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Abstract

RGB-D indoor mapping has been an active research

topic in the last decade with the advance of depth sensors.

However, despite the great success of deep learning tech-

niques on various problems, similar approaches for SLAM

have not been much addressed yet. In this work, an RGB-

D SLAM system using a deep learning approach for map-

ping indoor environments is proposed. A pre-trained CNN

model with multiple random recursive structures is utilized

to acquire deep features in an efficient way with no need

for training. Deep features present strong representations

from color frames and enable better data association. To

increase computational efficiency, deep feature vectors are

considered as points in a high dimensional space and in-

dexed in a priority search k-means tree. The search pre-

cision is improved by employing an adaptive mechanism.

For motion estimation, a sparse feature based approach is

adopted by employing a robust keypoint detector and de-

scriptor combination. The system is assessed on TUM RGB-

D benchmark using the sequences recorded in medium and

large sized environments. The experimental results demon-

strate the accuracy and robustness of the proposed system

over the state-of-the-art, especially in large sequences.

1. Introduction

Simultaneous Localization and Mapping (SLAM) plays

a key role in many robotic applications such as autonomous

navigation, obstacle avoidance, and manipulation. In the

last decade, visual SLAM research has received a great at-

tention with the availability of commodity RGB-D cam-

eras. It seems that SLAM research will continue to pre-

serve its importance in the near future, especially with the

widespread use of autonomous robots and vehicles in daily

life.

In the recent years, deep learning techniques has led to

important advances for various machine vision tasks in-

cluding object recognition [21, 17, 45], object detection

[24, 32, 23], and semantic segmentation [25, 9, 10]. How-

Figure 1. Point cloud reconstruction of the industrial hall (fr2 en-

vironment) in TUM RGB-D Benchmark [37]

ever, despite different components of SLAM have been han-

dled by supervised learning approaches such as keypoint

extraction [41, 34], camera localization [19, 5], and place

recognition [11, 26], it has made a slower progress for more

advanced tasks, such as geometric tasks in SLAM. Consid-

ering the advancement in the last years, deep learning based

approaches do not have the same level of maturity in RGB-

D data based SLAM systems yet.

In this paper, we present an RGB-D SLAM system us-

ing deep features to map indoor environments. In the pro-

posed system, deep features of color frames are employed

to obtain frame associations. Specifically, we employ the

recent work in [7] for data association as timing is criti-

cal for the handled task. We adapt this work, which orig-

inally integrates a pre-trained CNN model with recursive

neural networks for RGB-D object recognition, to our prob-

lem. Deep features are extracted from the pre-trained CNN

model without any training or fine-tuning. In order to take

advantage of the extracted CNN features optimally, multiple

random recursive neural networks (RNN) [35] are applied

to encode these features into higher level representations

without a back-propagation algorithm. In this way, we ef-

ficiently produce optimum feature representations without

training. Then, the deep features are indexed in a priority

search k-means tree [28] to handle high dimensional data

and perform search effectively. A dynamic thresholding ap-

proach is used for outlier rejection. The system performs

frame-to-frame motion estimation by exploiting keypoint

correspondences between frames. To this end, a robust key-

point detector and a binary descriptor are used. Figure 1



Figure 2. General overview of the proposed SLAM system.

shows a point cloud reconstruction of a test environment

obtained with our system.

To the best of our knowledge, we are the first to exploit

deep features with such an indexing structure in an RGB-D

based SLAM system. The main contributions of this work

are summarized as follows:

1. We develop an RGB-D SLAM system which maps

large indoor environments consistently on CPU by uti-

lizing deep features and extends the state-of-the-art

performance for challenging large sequences.

2. Our approach for deep feature extraction has no train-

ing or fine-tuning and presents highly distinctive infor-

mation together with significant computation savings

with small feature set sizes. Consequently, this yields

to a robust SLAM system in terms of both mapping

accuracy and processing time in accordance with the

objectives of the handled task.

3. We present experimental evaluation on a large set of

sequences of TUM RGB-D benchmark [37] and com-

pare the proposed SLAM system with the state-of-the-

art systems in challenging scenes. We demonstrate that

our proposed system outperforms conventional alter-

natives especially in large-scale mapping.

2. Related Work

The major approaches in RGB-D based SLAM systems

can be divided into two groups: feature based and direct.

In feature based approaches, motion estimation relies

on extracting and matching distinctive keypoints between

frames. One of the state-of-the-art feature based SLAM

systems is ORB-SLAM2 [29], which performs all oper-

ations using ORB keypoints extracted from color frames.

Motion estimation is performed through minimizing repro-

jection error between keypoint correspondences by bundle

adjustment. Loop closure detection is performed using the

bag-of-words approach. Endres et al. [13] presents RGB-

D SLAM, which uses SIFT, SURF, and ORB keypoints.

RANSAC [14] is applied on keypoint matches to estimate

motion. Computed transformations are validated using an

environment measurement model. Loop closure candidates

are chosen from keyframes randomly. In [16], a loop clo-

sure detection approach based on visual place recognition is

proposed to extend the performance of the RGB-D SLAM

system [13]. Image histogram similarity is used to obtain

an initial group of loop closure candidates and a filtering

approach called adaptive thresholding is applied to discard

unrelated candidates. The extended system works more ef-

fectively than RGB-D SLAM [13] in larger environments.

The direct approaches utilize all frame data without ap-

plying a feature extraction step. An impressive direct ap-

proach is KinectFusion of Newcombe et al. [30], which rep-

resents the scene using a truncated signed distance function

(TSDF). The volumetric model is progressively updated by

integrating depth frames through applying ICP alignment

[4] with a predicted surface. The system is limited to small

environments and works on GPUs. Kintinuous [39] extends

KinectFusion by modifying the TSDF structure in order

to move dynamically. As the camera moves, the TSDF is

shifted virtually along the trajectory to include a new area.

A point cloud that represents the previous region leaving the

TSDF is added to a triangular mesh. A bag-of-words de-

scriptor database containing SURF features is used for loop

closure detection. DVO SLAM [20] minimizes both pho-

tometric and geometric errors for motion estimation. Loop

closure detection is performed by searching the candidates

metrically in a sphere of keyframes. An entropy based sim-

ilarity metric is used to validate the estimated transforma-

tions. MRSMap [36] estimates motion by registering multi-

resolution surfel maps. The surfels are associated and the

transformation that maximizes the matching likelihood is

estimated. Loop closures are searched randomly and match-

ing likelihood between key views are used to determine sim-

ilarity. Whelan et al. proposes ElasticFusion [40], which



Figure 3. Structure of deep feature extraction mechanism.

uses a deformation graph to construct surfel based repre-

sentations of room sized environments. In their system, re-

cently observed parts of the model are labeled as active and

tracking is performed by registering the current frame with

the active area. Loop closure detection is performed using

a fern encoding approach.

In comparison with conventional approaches that deal

with handcrafted features and photometric constraints, deep

learning approaches have been demonstrated as an effective

solution in many visual mapping systems (e.g. [38, 31, 18,

44, 43]). CNN-SLAM [38] integrates predicted depth by

convolutional neural networks into a monocular SLAM sys-

tem. MapNet [18] builds a 2.5D spatial memory represen-

tation of the environment using recurrent neural networks.

Parisotto et al. [31] estimates local poses with CNNs. Neu-

ral SLAM [43] employs an external memory and uses deep

reinforcement learning to update pose beliefs. DeepTAM

[44] performs camera tracking using an encoder-decoder

architecture. In this respect, different from the abovemen-

tioned SLAM systems, we propose to use deep features of

color frames in an indexing mechanism, in conjunction with

sparse keypoint based motion estimation. The experimen-

tal evaluation reveals that our deep feature based RGB-D

SLAM approach improves the mapping performance. The

remaining sections explain the system components in detail.

3. System Structure

We use a pose graph that contains a node for each frame

in the proposed system. Motion estimation is performed

by extracting and matching keypoints between frames. A

deep feature learning approach is employed for data asso-

ciation. Deep features extracted from color frames are in-

dexed and searched through an efficient data structure. Out-

lier elimination from loop closure candidates are performed

by a dynamic approach called adaptive thresholding [16].

The graph is optimized after processing all frames and the

map is constructed using the estimated trajectory. Figure 2

shows the overall system structure.

3.1. Camera Tracking

In order to track the camera, pairwise transformations

between successive frames are computed by utilizing sparse

keypoints on color frames. CenSurE detector [1] and

FREAK descriptor [2], which together is determined as the

most successful combination in [15], are used for keypoint

extraction. 3D keypoint coordinates are computed using

the related depth frames. While keypoints are matched be-

tween frames according to the Hamming distance, the ra-

tio approach of Lowe [27] is employed to filter ambiguous

matches. After finding 3D keypoint correspondences be-

tween frames, RANSAC [14] is used to estimate the trans-

formation through applying singular value decomposition

in each iteration as in [3]. In this way, odometry estimation

is performed by applying this procedure to each incoming

frame with a number of most recent frames (predecessors).

The camera is tracked by estimating the transformations be-

tween the incoming frame and the predecessors, and insert-

ing the odometry edges into the graph between the sequen-

tial nodes.

3.2. Deep Feature Extraction

In the problem we deal with, it is important both ac-

quiring effective features in a fast way and having a lower-

dimensional final feature vector together. To this end, we

employ a deep feature learning approach based on the re-

cent work in [7] that presents discriminative features, to ro-

bustly obtain visual relations between observations. Our ap-

proach is based on a two-step deep feature extraction struc-

ture. In the first step, a sequential pre-trained CNN model

[8] is employed as the underlying structure to extract the

middle-layer features. In the second step, these features are

reshaped and given to the multiple random recursive neural

networks (RNNs) [35] to map higher level representations.

Finally, the mid-level representations (4th and 5th layers)

are combined to produce a strong global feature vector. The

reason for particularly focusing on the mid-level representa-

tions is that these features provide a good tradeoff between



general features such as corners and edges and object se-

mantics of the trained datasets [7, 6, 33, 42]. The activation

maps obtained from the 4th and 5th layers of the CNN have

13×13×256 and 6×6×256 dimensions. We reshape these

features into the forms of 26× 26× 64 and 12× 12× 64 to

be given as inputs to the RNNs. The reason why the activa-

tion maps of the pre-trained CNN are reshaped is to reduce

the dimension of the final feature vector obtained from the

RNNs for the efficiency purpose. Then, we apply multiple

RNNs to encode higher-level inference on a tree structure.

In our approach, there is a single parent for each tree which

merges r2 number of K -dimensional leaf nodes with tied

weights where the goal is to map inputs X ∈ R
K×r×r into

a lower dimensional space p ∈ R
K . The parent vector is

computed by using a nonlinear squash function as follows:

p = f
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(1)

Here, W ∈ R
K×r

2
K is a randomly initialized weight ma-

trix and f represents a nonlinearity function which is tanh

in this work. Each tree produces a single parent with K-

dimensional feature vector in this way. For N randomly

initialized RNNs, the final feature vector size is a total of

(N ×K )-dimensional matrix. Unlike the setting in [7], we

specifically use N = 16 number of RNNs in order to ensure

the efficiency in our approach. Consequently, our deep fea-

ture extraction procedure requires no training and provides

highly efficient features in a fast way in accordance with our

purpose.

3.3. Feature Indexing

The extracted features are stored in a deep feature

database, which is composed of a priority search k-means

tree [28]. The system uses keyframes at this step because

processing the whole set of previous frames for each in-

coming frame may increase computational cost excessively.

Therefore, the database holds the deep features obtained

from the keyframes.

The priority search k-means tree structure is used to find

approximate nearest neighbors of any point by clustering

them according to distance of all dimensions. The system

holds deep feature vectors as individual points in the tree.

For example, a feature vector of a keyframe containing 1024

elements is handled as a point in 1024-dimensional space.

The system builds the priority search k-means tree incre-

mentally by decomposing the search space hierarchically

according to branching factor k (See Algorithm 1) and us-

ing the Manhattan distance. The first frame from the camera

is selected as the first keyframe, thus the tree is constructed

with deep feature vector of this keyframe as the first point.

After determining each new keyframe during mapping, the

related feature vector is added to the tree incrementally. In

order to prevent unbalancing, the tree is rebuilt when the

number of current keyframes in the tree doubles in size.

Algorithm 1: Building the priority search k-means tree

of deep feature vectors incrementally

Input : priority search k-means tree T , deep feature vector F ,

branching factor k, maximum iteration number Imax

Output: tree T with a new deep feature vector

if tree T doubles in size from last rebuild then
→ A : = F + all feature vectors in tree T

→ call ClusterPoints(A, k, Imax)

else
→ Traverse tree T and reach the leaf node having the closest

cluster to F

→ Add F to the cluster

if size of the cluster ≥ k then
→ D : = all feature vectors in the cluster

→ call ClusterPoints(D, k, Imax)

end

end

Procedure ClusterPoints(A, k, Imax)

if size of A < k then
→ create leaf node with the points in A

else
→ L : = select k points from A randomly as cluster

centers

→ assign the vectors to the closest cluster and adjust the

centers until convergence or Imax

→ C : = obtained clusters

for each cluster Ci ∈ C do
→ create non-leaf node for Ci

→ call ClusterPoints(Ci, k, Imax)

end

end

end

return priority search k-means tree

3.4. Loop Closure Detection

The system detects loop closures by performing priority

search firstly, and then eliminating outliers by applying a

filtering approach.

3.4.1 Candidate Search

For each incoming frame, loop closure candidates are re-

trieved by searching the deep feature database. It is per-

formed through traversing the priority search k-means tree

recursively. Deep feature vector of the incoming frame is

generated firstly. Then the candidates are searched in the

tree according to the Manhattan distance between feature

vectors of the current frame and the keyframes (See Algo-

rithm 2). During the tree traversal, the closest cluster is

selected in each recursion and the other nodes on the path

are inserted into a priority queue according to the distance.

The nearest neighbors in the cluster of the reached leaf node

are picked. If the cluster does not have enough points, the



closest node in the priority queue is chosen and the traversal

is continued from that node.

Algorithm 2: Loop closure candidate search in the

deep feature database

Input : priority search k-means tree T , deep feature vector F ,

number of candidates C

Output: C candidates as approximate nearest neighbors of the

feature vector F

→ Traverse T by selecting closest cluster in each recursion and

reach the leaf node

→ Insert other nodes on the path into a priority

queue according to distance

→ Pick the nearest neighbors of F in the cluster of the leaf

if leaf does not have enough feature vectors then
→ Select the closest node in the priority queue

→ Continue traversal from there

end

return C nearest neighbors of F

3.4.2 Adaptive Thresholding

False positive loop closures may reduce the trajectory ac-

curacy, since incorrect constraints between unrelated poses

can cause optimization failures. Retrieving constant num-

ber of candidates in each loop closure search may trigger

false positives by involving some unrelated keyframes (out-

liers). Thus, the adaptive thresholding technique in [16]

is employed to filter outliers dynamically. This technique

checks the keyframes in the candidate group selected in the

first stage and removes less relevant ones from the group

according to the deep feature similarity. Using the same

distance metric (Manhattan), a dynamic similarity thresh-

old is applied with respect to the closest keyframe in the

group. The lowest distance score (which belongs to the

closest keyframe) is multiplied by a thresholding factor to

compute the similarity threshold. The keyframes that are

less similar to the current frame’s than this threshold are

eliminated. Since each incoming frame has different visual

characteristics, computing the similarity threshold dynami-

cally for each candidate search allows to change the thresh-

old value adaptively. Instead of applying a fixed threshold

value, this adaptive mechanism enables the system to dis-

card a considerable number of unrelated candidates in each

loop closure search, which allows to reduce computational

cost and improves the accuracy.

3.5. Map Construction

For each incoming frame, a new node is added to the

pose graph. The edges representing odometry constraints

are inserted between the new node and the predecessor

nodes by camera tracking. At the same time, motion estima-

tion is performed between the incoming frame and each of

the loop closure candidates. In motion estimation, the same

procedure in tracking is applied through using the already

extracted and stored keypoints. Each computed transforma-

tion is verified according to the number of inlier keypoint

correspondences. The transformations having insufficient

number of inliers are discarded. For the verified transforma-

tions, the edges holding loop closure constraints are added

to the graph between the new node and the related loop clos-

ing nodes. If the new node could not be connected to any

keyframe node with the newly established edges (consid-

ering the predecessors and the loop closing nodes), the di-

rect predecessor of the incoming frame is chosen as the new

keyframe and the feature vector of this keyframe is inserted

into the deep feature database. In this way, the dense pose

graph is expanded through adding new nodes and edges.

The g2o framework [22] is employed for graph optimiza-

tion after processing all frames. Then, the environment map

is built using the obtained trajectory. A point cloud recon-

struction is generated by projecting sensor measurements at

each pose into a common coordinate system.

4. Evaluation

4.1. Experimental Setup

We assess the proposed system on the TUM RGB-D

benchmark [37]. We use fr1 and fr2 datasets of the bench-

mark, which are recorded in medium and large environ-

ments respectively and contain different environmental con-

ditions.

In our experiments, the priority search k-means tree is

built using the branching factor of k as 32 and the maximum

iteration number of Imax as 11 for the balance between pre-

cision and efficiency. The experiments are performed using

up to 20 loop closure candidates obtained from the deep

feature database. For the fr1 sequences, due to the medium-

sized environment and short trajectories, the thresholding

factor is applied as 2.0 in adaptive thresholding and low

number of predecessors such as 5 are used in tracking. For

the fr2 sequences, the predecessor count is increased up to

30 and the thresholding factor is set as 3.0, since the envi-

ronment is large and the trajectories are long. The exper-

iments are carried out on a desktop PC with an Intel Core

i7-2600 CPU at 3.40GHz and 8GB RAM.

4.2. Experimental Results

Table 1 and Table 2 show accuracy performance of the

system in terms of root mean squared absolute trajectory

error (RMS-ATE) and make comparison with the state-of-

the-art systems. The presented RMS-ATE results for the

other systems have been taken from the publications ex-

cept that of ORB-SLAM2 [29], in which only fr1/desk,

fr1/desk2, and fr1/room results are presented in the original

paper. Thus, the original implementation of ORB-SLAM2

provided by the authors has been run (using the proposed



Table 1. Comparison in terms of RMS-ATE (root mean square of absolute trajectory error in meters) on fr1 sequences of the TUM RGB-D

benchmark [37]

System fr1/360 fr1/desk fr1/desk2 fr1/floor fr1/plant fr1/room fr1/teddy

KinectFusion [30] 0.913 0.057 0.420 - 0.598 0.313 0.154

Kintinuous [39] - 0.037 0.071 - 0.047 0.075 -

ElasticFusion [40] 0.108 0.020 0.048 x 0.022 0.068 0.083

DVO SLAM [20] 0.083 0.021 0.046 - 0.028 0.053 0.034

ORB-SLAM2 [29] 0.180 0.016 0.022 x 0.014 0.047 0.047

MRSMap [36] 0.069 0.043 0.049 x 0.026 0.069 0.039

RGB-D SLAM [13] 0.079 0.026 0.043 0.035 0.091 0.087 0.076

Extended RGB-D SLAM [16] 0.075 0.022 0.034 0.032 0.068 0.054 0.060

This work - L4 0.052 0.020 0.031 0.028 0.036 0.050 0.040

This work - L5 0.056 0.020 0.028 0.028 0.037 0.049 0.039

This work - L4 + L5 0.051 0.019 0.029 0.027 0.034 0.049 0.036

L4 indicates the result of 4th layer as a feature vector, L4+L5 denotes the combination of 4th and 5th layers.

x indicates tracking failure of the cited method.

- sign means the result does not exist for the cited work.

instructions) on the other sequences for the sake of compar-

isons. Also we have reproduced the results of all the fr1

sequences for the Extended RGB-D SLAM [16].

The experimental results for the fr1 sequences in Ta-

ble 1 show that the proposed system produces drift errors

around 2 to 5 cm. For most sequences, our system competes

with ORB-SLAM2 by showing very close performances

where the differences are at the millimeter level (e.g. For

fr1/desk our result of 1.9 cm is against their 1.6 cm, while

for fr1/room our result of 4.9 cm is against their 4.7 cm).

The fr1 sequences contain scenes of a medium-sized office,

which is highly textured and thus rich in keypoints. There

are short trajectories and some sequences have small loop

closures. Therefore, odometry estimation performance af-

fects the accuracy more than loop closure detection. Con-

sequently, for a medium sized and highly textured environ-

ment such as fr1, our system is highly competitive with the

state-of-the-art systems by mostly producing the best or the

second best result after ORB-SLAM2.

The fr2 sequences have been recorded in a large indus-

trial hall. There are long trajectories and large loop closures

in most of these sequences. Moreover, they have highly

challenging conditions including missing depth data (due

to the range limit), sensor outage, textureless areas, less vi-

sual features, repetitive structures, motion blur, wrong depth

data (due to thin structures), and illumination changes.

Thus, the large fr2 sequences are convenient to evaluate

large-scale indoor mapping performance in challenging sit-

uations. In the experiments, we have used all the fr2 se-

quences traversing the industrial hall with long trajectories.

The fr2 accuracy results in Table 2 demonstrate that the pro-

posed system extends the state-of-the-art performance. The

system works robustly on these sequences, where data as-

sociation performance is crucial due to long trajectories and

sensor outage. The observed drift errors change around 13

cm - 35 cm, which are acceptable and promising results for

such a challenging environment. The trajectories estimated

by the proposed system show its robustness (see Figure 5).

For the ElasticFusion [40] and ORB-SLAM2 [29] systems,

tracking failures are observed for considerable parts of the

fr2 sequences. ORB-SLAM2 shows a promising result for

fr2/large no loop but fails tracking on other sequences. As

stated in ElasticFusion [40], the reasons behind the fr2 se-

quence failures might be sensor outage, missing depth data,

and high angular velocity of the sensor. Besides these fac-

tors, data association difficulty might be another important

reason due to repetitive structures and low texture. Like-

wise, these challenges may be the reasons why the fr2 se-

quences with large trajectories are not used for evaluation

in the most SLAM studies.

As for our deep learning approach, since we use a CNN

model trained on the ImageNet [12] as the underlying fea-

ture extractor, our focus on the intermediate layers makes

sense. Because these activation maps have been shown as

the optimal representations as stated in [7]. To this end, we

evaluate both individual middle layers and the combination

of them as well. Using the features obtained from the in-

dividual layers separately, the estimation of our approach

already gets at par with the state-of-the-art. The combina-

tion of layers 4 and 5 further enhances the performance and

outperforms the other methods for many of the sequences.

As for the fr2/p slam sequences, our approach using the fea-

tures from the 4th layer performs better than the combina-

tion of layers with a slight difference.



Table 2. Comparison in terms of RMS-ATE (root mean square of absolute trajectory error in meters) on fr2 sequences of the TUM RGB-D

benchmark [37]

System fr2/large no loop fr2/large with loop fr2/p 360 fr2/p slam fr2/p slam2 fr2/p slam3

KinectFusion [30] - - - - - -

Kintinuous [39] - - - - - -

ElasticFusion [40] x x x x x x

DVO SLAM [20] - - - - - -

ORB-SLAM2 [29] 0.337 x x x x x

MRSMap [36] - - - - - -

RGB-D SLAM [13] 0.860 3.598 0.213 0.367 0.381 0.511

Extended RGB-D SLAM [16] 0.395 0.367 0.213 0.349 0.400 0.341

This work - L4 0.208 0.359 0.152 0.310 0.157 0.267

This work - L5 0.147 0.349 0.152 0.438 0.163 0.285

This work - L4 + L5 0.135 0.344 0.148 0.380 0.160 0.272

L4 indicates the result of 4th layer as a feature vector, L4+L5 denotes the combination of 4th and 5th layers.

x indicates tracking failure of the cited method.

- sign means the result does not exist for the cited work.

fr2/p 360 : fr2/pioneer 360, fr2/p slam : fr2/pioneer slam

Figure 4. Average processing time per frame in milliseconds

4.3. Computational Performance

In Figure 4, average frame processing times are pre-

sented for each sequence using different layer features. The

proposed system runs at 5 Hz generally on a CPU. Key-

point extraction time is ∼45 ms and motion estimation cost

is ∼50 ms per frame. Deep feature extraction phase takes

∼70 ms for each frame and combining the feature layers

has a negligible cost. It is possible to obtain deep features

in a much shorter time using GPUs. However, we rather

prefer using CPUs in order to fit the general CPU based

structures of the proposed system. Loop closure search in

the deep feature database takes less than 1 ms, which is not

affected much by the size of the environment for the tested

sequences. Normally, as the map expands, more observa-

tions needs to be searched and the cost is expected to in-

crease. However, the indexing mechanism enables the sys-

tem to find visual relations fast by hierarchically clustering

deep feature vectors as points in high dimensional space.

Therefore, keyframe feature vectors can be searched with

low computational effort, even in large environments.

5. Conclusion

In this paper, we present an RGB-D SLAM system that

employs deep features and sparse motion estimation to build

3D maps of indoor environments. A robust and efficient

approach based on deep feature indexing has been devel-

oped to search observations and to find visual relations be-

tween frames. The system utilizes a unified deep feature

learning approach, which incorporates a pre-trained CNN

model with multiple random RNNs to acquire distinctive

features by reducing the feature space dimensionality. The

CNN-RNN network takes color frames as inputs and ex-

tracts highly efficient robust features. The deep feature ex-

traction stage requires no training or fine-tuning. More-

over, the applied RNNs use non-overlapping receptive fields

which make them computationally fast. The feature vec-

tors are indexed in a priority search k-means tree as indi-

vidual points, which allows to find potential visual associ-

ations fast by recursively traversing the tree. Outlier can-

didates are filtered using an efficient method called adap-

tive thresholding. The experimental results show that the

system works in medium and large indoor environments

consistently and outperforms other state-of-the-art systems

especially in challenging large environments. As a future

work, we plan to develop a GPU based implementation of

the system for real-time performance.



Figure 5. 2D plane projections of ground truth and estimated trajectories.
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