
⋆

, Elad Levi
⋆

, Shmuel Rippa
⋆

,

Yair Lempert, Bruno Fernandez-Ruiz, Roei Herzig, Trevor Darrell

Nexar Inc.

Abstract

Accurate vehicle localization is a crucial step towards

building effective Vehicle-to-Vehicle networks and automo-

tive applications. Yet standard grade GPS data, such as

that provided by mobile phones, is often noisy and exhibits

significant localization errors in many urban areas. Ap-

proaches for accurate localization from imagery often rely

on structure-based techniques, and thus are limited in scale

and are expensive to compute. In this paper, we present a

scalable visual localization approach geared for real-time

performance. We propose a hybrid coarse-to-fine approach

that leverages visual and GPS location cues. Our solu-

tion uses a self-supervised approach to learn a compact

road image representation. This representation enables effi-

cient visual retrieval and provides coarse localization cues,

which are fused with vehicle ego-motion to obtain high ac-

curacy location estimates. As a benchmark to evaluate the

performance of our visual localization approach, we intro-

duce a new large-scale driving dataset based on video and

GPS data obtained from a large-scale network of connected

dash-cams. Our experiments confirm that our approach is

highly effective in challenging urban environments, reduc-

ing localization error by an order of magnitude.

1. Introduction

Robust and accurate vehicle localization plays a key role

in building safety applications based on Vehicle-to-Vehicle

(V2V) networks. A V2V network allows vehicles to com-

municate with each other and to share their location and

state, thus creating a 360-degree ’awareness’ of other ve-

hicles in proximity that goes beyond the line of sight. Ac-

cording to the National Highway Traffic Safety Adminis-

tration (NHTS), such a V2V network offers the promise

to significantly reduce crashes, fatalities, and improve traf-

fic congestion [1]. The increasingly ubiquitous presence of

smartphones and dashcams, with embedded GPS and cam-

era sensors as well as efficient data connectivity, provides

⋆Equal Contribution.

Figure 1. Method Overview: Given a video stream of images, a

hybrid visual search and ego-motion approach is applied to lever-

age both image representation and temporal information. The VL-

GIST representation is applied to provide a coarse localization fix

of the image, while the visual ego-motion is used to to estimate the

vehicle’s motion between consecutive video images. Fusing vehi-

cle dynamics with the coarse location fixes further regularizes the

localization error and yields a high accuracy location data stream.

an opportunity to implement a cost-effective V2V ”Ground

Traffic Control Network”. Such a platform would facili-

tate cooperative collision avoidance by providing advance

V2V warnings, e.g., intersection movement assist to warn

a driver when it is not safe to enter an intersection due to

high collision probability with other vehicles. While GPS

is widely used for navigation systems, its localization accu-

racy poses a critical challenge for proper operation of V2V

safety networks. In some areas such as urban canyons envi-

ronments, GPS signals are often blocked or partially avail-

able due to high-rise buildings [19]. In Fig. 2 we show

the accuracy of GPS readings from crowd-sourced data of

over 250K driving hours taken in New York City (NYC).

The figure demonstrates that the number of rides that suffer

from urban canyon effects resulting in GPS errors of 10 m

or above is 40%, and that of 20 meters is 20%.

In this work, we propose a hybrid coarse-to-fine ap-

proach for accurate vehicle localization in urban environ-

ments based on visual and GPS cues. Fig. 1 shows a



high level overview of the proposed solution1. First, a

self-supervised approach is applied on a large-scale driv-

ing dataset to learn a compact representation, called Visual-

Localization-GIST (VL-GIST). The representation preserves

the geo-location distances between road images to facilitate

robust and efficient coarse image-based localization. Then,

given a driving video stream, a hybrid visual search and

ego-motion approach is applied by matching the extracted

descriptor in the low embedded space against a restricted set

of relevant geo-tagged images to provide a coarse localiza-

tion fix; the coarse fix is fused with the vehicle ego-motion

to regularize localization errors and obtain a high accuracy

location stream.

To evaluate our model on realistic driving data, we in-

troduce a challenging dataset based on real-world dashcam

and GPS data. We collect millions of images from more

than 5 million rides, focusing on the area of NYC. Our ex-

perimental results show that an efficient visual search with

the VL-GIST descriptor can reduce a mobile phone’s GPS

location error from 50 meters (often measured in urban ar-

eas) to under 10 meters, and that incorporating visual ego-

motion further reduces the error to below 5 meters.

Our contributions are summarized as follows:

• We perform large-scale analysis of GPS quality in

urban areas, and generate a comprehensive dataset

for benchmarking vehicle localization in such areas

(Sec. 3).

• We introduce a scalable approach for accurate and ef-

ficient localization that is geared for real-time perfor-

mance (Sec. 4).

• We conduct extensive evaluation of our approach in

challenging urban environments and demonstrate an

order of magnitude reduction in localization error

(Sec. 5).

2. Related Work

SfM and Visual Ego-Motion. The Structure from Mo-

tion (SfM) approach (e.g., [33]) uses a 3D scene model of

the world constructed from the geometrical relationship of

overlapping images. For a given query image, 2D-3D corre-

spondences are established using descriptor matching (e.g.,

SIFT [21]). These matches are then used to estimate the

camera pose. This approach is not always robust, espe-

cially when the query images are taken under significantly

different conditions compared to the database images, or

on straight roads that are not close to intersections and do

not have enough perpendicular visual queues; the compu-

tational demands of this method mean it is not presently

feasible to scale to millions of cars. Visual ego-motion, or

1Part of Figure 1 was designed by macrovector/Freepik.

Figure 2. Accuracy of GPS data crowd-sourced from over 250K

driving hours in NYC. The percentage of rides that experience

GPS errors of 10 meters or more (likely due to urban canyons ef-

fects) is 40%, and that of 20 meters or more is 20%.

visual odometry, is a well studied topic [32]. Traditional

methods use a complex pipeline including many steps such

as feature extraction, feature matching, motion estimation,

local optimisation, etc which require a great deal of manual

tuning. Early attempts of solving this problem using deep

learning techniques still involved complex additional steps

such as computing dense optical flow [9] or using SfM to

label the data [17] to work. Wang at al [44] were the first

to suggest an end-to-end approach using a recurrent neural

network and show competitive performance to state-of-the-

art methods. Other directions use stereo images [46, 18], an

approach that is not viable to our setup.

Retrieval Approaches Many approaches use image re-

trieval techniques to find the most relevant database images

for each query image [6, 27]. These assume that a database

of geo-tagged reference images is provided. Given this

database, they estimate the position of a new query image

by searching for a matching image from the database. The

leading methods for image retrieval operate by construct-

ing a vector, called descriptor, constructed in such a way

that the distance between descriptors of similar images is

smaller than the distance between descriptors correspond-



ing to distinct images. All descriptors of a large database

of images are recorded to a data base. To locate similar im-

age to a query image we compute it’s descriptor and then

get a ranked list of images from the data base ordered by

descriptors distances. Since the descriptors are often vec-

tors of high dimension, a common practice is to apply a

dimensionality reduction step of using PCA with whiten-

ing followed by L2-normalization [16]. The evolution of

descriptors for image retrieval problems are summarized in

the survey paper of Zheng et al. [47]. In urban areas this

problem is particularly difficult due to repetitive structures

[41, 14], changes over time because of change of seasons,

day and night and change in the construction elements [40]

and the existence of many dynamic objects that are not re-

lated to the landmark that is being searched for, like vehi-

cles.

Traditional Descriptors. Conventional image retrieval

techniques rely on aggregation of local descriptors with

methods based on ”bag-of-word” representations [36], vec-

tors of locally aggregated descriptors (VLAD) [15], Fisher

vectors [25] and/or GIST [10]. The practical image re-

trieval task is composed of an initial filtering task where

the descriptors in the database are ranked according to their

distance to the descriptor of the query image and a sec-

ond re-ranking phase which refines the ranking, using lo-

cal descriptors, so to reduce ambiguities and bad matches.

Such methods include query expansion [8, 7, 3] and spatial

matching [26, 35].

Descriptor Learning. In the last few years convolutions

neural networks (CNN) proved to be a powerful image rep-

resentation for various recognition tasks so several authors

have proposed the use of the activations of convolutional

layers as local features that can be aggregated into a de-

scriptor suitable for image retrieval [4, 31]. However such

approaches are not compatible with the geometric-aware

models involved in the final re-ranking stages and thus can

not compete with the state-of-the-art methods. Since we

want that the distance between two descriptors of similar

images will be smaller than the distance between descrip-

tor of two distinct images, it is natural to consider net-

work architectures developed for metric learning such as

siamese [29] or triplet [34, 43] learning networks. Arand-

jelović et al [2] propose a new training layer, NetVLAD,

that can be plugged in any CNN architecture. The ar-

chitecture mimics the classical approaches, that is local

descriptors are extracted and then pooled in an orderless

manner to finally produce a fixed size unit descriptor. A

dataset for training the network was constructed by using

the Google Street View Time allowing accessing multiple

street-level panoramic images taken at different times at

close-by spatial locations. The authors demonstrated that

NetVlad descriptor outperformed state-of-the-art learned

and not-learned descriptors on the Pittsburgh 250k [42] and

the Tokyo 24/7 [40] datasets. A further step of dimension-

ality reduction using PCA with whitening followed by L2-

normalization [16] is applied to reduce the large NetVLAD,

namely 16k or 32k, descriptor to a size of 4096. The R-

MAC network of Tiolias et al. [39] was develop to allow ap-

plying geometric aware methods for re-ranking and it does

so by producing a global image representation by aggregat-

ing the activation features of a CNN in a fixed layout of

spatial regions, followed by whitening with PCA. The de-

scriptor produced by R-MAC is of compact, between 256

and 512, dimension. Gordo at al. [11, 12] proposed using

a triplet loss to train the R-MAC architecture and a block

for learning the pooling mechanism of the R-MAC descrip-

tor. The network was trained on a large public dataset [5].

The dataset is very noisy and thus geometric filtering with

SIFT keypoint detection were used to find positive exam-

ples. The authors demonstrated that this descriptor outper-

forms global descriptors and more complex systems deploy-

ing geometric verification and keypoint matching. Raden-

ović et al [29, 30] proposed using a siamease network with

the contrastive loss. The positive and negative examples are

selected in an unsupervised manner, by clustering a large

collection of unlabeled images, using state-of-the-art SfM

system [33]. Since SfM system use strict geometrical veri-

fication procedures, the 3D models reliably guide the selec-

tion of matching and non-matching pairs. Zho et al. [48]

proposed and attention-based pyramid aggregation network

(APANet) consisting of a spatial pyramid pooling block, at-

tention block and sum pooling block. They also proposed a

fully unsupervised dimensioanlity and whitenings solution

referred to as power PCA. The dataset used for training is

the same as for NetVLAD [2].

3. Datasets

Data collection. Our data was collected from a large-

scale deployment of connected dashcams. Each vehicle is

equipped with a dashacam and a companion smartphone

app that continuously captures and uploads sensor data such

as GPS readings. Overall, the vehicles collected more than

5 million rides in the NYC area. From these rides, we

use more than 200 million images for the image similar-

ity dataset and more than 1000 video sequences for the ego

motion dataset2.

3.1. Image Similarity Dataset

From the complete image similarity dataset we collect

a subset of geo-tagged images for which the reported ac-

curacy of the GPS signal is better than 10 meters. We

found that at nearly all places in NYC, excluding tunnels,

we have enough images with the required GPS accuracy.

2The publicly available dataset can be found at:

https://github.com/getnexar/Nexar-Visual-Localization



Figure 3. Example images captured from the same cell. Each

square cell of 10x10 meters consist of large-set of images acquired

with different weather and lighting conditions as well as different

dynamic objects, e.g., vehicles or pedestrians. This dataset allows

generating models that are invariant to weather, lightning, dynamic

objects and addition or removal of construction elements.

In fact, at least 10% of the collected images have the re-

quired accuracy. Thus each square cell of 10x10 meters

contains many images acquired with different weather and

lighting conditions, different dynamic objects, e.g. vehicles

or pedestrians, and different time, as demonstrated in Fig. 3.

This dataset allows generating models that are invariant to

weather, lightning, dynamic objects and addition or removal

of construction elements.

Images taken by dash-cams are frames taken from a

video. Each video, in turn is a part of a full ride of a single

vehicle. Since there is a large correlation between images

of a single video or ride, we save also the ride ID that is

further used for triplet sampling.

The dataset is organized in a spatial data-structure that

allows fast access to neighbouring images of each image in

the data where we interpret neighbouring relation as being

close geographically, and also in orientation.

3.2. Video Dataset with SubMeter Location Accu
racy

In order obtain a benchmark with accurate location se-

quences of meter-level accuracy, we created a route anno-

tation tool, which shows side-by-side the route on an aerial

imagery (as a series of raw GPS points) and the correspond-

ing driving video. A human annotator can align the ground

view video with the overhead (aerial) view, and then correct

the location of route points accordingly.

Since this is a complex annotation task, we generated a

Figure 4. We created a route annotation tool which facilities loca-

tion corrections by aligning a route on a aerial map with a corre-

sponding driving video. The image shows a comparison between

the manually annotated location series (green dots) and the raw

GPS data (red route).

test set for annotators and selected the top 3 experts. By

checking the consistency of the route corrections across the

different annotations, we observe a localization error with a

mean of one meter in urban areas, and up to four meters on

highways.

Fig. 4 shows an example ride with a comparison between

the manually annotated location series and the raw GPS

data.

4. Method

We improve the raw location data using a hybrid ap-

proach consisting of visual similarity to obtain coarse lo-

cation fixes (i.e., of 10 meter accuracy) and further refine-

ment and regularization using visual ego-motion to yield an

accurate location stream (i.e., of 5 meter accuracy).

4.1. SelfSupervised Learning from Triplets

The model structure is a deep CNN followed by three

small fully connected layers where the final layer is L2 nor-

malized. The network is trained in a self-supervised manner

with a variant of the triplet loss: Let f(x) ∈ Rd be the out-

put of the embedding layer for an image x and let xa, xp, xn

be the anchor, positive and negative images. Then the triplet

loss is just the cross entropy loss of

softmax((Dp, Dn))

where Dp = ||f(xa)−f(xp)||2, the positive distance, is the

distance between the embedding of the anchor image and

the embedding of the positive image and Dn = ||f(xa) −
f(xn)|| is the negative distance.

In order to effectively train the model with the triplet loss

to produce a good embedding, we utilize our image similar-



ity dataset as a source for our triplet sampling. In particular

we produce three triplet generators:

• Regular triplets. This generator produces triples in

which the anchor image is close to the positive image

and far from the negative image. The anchor image is

randomly sampled from our dataset, the positive image

is sampled from all images that are close up to 10 me-

ters to the anchor image and are oriented in the same

direction (namely, the difference in the GPS heading

of the two images is up to 20 degrees) while the nega-

tive image is sampled from all images that are far away,

say more than 500 meters from the anchor image. Spe-

cial care is taken to assure than none of the images are

from the same driving video. Two examples of triplets

sampled by this sampler are shown in Fig. 5 (a)-(b).

• Random hard negative triplets. This generator pro-

duces anchor and positive images in the same way as

the regular triplet sampler but with harder negatives.

More precisely, the negative image is sampled from

images that are at distance between 20 to 30 meters

from the anchor and roughly in the same orientation.

Examples for such triples are shown in Fig. 5 (e)-(f).

• Video sampler. We utilize the inherent spatial order-

ing between consecutive images in a video. First, we

sample a video from a collection of driving videos and

then sample an image from this video as an anchor.

The positive image is the closest frame to the anchor

provided that it’s distance from the anchor is less than

10 meters. The negative image is the closest image to

the anchor provided that it’s distance from the anchor

is between 25 and 50 meters. As before, a triplet is se-

lected only if the anchor, positive and negative images

have roughly the same orientation. While this sam-

pling procedure generate triplets that are highly cor-

related it is still useful, on top of the other samplers,

since we have high confidence in the spatial ordering

and the relevancy of the negative example as shown in

Fig. 5 (c)-(d).

During training we randomly sample one of the above gen-

erators and use it to produce the next triplet to train. This

sampling methods guarantees that the embedding layer will

be invariant to weather, illumination and dynamic objects

such as vehicles or pedestrians. The video sampler and ran-

dom hard negative samplers refine the embedding so that

the descriptors produced reflect the notion of distance to the

query image.

4.2. Efficient Retrieval Inference

The visual retrieval task boils down to comparing the

descriptor of the query image to the database to obtain a

Figure 5. Examples of the three types of triplets. In each row, the

leftmost two images are matching in location and heading, while

the rightmost frame is the negative example of that triplet. (a)

Regular triplets showing the Brooklyn Bridge from two different

rides compared with a randomly sampled street. (b) Another reg-

ular triplet example, showing invariance to weather and lighting

conditions. (c)+(d) Ride triplet showing two close frames and one

negative frame from the same ride. (e)+(f) Hard negative triplet

showing invariance to lighting conditions and and camera orienta-

tion.

ranked list of images form the database sorted by descrip-

tors distances. A weighted average of the GPS coordinates

of the k’th closest images, in descriptor space, yield a cor-

rected GPS signal for the query image.

There are several factors contributing to the performance

of our retrieval pipeline: Restricting the number of images

in the database to be ranked, speeding up the ranking pro-

cedure by using small descriptors and eliminating the need

for additional re-ranking procedures.

First, we have a geo-tagged image and thus we do not

need to search the whole database for matching images.

Thus we restrict our search only in an area of modest size

around the query image according to the GPS accuracy. Be-

cause we rank images only in a small proximity to the query

image, we discovered that we do not need any sort of re-

ranking technique. The efficiency of the ranking procedure

increases as the dimension of the descriptor decreases. We

use a very simple triplet network [34], namely a deep CNN,

followed by L2 normalization and three fully connected lay-



Figure 6. Localization error of the ego-motion prediction as a func-

tion of input location noise error in meters. These measurements

were done by adding normally distributed noise to the ground

truth at varying standard deviations, applying ego-motion, and ex-

tracting the regularized coordinates’ error estimation. Using ego-

motion yields a 2x-3x improvement in localization error.

ers that produce a small, 30 dimensional, embedding vector.

This is in contrast to existing methods, see [22] which com-

pares many methods, that report on descriptor dimensions

in the range between 128 and 32k.

4.3. Visual EgoMotion Estimation

The visual retrieval approach provides coarse localiza-

tion fixes with a noise distribution, as captured by the con-

fidence of location prediction. We use visual ego-motion

to reduce this noise term. That is, we estimate the vehi-

cle’s motion between consecutive video frames, and fuse

the vehicle dynamics with the coarse fixes to regularize the

location coordinates, yielding a (high-rate) data stream with

lower localization error.

Vehicle model. We follow Ackerman’s steering

model [23] and capture the kinematic motion of the vehicle

between two time steps by two parameters: (a) a rotation,

occurring around the center motion of the rear part of the

vehicle and (b) a forward translation after the rotation.

We use an end-to-end learning approach for ego-motion

estimation, shown by recent work to be robust to image

anomalies and imperfections [9]. We train a deep neural

network, composed of CNN based feature extraction, that

observes a sequences of images and aims to predict the mo-

tion of the vehicle. It takes as an input a monocular image

sequence. At each time step, the two frames are resized,

stacked together, and fed into the CNN to produce an ef-

fective feature for ego-motion estimation. The convolution

layers are followed by two dense layers, and then split to

two heads. Each head is composed of a 100 dimensional

dense layer connected to a one dimensional dense layer.

The network is trained using accurate location supervisory

sequences (see Sec. 3) with a combined loss: Let x be the

stacked images, and let t and r be the corresponding ground

truth values of translation and rotation. The loss term is then

defined as

1

2
|f t(x)− t|+

1

2
|fr(x)− r|

where f t(x) ∈ R and fr(x) ∈ R are the predicted transla-

tion and rotation values. We minimize the mean of the loss

term across the whole training dataset.

To compute the confidence of the ego-motion estimation,

we split the values range of each ego motion parameter into

multiple bins, and estimate the probability of a parameter to

fall within a bin. Aggregating bin values around the mean

yields an error range for the ego-motion predictions.

4.4. Fusion Algorithm

We use a Kalman filter to compute high accuracy loca-

tion predictions. The state of the filter represents the 2D lo-

cation of the vehicle in a cartesian coordinate system. The

measurement inputs are the speed (translation divided by

the inter-frame time) and steering of the vehicle, as com-

puted by our ego-motion model; and the coarse 2D pose

fixes from visual retrieval, each input with its noise esti-

mation. With each new ego-motion estimation, we modify

the vehicle’s 2D location according to the new rotation and

translation values. When a new coarse pose measurement is

available, we fuse it with the current state to compute an up-

dated location along with its uncertainty. Our Kalman filter

formulation is similar to that found in Section III-B of [28]

with minor adjustments: we replace the pose measurements

from the map matching (in [28]) by pose measurements

from visual retrieval (Sec. 4.2), and the measurements from

visual odometry by those from ego-motion (Sec. 4.3).

5. Experiments

5.1. Implementation Details

Visual retrieval model details. We selected a ResNet50

[13] backbone and trained the network using the SGD opti-

mizer with the 1cycle policy procedure described in [38, 37]

with a maximal learning rate of 0.003, minimum momen-

tum of 0.85, maximum momentum of 0.95 and weight de-

cay of 1e-6.

To predict the location of an image, we first set a thresh-

old by looking at the distribution of the distances in the VL-

GIST feature space, of all the image tuples in the validation

set which their location is less than 10 meter (we remove

outlier samples). After getting the threshold we then pre-

dict the location of the queried image by a weighted aver-

age of the location of all the key-frames, which their dis-

tance in the image VL-GIST feature space to the quarried,



Figure 7. Distribution of the location of the key-frames in the test

area. Key-frames were chosen to cover the area with an approx-

imately uniform distribution along the drivable paths to avoid bi-

ases.

is smaller than the threshold. The weights are determine by

the ratio between the key-frame distance and the sum of the

distances in the feature space. We predict the location only

in cases where there are at least 5 neighbors that passed the

threshold. We extract also a confidence score according to

the distribution of the location of the neighbors.

Ego-motion model details. To obtain an effi-

cient implementation geared for running on mobile de-

vices, we use a simple 8-layer CNN configuration with

2x2 fixed size filters and a layer depth sequence of

[20, 30, 40, 60, 80, 120, 160, 240]. We train the model using

an SGD optimizer with a learning rate of 0.001 and a mo-

mentum of 0.9. We use 1000 driving videos (from roughly

1000 different vehicles) as training set and 100 videos as

test set. Each video is approximately 40 seconds in length

and has a resolution of 1280 × 720. We train the ego-

motion model with two consecutive frames, each resized

to 256x256. The frames are taken at various time intervals

ranging from 33 ms to 1 sec. The approach not only signifi-

cantly augments the training data but also enables the model

to support dynamic infer rates, e.g., reducing computation

overhead for static scenes when the vehicle is idle.

5.2. Evaluation Methodology and Results

5.2.1 Visual retrieval for coarse localization

To estimate the visual localization quality we select an area

of 750×280 square meters from the Image similarity dataset

Accuracy ME Recall

<5m <10m <15m

GPS-NN 0.09 0.24 0.39 21.5m 0.97

VL-GIST 0.20 0.41 0.61 13.5m 0.48

VL-GIST* 0.30 0.63 0.82 9.7m 0.52

Table 1. Comparison between the three methods with 50 meter

max GPS error.

Accuracy ME Recall

<5m <10m <15m

GPS-NN 0 0.01 0.02 82.7m 1

VL-GIST 0.12 0.32 0.48 23.1m 0.42

VL-GIST* 0.23 0.52 0.74 15.4m 0.41

Table 2. Comparison between the three methods with 200 meter

max GPS error.

(see Sec. 3.1). We hold out all the images from the test area

(i.e., the triplet network was not trained on images from this

area). We call these images key-frames (see Fig. 7).

We set a maximal GPS error threshold (varies between

50-200 meter according to the experiment). For each key-

frame, we randomly distorted the GPS location up to the

maximal GPS error. Then we predict the location of the

image, according to its VL-GIST nearest neighbors in the

radius of the maximal GPS error, and compare it the the

GPS location of the image.

We compare the features extracted from the triplet net-

work (VL-GIST) and the triplet network with the refine-

ment triplets (VL-GIST*). Since image locations are not

evenly distributed in our data, we also compare against

naive baseline approach, called GPS-NN, of averaging the

10 nearest neighbors with respect to the geo-location dis-

tance.

For each method we compare between the percentage of

the errors that were less than 5,10 and 15 meters. We also

compare the mean error and the recall rate for each method.

As can be seen from Tab. 1 and Tab. 2, even when look-

ing at maximal error of 50 meter, the road VL-GIST dis-

tance preform much better comparing to the geographical

distance. The experiments also demonstrate the value of

training the networks with the refinements triplets and the

affect on the final results.

5.2.2 Visual ego-motion for localization refinement

To estimate the visual ego-motion refinement quality, we

add to the Ground-Truth (GT) location a random noise with

a normal distributions, where the standard deviation varies

between 3 meter to 30 meter. We then fixed the distorted

location using the ego-motion and estimated the mean error

relative to the GT.

Running this test on various location noise values, as can

be seen in Fig. 6, we find that within an acceptable error

range of up to 30 meters, the ego-motion fusion correction

yields an approximate factor of 2-3 in improvement of the

localization error.



Figure 8. Visualization of the entire process on three example

rides. Green dots show the ground truth coordinates, red dots show

the raw GPS coordinates, orange dots show the VL-GIST predic-

tion, and yellow dots show the regularized final coordinates.

Moreover, we compare in Fig. 9 the original raw GPS co-

ordinates’ error distribution with the localization error dis-

tribution of the regularized coordinates, when combining

the results from both the visual retrieval component and the

ego-motion component. The normalized distributions show

that we were able to reduce the variance in the localization

error, and lower the mean error to be distributed compactly

Figure 9. Comparison of the normalized distributions of the raw

and regularized localization errors. The raw reported errors (blue)

are aggregated from 250K different rides, and are spread out over

a wide range, with under 1% beyond the 35m error range. After

regularizing the coordinates by fusing VL-GIST coarse correction

with the ego-motion output, the distribution of localization errors

becomes much more compact and can be approximated to a nor-

mal distribution around 5 meters.

around 5 meters.

Fig. 8 shows the visualization of the entire process on

three example rides in NYC.

6. Conclusion

In this work, we address the challenge of vehicle lo-

calization and a propose a scalable approach for accurate

and efficient visual localization geared for real time perfor-

mance.

We first perform a large-scale analysis of GPS quality in

urban areas, and generate comprehensive dataset for bench-

marking vehicle localization in these areas. We then intro-

duce a hybrid coarse-to-fine approach for accurate vehicle

localization in urban environments based on efficient visual

search and ego-motion. A low-dimensional global descrip-

tor is introduced for fast retrieval of coarse localization,

which is then fused with the vehicle ego-motion to regular-

ize localization error and to provide high accuracy localiza-

tion stream. Next, we introduce a large-scale dataset based

on real-world dashcam and GPS data to evaluate our model

on realistic driving data. Finally, we conduct an extensive

evaluation of our approach in challenging urban environ-

ments and demonstrate a order of magnitude reduction in

localization error.

In future work we would like to explore improvements

in the method’s efficiency by reducing the dimension of the

VL-GIST descriptor. For that, we can utilize our triplet

sampling policy within any triplet architecture suggested for

deep hashing (e.g., [24, 45, 20]). In addition, we would like

to study the relationship between the localization perfor-

mance and the amount of visual data that is used for learning

the VL-GIST representation.
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