
ROADS: Randomization for Obstacle Avoidance and Driving in Simulation

Samira Pouyanfar1∗, Muneeb Saleem2, Nikhil George2, Shu-Ching Chen1

1Florida International University, Miami, FL, USA
2Electronics Research Laboratory, Volkswagen Group of America, Belmont, CA, USA

spouy001@cs.fiu.edu, mmuneebsaleem@gmail.com, nikhil.george@vw.com, chens@cs.fiu.edu,

Abstract

End-to-end deep learning has emerged as a simple and

promising approach for autonomous driving recently. How-

ever, collecting large-scale real-world data representing the

full spectrum of road scenarios and rare events remains the

main hurdle in this area. For this purpose, this paper ad-

dresses the problem of end-to-end collision-free deep driv-

ing using only simulation data. It extends the idea of do-

main randomization to bridge the reality gap between sim-

ulation and the real world. Using a range of domain ran-

domization flavors in a primitive simulation, it is shown that

a model can learn to drive in realistic environments without

seeing any real or photo-realistic images. The proposed

work dramatically reduces the need for collecting large

real-world or high-fidelity simulated datasets, along with

allowing for the creation of rare events in the simulation.

Finally, this is the first time domain randomization is used

for the application of “deep driving” which can avoid ob-

stacles. The effectiveness of the proposed method is demon-

strated with extensive experiments on both simulation and

real-world datasets1.

1. Introduction

Deep neural networks have shown promising results in

visual data analysis [13, 21, 1]. In recent years, it has also

been leveraged for different tasks in self-driving cars such

as car and pedestrian detection [30, 15], car-following be-

havior analysis [27], and controlling the steering of an au-

tomotive using raw image sensor data [3]. The latter also

known as “Deep driving” applies deep neural networks di-

rectly on raw pixels of images taken from a car’s front cam-

era (raw visual sensor data) to generate a sequence of steer-

ing commands for autonomous cars. This technique is an

end-to-end approach that eliminates the need for defining

∗This project was supported by Volkswagen Group of America, Elec-

tronics Research Lab during Samira Pouyanfar’s internship.
1Please see the color online copy of the paper. For supplementary

video see: https://youtu.be/PsTneDbqClY

expensive photorealistic
simulation

primitive simulation with
randomization

real world

Figure 1: Transferring the knowledge to the real world (cen-

ter) from a photo-realistic simulation2(left) vs a primitive

simulation (right)

modules and the interfaces between them as this is implic-

itly handled when the model is trained.

Yet, one of the main challenges in autonomous driving is

collecting large-scale data with sufficient variety represent-

ing different real-world scenarios and conditions. For in-

stance, the dataset should represent different locations, ob-

stacles, movements, lighting, etc. Collecting such a large

and heterogeneous dataset is costly and time-consuming.

Also, it is sometimes impossible to collect data for rare sce-

narios (e.g., accidents, bad weather, and unusual driver be-

havior). To alleviate this problem, simulators can be used

to quickly generate a huge amount of synthetic data. Un-

til now, simulators have been widely used in various com-

puter vision and autonomous driving applications [6, 8, 19,

9, 5, 7]. However, the question is how to effectively make

the network trained on synthetic data operate on real-world

data, in other words, how to bridge the reality gap.

The existing solutions to overcome the reality gap in-

clude generating photo-realistic worlds [7], Generative Ad-

versarial Networks (GANs) for image-to-image transla-

tion [31], and Domain Randomization (DR) [25]. The lat-

ter is the most inexpensive, yet effective technique recently

proposed by researchers to manage this challenge, mostly

in the field of robotics [22, 24]. DR aims to expose the

network to simulation’s data with a wide range of variabil-

ity (e.g., lighting, texture, objects, etc.) during the training

to address the reality gap. This simple technique is able

2This photo is taken from http://sonify.psych.gatech.

edu/research/driving/index.html

to reduce (or eliminate) the need for large-scale real-world

data since it forces the model to generate the representa-

tion invariant to the appearance of the object and environ-

ment [22]. In other words, the models trained on a wide va-

riety of object meshes and scenes can generalize to the real-

istic scenes that may be completely different from the ren-

derings generated for training [24]. DR has been recently

investigated in very few specialized object localization and

detection tasks [26, 4, 25].

This paper explores the DR potential for the applica-

tion of autonomous driving. More specifically, we inves-

tigate whether networks trained using non-realistic simula-

tion data can be used for collision-free driving in photo-

realistic simulators and to generate collision-free driving

paths in the real world. This is the first application of DR

for collision-free autonomous driving using an end-to-end

deep neural network. Different from some existing work on

DR, the collected synthetic images are not photo-realistic

and do not need to reflect real complex objects such as cars,

pedestrians, and traffic signs. In other words, the goal is to

transfer the knowledge from a primitive simulator with sim-

ple randomization techniques to a complex world instead of

using expensive photo-realistic simulation as shown in Fig-

ure 1. This technique significantly reduces the time and cost

of collecting realistic synthetic data.

Moreover, we extended DR to generate dynamic ran-

domized scenarios during the training. More specifically, a

wide range of random scenarios (events) is generated each

representing a completely new world. Each world contains

a new terrain, texture, road, light, shadow, and multiple ob-

jects with different sizes, randomly moving in various di-

rections. We call this approach “Scenario Randomization”

(SR) which not only includes randomization for static ob-

jects and their texture but also it randomizes the dynamic of

objects (e.g., moving direction of obstacles). After training

the network on those primitive simulation worlds, it is tested

on the existing realistic simulation worlds for autonomous

driving as well as two real-world image datasets including

a self-collected parking-lot dataset and Kitti. To be able to

evaluate the network in the real world without really driving

a car, the future driving path of the car is also predicted. The

network receives a single image and predicts the few next

steering angles that are later translated to an estimated path.

The extensive experiments on simulators’ data demonstrate

the effectiveness of DR in training deep neural networks

for collision-free autonomous driving in simulation and also

show interesting performance on real-world images.

The remaining of the paper is organized as follows. Sec-

tion 2 provides recent work in autonomous driving and do-

main randomization. In section 3, the proposed framework

is presented in details. Section 4 discusses the experimental

results. Finally, conclusion and future directions are given

in Section 5.

2. Related Work

This section provides an overview of existing studies in

domain adaptation and randomization, as well as the state-

of-the-art in autonomous driving.

2.1. Domain adaptation and randomization

Deep learning achievements heavily depend on the ex-

istence of large-scale datasets [13, 16]. Collecting such

datasets in real-world is expensive and laborious. In partic-

ular, for the perception modules of autonomous driving, it

is challenging to collect large-scale data for a diverse set of

scenarios (e.g., day and night, various lighting conditions,

large space of road, users movements, etc.) that would al-

low the perception systems to work robustly.

An alternative technique to collect a large amount of data

is data augmentation with label-preservation that is com-

monly used in various computer vision applications [23,

29]. However, data augmentation cannot generate a high

variability in the environment. In recent years, GANs have

also shown promising results in domain adaptation and deep

learning generalization [10, 2, 11]. Nevertheless, GAN

models still need real-world data for training which is usu-

ally expensive.

Another practical approach is utilizing simulators. Col-

lecting data from game engines and generating synthetic

data for deep learning training has attracted significant at-

tention in recent years. It is used for car and pedestrian

detection [26, 12, 17] as well as robotic grasping and mo-

tion control [24, 5, 22]. To handle the reality gap problem,

conventional approaches usually use synthetic data to train

the network and then fine tune it on the real-world data [9].

Moreover, some studies used photo-realistic synthetic im-

ages to bridge the reality gap in object and scene detec-

tion [18, 12]. However, generating photo-realistic images

is expensive and often requires laborious manual designing.

Compared to the aforementioned approaches, DR is a

relatively new topic among deep learning training meth-

ods. DR is originally used in various robotics applica-

tions to transfer deep learning from simulation to the real

world [22, 25]. CAD2RL [22] is one of the first applications

of DR that flies a quadcopter through indoor environments

using reinforcement learning. Although CAD2RL is based

on only simulation data, it is still leveraging realistic scenes

(e.g., chairs, doors, etc.) in the simulation which represent

the real world quite well. Tobin et al. [25] proposed DR

for object localization and robot manipulation. Similarly,

Bousmalis et al. [5] leveraged both domain adaptation and

randomization to transfer simulation to the real world for

robotic grasping systems. In that work, a GAN is employed

to make synthetic images more realistic. There are still few

studies exploring DR in autonomous driving applications.

In a recent work by Tremblay et al. [26], it is shown how

DR can be used for object (cars) detection and it also illus-

trates the benefit of fine-tuning deep neural networks on real

data after training on simulated data.

This work aims to use primitive and non-realistic

synthetic data to train deep neural networks performing

collision-free autonomous driving in simulation. Using

novel domain and scenario randomization, the proposed

framework is able to transfer the knowledge from a simu-

lator without any realistic component to more realistic sim-

ulated worlds and further to real-world images. It also han-

dles both static and dynamic objects in these worlds.

2.2. Endtoend learning for autonomous driving

The model architecture used in this paper is a single end-

to-end differentiable neural network. This reduces the com-

plexity otherwise associated with designing an autonomous

driving architecture where a human needs to select and de-

sign a variety of modules (e.g. perception, tracking, predic-

tion, planning etc.). It also removes the need for expensive

data annotations, as the network is trained using imitation

learning, where labels are provided directly by human driv-

ing trajectories. We call this approach “Deep Driving”.

There are multiple experiments conducted by different

groups over the years on testing Deep Driving in the real

world. Some examples using raw camera pixels to pre-

dict steering angles or path include Alvinn [20], one of the

first work in this area, and Dave, another DARPA-funded

project [14] by Lecun et al. More recently, Nvidia evalu-

ated this approach on a car in multiple road scenarios [3].

Also, Xu et al. added time dimension to this approach using

recurrent neural networks and an auxiliary loss [28].

3. Proposed Framework

The proposed framework is shown in Figure 2. As can

be seen from the figure, we generated a very simple simula-

tion world consisting of primitive object shapes and a road

using the Unity 3D game engine3. Thereafter, we apply var-

ious SR techniques on this world and collect both images

and the corresponding steering angles by driving the car in

simulation. These data are later used to train the neural net-

work and finally predict the future steering angles path on a

realistic image.

3.1. Domain randomization

In this work, we proposed three different domains

(worlds) as shown in Figure 3. The first domain is designed

for the training purpose while the other two are used only

for testing the framework. We need these three domains to

see how the model trained on Domain 1 can drive on more

realistic simulated worlds (Domain 2) and how it predicts

the path in the real-world images (Domain 3).

3https://unity.com

Domain 1: The original domain is designed using a sim-

ulator (i.e., Unity game engine). It contains a simple road

and some basic primitives that the ego-car tries to avoid as

shown in Figure 3a. This domain does not include real tex-

ture (e.g., roads with lane marking) or any real objects such

as vehicles, pedestrians, tree, bridge, and lake4. In Domain

1, we apply various DR and SR techniques and use the col-

lected data from this domain for model training. To collect

the data (images and steering angles), human users control

the ego-car in this domain to keep the car on the road while

avoiding the obstacles.

Domain 2: The next domain is also designed in the sim-

ulator but it includes more photo-realistic elements similar

to the real world. In Figure 3b, two samples of Domain 2

are shown that include realistic objects such as trees, a lake,

cars (static and dynamic), real road texture, etc. This do-

main is only utilized for the validation phase.

Domain 3: Finally, the last domain includes real-world im-

ages/video of outdoor environments (e.g. highways, urban,

and parking lots). Two image samples of this domain are

shown in Figure 3c. It must be noted that Domain 3 is only

used for final testing of the deep driving network and never

used during training.

It is worth mentioning that Domains 1 and 2 are both

designed based on the Lake Track scene of the Udacity’s

self-driving car simulator5. For Domain 1, we only used the

basic road track and removed all the realistic components.

We also modified the road size, shapes, and curves.

This work aims to add a variety of randomization to

the original simulated domain (Domain 1) which helps the

model generalize to more realistic domains (Domain 2 and

Domain 3). In fact, the model is trained to see the new do-

main merely as one more randomized flavor of the original

domain. The randomization factors include:

Terrain: in order to cover various surroundings in the real

world, we utilize several unrealistic terrains (grounds) with

various textures selected from a small set of terrain textures

(20 textures) which can help the model to drive in different

real-world environments (e.g., mountains, jungle, parking,

highway, etc.)

Road texture: for each scenario, a new road texture is ran-

domly selected from a set of road textures. This texture

can be unrealistic and does not include any lane marking or

other realistic road texture. However, its variation can help

the model to generalize to real-world unseen textures. In

particular, we use 20 unrealistic road textures for training

and 10 realistic textures for testing.

Novel objects (types, size, color, texture): the 3D objects

in Domain 1 include three simple primitives (cube, cylinder,

4The only realistic component in this domain is rocky mountains (is

simply generated by Unity) which can be used for shadow generation or

representing tall buildings in the real world.
5https://github.com/udacity/

self-driving-car-sim

Domain randomization

Preprocessing
Deep learning model

Conv2d
24,5,5

flattten

dropout(0.2)

dropout(0.2)

dropout(0.2)

Dense
240,relu

Dense
128,relu

Dense
64,relu

Dense 10

Conv2d
36,5,5

Conv2d
64,3,3

Conv2d
64,3,3

steering angle
Training data (Domain 1)

Generated result on
testing data (Domain 3)

Figure 2: The proposed framework for collision-free autonomous driving based on domain randomization

(a) Domain 1 without DR (left) and with DR (right)

(b) Domain 2 designed by us (left) and Udacity lake track (right)

(c) Domain 3 parking data collected by us (left) and Kitti (right)

Figure 3: Samples of three domains including Domain 1 or

primitive simulation (a), Domain 2 or photo-realistic simu-

lation (b) and Domain 3 or the real world (c)

sphere). In each scenario, the program selects a random

number (between 10 to 40) of objects from a list of ran-

dom object types with random scale, color, and texture and

place them in random positions (x, y, z) on the road using

3D waypoints in Unity. Different from existing work [26],

we use simple pattern-based textures instead of using real-

istic textures from large-scale datasets.

Light: in each scenario, a random intensity of light (be-

tween 0 to 2) is selected which represents different time

(day, night) and conditions of the real world.

Shadow: for shadow randomization, a special terrain with

various heights is designed. This terrain generates shadows

in different parts of the road and helps the model to learn

object’s and the environment’s shadows.

Dynamic objects: one of the major novelties of this work

is handling both static and dynamic objects with various

movement trajectories. For this purpose, a random path

(right or left lane) with a random velocity (0 for static ob-

jects, negative numbers for reverse driving, and positive

numbers for normal driving) is assigned to each object.

Thus, the object can automatically follow the waypoints in

the assigned lane.

Through extensive research and experiments, it is shown

that the aforementioned factors play important roles in gen-

eralizing the model to the real worlds. Examples of different

randomizations are shown in Figure 4. The last row shows

three samples of the combined randomization.

3.2. Data preparation and model training

In this work, the goal is to steer the car on a road while

avoiding the static and dynamic obstacles. Therefore, the

speed of the car is fixed using the auto-cruise component in

the simulator and only the steering angle for each frame is

collected. For training, the video frames from three cam-

eras, placed in left, center, and right positions of the ego-

car, together with the corresponding steering angle applied

by the user are collected from Domain 1 with different do-

main and scenario randomization. Specifically, ten frames

and steering angles are selected per second from the simula-

tion video at 40 frames per second (fps) rate. As mentioned

in [3], images from left and right cameras are required to

train the agent on how to recover from non-optimal po-

sitions, which is essential because of the cascading errors

that occur due to behavior cloning based imitation learning.

Specifically, this method helps the model to avoid drifting

off the road by augmenting with images that are shifted lat-

(a) Samples of terrain randomization

(b) Samples of road texture randomization

(c) Samples of object color/texture/scale randomization

(d) Samples of light intensity randomization

(e) Samples of shadow randomization

(f) Samples of all combined randomizations

Figure 4: Examples of various randomizations applied to

Domain 1

erally relative to the longitudinal axis of the car.

After collecting the data from the simulator, it is neces-

sary to handle data outliers and smooth the steering angles

since human are not always able to drive smooth trajecto-

ries. Outliers are replaced by mean and the steering angle

curve is smoothed with a moving average with a window

size of 20 based on our empirical study.

In this work, rather than generating steering angles as

traditionally done [3], we chose to generate a path to be

able to test our model in the real world. To do so, we collect

the current and N − 1 future steering angles. Thus, the

network can predict the path while driving on the road. The

generated path can help us to evaluate the model on real-

world images and videos in an open-loop manner without

driving a real car. After the preprocessing step, the steering

angles of the left and right cameras are set by shifting the

center cameras’ steering angle by a factor of γ (to avoid

driving off the road). In this work, the correction factor for

the next N consecutive steering angles is calculated as:

αL(R) = αC ± (γ ∗ (N − i2)/N) (1)

where α refers to the steering angle, L, C, and R refer

to the left, center, and right cameras, respectively, and i ∈
{0...N − 1} (i = 0 refers to the first steering angle).

The neural network architecture of the proposed end-to-

end deep driving model is shown in Figure 2. It takes a

single image which goes through several convolutional lay-

ers followed by four dense (fully-connected) layers. The

last dense layer generates ten outputs which correspond to

the N steering angles. In other words, given a single image,

this regression model is able to predict the next N steering

angles in an end-to-end manner. The model outputs are later

converted to the path in order to visualize the performance

of the model in the real world data.

4. Experiments

4.1. Datasets

Multiple datasets are used for training and evaluation,

with a focus on covering diverse simulated and real-world

scenarios. The details of each dataset is described below:

Simulation dataset: As described before, our training data

is collected from Domain 1 (refer to Figure 3a). For each

scenario, a new combination of all randomization factors

are automatically generated. To collect the images and the

corresponding steering angles, we had test subjects drive

the car in the simulated world akin to playing a computer

game (each played between 10-30 minutes). In total, the

combined DR dataset contains around 200k images. We

also collected 30K-100K images for each flavor of ran-

domization (e.g. road texture, object, terrain, light, and

shadow). For the baseline model (“No Rand”), we used Do-

main 1 data without applying any randomization technique

for training, while keeping the total number of images fixed.

For evaluation, we utilized two different photo-realistic sim-

ulation worlds (please refer to Domain 2 in Figure 3b). The

first version is the lake track from Udacity in which several

obstacles (cars, objects, etc.) are added on the road and the

second simulation world designed by us includes moving

cars, and also photo-realistic road/terrain textures.

Parking dataset: A dataset is collected by driving a car

around our corporate campus in California. This dataset is

useful in evaluating the behavior of our model in a com-

plex real-world environment. Presence of a large number

of stationary parked vehicles is an additional benefit of this

dataset for evaluation of our obstacle avoidance model.

Kitti: Finally, we downloaded several sets of Kitti raw data6

including city, residential, and road categories to further

evaluate our framework on real-world images.

4.2. Experimental settings

In this work, the steering angle correction factor is em-

pirically set to +0.25 and −0.25 for the left and right shifts,

respectively. N is set to ten consecutive steering angles.

The image size is set to 160*320px. The car speed is fixed

to 30mph during both data collocation and testing on sim-

ulation. For preprocessing, the moving average window is

set to 20. The sequence of steering angles and the camera

calibration are used to place a 2D path on the image for vi-

sualization purposes. This projection assumes a flat ground

plane for the road surface.

The deep learning model includes preprocessing layers

to normalize the image (mean centered) and crop the top

parts of the image (remove the sky and only focus on the

road and obstacles). Similarly, the real-world images from

parking and Kitti datasets are preprocessed to follow the

same format of the simulation data.

For deep learning training, the following settings are

used: Number of epochs=5, Optimizer=Adam, learning

rate=0.0005, batch size=32, Loss function= Mean Squared

Error (MSE), activation functions=RELU, dropout=20%.

The images collected from 2/3 of the road from Domain

1 is used for the training and the remaining is used for the

validation. In all the experiments, the same deep learning

model is used for training and all the training images are

obtained from Domain 1 without using any real images.

We evaluate the performance of the deep learning model

using Nvidia’s autonomy metric [3] for simulation. This

metric counts the number of human interventions to retake

the control of the car. In our case, there are two types of

errors while the model is driving the car: (1) collisions with

an object (#Collisions), (2) events where the car ends up

outside of the road boundary (#Off − roads). We assign

the same penalty as [3] (6 seconds) when an error happens.

Thus, autonomy is calculated as:

autonomy = (1− (#Collisions+#Off−roads)∗6 [sec]
total time [sec])∗100

(2)

When a collision or off-road event happens, we program-

matically count the number of errors and reset the car’s lo-

cation to the next waypoint on the road. This reduces human

intervention while testing the model.

6KITTI Vision Benchmark Suite: http://www.cvlibs.net/

datasets/kitti/raw_data.php

4.3. Experimental results

4.3.1 Ablation study for simulation environment

The goal of this experiment is to see how the model trained

on Domain 1 can drive in a photo-realistic simulation en-

vironment. The first set of experiments is executed in a

new simulation environment (Domain 2) which is never

seen during the training. To test the impact of each ran-

domization factor, we trained a model for every single ran-

domization and compared them with no randomization (No

Rand) and our model (DR), which is trained on all the ran-

domizations together. Specifically, a fixed amount of im-

age data (30K) are collected for each randomization model

(e.g., terrain, road texture, light, object scale/color/texture,

and shadow). After training, each model is tested on four

different scenarios as follows: (1) Our designed Domain 2

including 7 static cars, (2) Our designed Domain 2 includ-

ing 8 dynamic cars moving in various directions, (3) Our

designed Domain 2 including 6 static cars in the middle of

the road and 16 cars on the side (simulating a narrow park-

ing space) (4) Domain 2 from Udacity (lake track) includ-

ing 4 static cars and 2 cubes. In total, each model is tested

for 20 minutes on these four fixed scenarios. The result of

this experiment is shown in Table 1. This table shows to-

tal number of collisions, off-roads, and autonomy. As can

be seen from the table, with adding terrain randomization

(R1), the number of collisions and driving off the road de-

creases. With road texture randomization (R2) the model

confuses objects with the road textures causing more colli-

sions. However, this greatly helps the ego-car stay on the

road. Similarly, light (R3) and shadow (R4) are important

factors for avoiding off the road driving. Object randomiza-

tion factors (R5 & R6) are obviously the best parameters for

reducing collisions. This is powerful as the object random-

ization appears to teach the model the concept of avoiding

obstacles. This is indicated by the fact that despite the train-

ing set only containing simple geometric objects, the model

avoids more complex obstacles like cars and pedestrians.

Finally, the combined domain randomization model can re-

duce the collision with a great margin while staying on the

road all the times. The autonomy of our DR model reaches

0.98 in this set of experiments which is 11% higher than the

one from the “No Rand” model.

To further investigate the impact of DR on simulation,

randomization components (R1 to R6) are added one by one

to the dataset (while keeping the size of the dataset fixed)

and a model is trained for that specific combination. Al-

though the previous experiment shows our model is able to

avoid dynamic objects without seeing them during the train-

ing, we also use “object movement randomization” (R7)

to further enhance the model reaction to the moving ob-

jects. Each model is tested in our designed Domain 2 for 30

minutes while changing the environment components (e.g.,

Method # collision # off–roads autonomy

No Rand 16 11 87

Terrain (R1) 6 8 94

Road (R2) 20 1 90

Light (R3) 13 1 93

Shadow (R4) 23 1 88

Obj

Scale (R5)
13 4 92

Obj color &

texture (R6)
6 4 95

DR (Ours) 5 0 98

Table 1: Comparison results on simulation (Domain 2)

92

95
96

97
97 97

98
99

88

90

92

94

96

98

100

No	Rand R1 R1-2 R1-3 R1-4 R1-5 R1-6 R1-7

A
u
to
n
o
m
y

Figure 5: Impact of adding individual randomization to the

model on autonomy

light, shadow, terrain, static and dynamic objects, etc.) af-

ter each cycle. More specifically, each model continuously

tested over multiple cycles where each cycle used a differ-

ent environment (to have a fair comparison, we keep these

changes fixed for all the models). Figure 5 depicts the re-

sults of this experiment regarding the autonomy metric. As

can be inferred from this plot, R1-2 (terrain+road) can ex-

tensively enhance the performance (especially decreasing

the off-road) and adding other randomization factors can

gradually increase the model’s generality to realistic envi-

ronments. The full randomization model (also includes ob-

ject movement randomization) achieves 99% autonomy.

4.3.2 Ablation study for realistic environment

To evaluate the performance of our model in the real world,

we utilized our collected parking dataset and the public

Kitty dataset as explained before. To do so, the model re-

ceives a single image and generates a path demonstrating

the future direction of the car. Figure 6 shows several sam-

ples from both datasets with DR and without DR. It can be

clearly seen that when there are objects in its path the DR

model changes its path to avoid the objects, while the “No

Accuracy (%)

Method Parking Kitti

No Rand 18.60 12.44

DR (Ours) 58.14 73.42

Table 2: Comparison results on real world (Domain 3)

Rand” model can barely stay on the road (it can be seen

from the sharp trajectory to the either left or right) or goes

directly towards the object. For the Kitti dataset, the “No

Rand” model is showing a sharp turn to the left in almost

all the images, while our DR model smoothly changes its

direction when observing an object close to it (e.g., first and

second rows in Figure 6 (b)). These results also show that

our model can deal with extra shadows (e.g., fourth rows

in Figure 6 (a) and (b)) and detect obstacles in noisy im-

ages (e.g., last row in Figure 6 (a) which is an image taken

through the windshield of the car using a cellphone camera

with reflections from the dash).

Finally, the accuracy of these two models (No Rand and

ours) is compared in Table 2. Accuracy is calculated by
(number of images with correct trajectories

total number of images
) ∗ 100.

It can be seen from the table that DR can greatly enhance

the performance of our obstacle avoidance framework on

the real-world images. These results show the effectiveness

of DR in bridging the reality gap for this application.

5. Conclusion and future directions

This work aims to provide an alternative avenue of re-

search for solving one of the challenging topics in machine

learning and robotics, i.e. autonomous driving, with a sim-

ple but effective approach compared to the current state-of-

the-art. The proposed work utilizes primitive simulated data

and applies a wide range of domain and scenario random-

ization to reduce the gap between simulation and the real

world. The main contributions of this work include: (1)

Applying DR to a new and complex application (collision-

free deep driving); (2) Extending the idea of DR to SR with

leveraging dynamic objects with random movements in ad-

dition to the static domain randomization; (3) Demonstrat-

ing that obstacle avoidance can be learned with simple geo-

metric shapes rather than expensive photo-realistic objects;

(4) Conducting comprehensive experiments to show the im-

portance of various randomization factors in making deep

driving work in the simulation that also reveals interesting

results in the real-world.

Future research can focus on extending these ideas to

more structured and rules-driven environments while avoid-

ing making the framework intricate. This will also help us

test our models directly on the real world by coupling the

network to the controller on a real car.

(a) Parking samples without DR (left) and with DR (right) (b) Kitti samples without DR (left) and with DR (right)

Figure 6: Examples of results on parking and Kitti datasets

