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Abstract

Weakly supervised object detection (WSOD) focuses on

training object detector with only image-level annotations,

and is challenging due to the gap between the supervi-

sion and the objective. Most of existing approaches model

WSOD as a multiple instance learning (MIL) problem.

However, we observe that the result of MIL based detector

is unstable, i.e., the most confident bounding boxes change

significantly when using different initializations. We quanti-

tatively demonstrate the instability by introducing a metric

to measure it, and empirically analyze the reason of insta-

bility. Although the instability seems harmful for detection

task, we argue that it can be utilized to improve the per-

formance by fusing the results of differently initialized de-

tectors. To implement this idea, we propose an end-to-end

framework with multiple detection branches, and introduce

a simple fusion strategy. We further propose an orthogo-

nal initialization method to increase the difference between

detection branches. By utilizing the instability, we achieve

52.6% and 48.0% mAP on the challenging PASCAL VOC

2007 and 2012 datasets, which are both the new state-of-

the-arts.

1. Introduction

Weakly supervised object detection (WSOD) has at-

tracted intensive attention recently [24, 1, 5, 2, 26, 33, 31,

29, 12]. Unlike fully supervised object detection, WSOD

aims at training detectors with only image-level annota-

tions, which cost much less human labor than bounding

boxes annotations.

A popular solution for WSOD is to formulate it as a

∗Equally-contributed.
†Corresponding author.

Figure 1. The instability of MIL-based detector. Each column cor-

responds to one MIL-based detector, and each row corresponds to

one image. Green rectangles indicate the positive bounding boxes

and red rectangles indicate the negative ones. (a) Images that con-

tain only one object. (b) Images that contain multiple objects. Best

viewed in color.

multiple instance learning (MIL) problem. Training im-

ages are treated as labeled bags, which consist of mul-

tiple candidate bounding boxes. The learning procedure

alternates between selecting the most confident proposals

and using them to train a detector [5, 24, 16]. Recently,

many works combine convolutional neural networks (CNN)

with MIL and get promising results [2, 26, 25, 27, 33, 30,

31, 9, 29, 32, 14, 12]. Bilen et al. [2] propose a con-

cise end-to-end Weakly Supervised Deep Detection Net-
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work (WSDDN), using two parallel branches to get clas-

sification and detection information. Based on WSDDN,

some works propose to leverage regularization [2], online

refinement [26, 25, 27] and curriculum learning [32] to fur-

ther improve the performance. Weakly supervised semantic

segmentation is also introduced in WSOD to provide ob-

jectness information [9, 31, 12]. However, there is still a re-

markable performance gap compared with fully supervised

detectors [13, 20, 19, 18].

We observe that the result of MIL-based detector is un-

stable. Specifically, detectors with different initializations

may localize different regions on the same images. For ex-

ample, the MIL-0 in the first column of Fig. 1 (a) can cor-

rectly localize the cat in the image of the second row, but

converge to the head of cat in the first and the third rows.

However, MIL-1 in the second column of Fig. 1 (a) suc-

ceeds to localize the cat in the first and third rows but fails

in the second row. Also, if there are multiple objects in the

image, detectors with different initial parameters may local-

ize different one, Fig. 1(b).

The instability of MIL-based detector seems notorious as

it limits the performance and leads to a high variance of the

result, but we propose to utilize it on the contrary. Our mo-

tivation is that, by fusing the results of detectors with differ-

ent initializations, we can keep the good candidate proposal

and suppress the bad ones, so as to improve the detection

performance. To implement this idea, we introduce a novel

end-to-end framework to utilize the instability. Specifically,

we design a multi-branch network structure consisting of

a classification branch and multiple detection branches, in-

spired by WSDDN. The results of detection branches are

coupled with the classification branch and the coupled re-

sults are further processed by a fusion strategy, called Sur-

rounded Candidate Suppression (SCS). We further refine

the fused result by training instance classifiers, following

the popular practice [26, 25, 27, 31, 33]. Moreover, in

order to further increase the difference between different

detection results, we propose a novel category orthogonal

parameter initialization method which makes the initializa-

tion parameters of the same category in different detection

branches orthogonal.

To show the effectiveness of utilizing the instability,

we conduct extensive experiments on the challenging PAS-

CAL VOC 2007 and 2012 benchmarks. With the proposed

framework, we obtain 52.6% and 48.0% mAP on VOC

2007 and VOC 2012 respectively, which are the new state-

of-the-arts.

In summary, the contributions of this paper are listed as

follows:

1. We analyze the instability of MIL based detector, pro-

viding quantitative evidence and empirical explana-

tion. Based on the analysis, we propose to utilize the

instability to improve detection performance by fusing

the results of differently initialized detectors.

2. As training multiple detectors with different initializa-

tion is time consuming, we propose a simple but effec-

tive end-to-end framework and an online fusion strat-

egy to utilize the instability. An orthogonal parame-

ter initialization method is further proposed to increase

the difference between detection branches.

3. The proposed framework significantly outperforms

previous methods, and creates new state-of-the-arts

both on PASCAL VOC2007 and VOC2012 datasets.

2. Related Work

The majority of existing methods formulate WSOD as

an MIL [10] problem. Under this formulation, a training

image is seen as a bag of candidate proposals [5]. Given

the labels of bags, the objective of MIL is to train a classifier

to correctly separate positive proposals from negative ones.

However, the loss function of MIL is non-convex, and

the optimization of MIL is sensitive to initialization [7,

5, 1, 24]. In order to solve this issue, some works intro-

duce better initialization methods. Deselaers et al. [7] pro-

pose to initialize object locations based on the objectness

score. Cinbis et al. [5] propose to split the training data

into multi folds to escape local optima. Beyond generating

better initialization, some works propose to smooth the op-

timization of MIL to alleviate the non-convexity problem.

Bilen et al. [1] introduce a smoothed version of MIL that

softly labels object instances. Song et al. [24] propose to

use Nesterov’s smoothing technique in latent SVM model.

The proposed method is also related to the non-convexity

of MIL, but we propose to utilize the instability, which is

partly caused by the non-convexity.

In recent years, many works combine deep convolutional

neural networks with MIL and achieve promising results

[2, 26, 25, 27, 33, 30, 31, 9, 29, 32, 14, 12]. The pre-

trained CNN models provide generic visual feature repre-

sentations and reliable initialization for MIL. Bilen et al. [2]

proposed a two-stream weakly supervised deep detection

network (WSDDN), which can be trained with image-level

labels in an end-to-end manner. Tang et al. [26] add into

WSDDN several instance classifiers, and propose an online

instance classifier refinement method. Wan et al. [29] focus

on reducing the randomness of localization during the opti-

mization of network. Also, some works propose to leverage

weakly supervised semantic segmentation to improve de-

tection performance. Diba et al. [9] generate candidate pro-

posals based on the segmentation result and perform MIL

among them. Wei et al. [31] introduce two metrics to select

reliable candidate proposals by using segmentation result.

Moreover, some researchers propose to combine fully

supervised detectors with MIL based ones [30, 33, 22].
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(a)

(b)

Figure 2. (a) Averaged CorLoc of 10 randomly initialized WS-

DDNs on each class. (b) Averaged IDR of each class, obtained by

randomly sampling two WSDDNs 10 times.

Wang et al. [30] introduce a collaborative learning frame-

work and a consistence-based loss to combine WSDDN

and Faster-RCNN. Zhang et al. [33] propose to mine bet-

ter pseudo ground truths from the result of MIL based de-

tector to train a fully supervised detector. Shen et al. [22]

use a generative adversarial learning framework to build the

connection between fully and weakly supervised detectors.

The proposed framework consists of multiple detection

branches and is related to [4, 3, 17] that also propose to use

multi-branch network to improve detection result. Cheng

et al. [4] propose to add a decoupled classification refine-

ment module to suppress hard false positive results. Li et

al. [17] use multiple branches with different dilated convo-

lution layers. Our method is different to these methods be-

cause the branches in our method have the same structure.

Also, the branches in the proposed framework have differ-

ent initializations in order to utilize the instability, which is

not involved in these methods.

3. Analysis of Instability

We observe that the result of MIL based detector shows

significant instability, i.e., detectors trained with different

initializations often localize different regions in the same

image. To quantitatively analyze the instability of MIL

based detectors, we first introduce a metric, Inconsistent

Detection Rate (IDR), representing the inconsistency be-

tween the results of two detectors. In an image, if the IoU

of the top scoring bounding boxes of two detectors is less

than 0.5, we say the results are inconsistent. IDR indicates

MIL-0 MIL-1 MIL-k

...

Fusion

Figure 3. The non-convexity of MIL. Differently initialized detec-

tors may be trapped in different local minimum, leading to differ-

ent detection results. By fusing the results of different detectors,

we may get more accurate localization of object.

the rate of images where the results of two detectors are in-

consistent. Formally, the IDR on class c is defined as

IDRc =
|{Ick, where IoU(bc

1,k, b
c
2,k) < 0.5}|

|{Ick}|
, (1)

where Ick denotes the kth training image with positive label

on class c, bc
1,k and bc

2,k denote the top scoring bounding

boxes of two detectors on the kth image. The mean IDR

over all classes is defined as

mIDR =

∑C

c=1
IDRc

C
, (2)

where C denotes the number of classes.

We choose WSDDN, a popular MIL based detector,

as a representative to show the instability problem. We

train WSDDN for 10 times with different initial parame-

ters. Then we randomly sample two detectors to compute

IDR and mIDR for 10 times and show their averaged val-

ues. As shown in Fig. 2 (a), the mIDR reaches 38.3% and

the IDRs on some classes are even greater than 50%, which

means the detection result in about a half of images changes

significantly if we change initial parameters of a detector.

Also, the instability is more serious on classes with poor lo-

calization performance. From Fig. 2 (a) we can find that the

class-specific IDR shows a negative relation with CorLoc.

We think the reasons of this instability are two folds.

Firstly, MIL is inherently non-convex and may have many

local optimum. Secondly, the proposals in the same image

have strong spatial relationship, which is related to the de-

tection task. Specifically, negative proposals that only con-

tain part of object always appear together with the positive
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Figure 4. The network architecture of our method. A CNN backbone with ROI pooling and two fully connected layers is used to get

the feature vectors of proposals. Then the feature vectors are fed into a classification branch, K detection branches and several instance

classifiers. Softmax1 indicates softmax operation over the classes, and Softmax2 indicates softmax operation over the proposals.

proposals in the positive bags. However, such negative pro-

posals never appear in a negative bag. Both of such negative

proposals and positive proposals may correspond to local

optimums of MIL, Fig. 3. For example, an image contain-

ing a bird always has a positive proposal that contains the

entire bird and some negative proposals that only contain

the head of the bird, but images that contain such negative

proposals are never labeled as negative. Without instance-

level annotations, this spatial correlation between proposals

usually makes the detector confused, leading to strong in-

stability.

It seems that the instability is notorious as it limits the

detection performance and results in unreliable localization.

However, we argue that the instability can be utilized to

improve detection performance on the contrary. Consider-

ing different top scoring proposals generated by randomly

initialized detectors, some of them may be tight bounding

boxes while others may be not. If we can fuse these pro-

posals, keep the good ones and discard the bad ones, the

detection performance will be improved, Fig. 3.

4. Method

To utilize the instability of MIL based detector, we pro-

pose to fuse the results of differently initialized detectors.

A natural way is to train the detector, such as WSDDN, for

several times, and then fuse the results after all the train-

ing processes. However, this procedure is time-consuming.

So we further propose a novel end-to-end network and

an online fusion strategy to utilize the instability of MIL

based detector. The overall network architecture is shown

in Fig. 4. The main part of the network is a multi-branch

structure consisting of a classification branch and multiple

detection branches, which are initialized with different pa-

rameters. The results of all branches will be further fused

and refined online. Moreover, in order to enlarge the differ-

ence between detection branches, we introduce an orthog-

onal initialization strategy for detection branches. We will

elaborate the details of the proposed network, the online fu-

sion strategy and the orthogonal initialization method in the

rest of this section.

4.1. Multibranch Network Structure

To utilize the instability of MIL, we need to generate dif-

ferent sets of localization information and fuse them to get

better detection results. Inspired by WSDDN, we design

a multi-branch network structure to implement this idea.

Formally, given a training image I and the corresponding

candidate proposals B generated by selective search method

[28], we feed I and B into a CNN backbone with ROI pool-

ing, which is pretrained on ImageNet dataset. We use the

output of FC7 as the features of candidate proposals. Then

the network branch into a classification branch and K de-

tection branches. Each branch consists of a fully connected

layer and a softmax layer. In the classification branch, the

fully connected layer maps the features of proposals into a

matrix xc ∈ R
C×|B|, where C is the number of categories.

Then a softmax operation along the class-axis is performed

to get the classification scores of proposals

[σcls(x
c)]ij =

ex
c
ij

∑C

n=1
ex

c
nj

. (3)

In the kth detection branch, the matrix after fully connected

layer xd,k ∈ R
C×|B| is passed through a softmax operator
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along proposal-axis, defined as:

[σdet(x
d,k)]ij =

ex
d,k

ij

∑|B|
n=1

ex
d,k

in

. (4)

The detection scores of each detection branch will be fur-

ther coupled with the classification scores of the same clas-

sification branch to get the final scores by an element-wise

product, defined as:

σk = σcls(x
c)⊙ σdet(x

d,k). (5)

For each detection branch, we can compute the image clas-

sification score pc on class c with a summation over all pro-

posals, defined as:

pkc =

|B|∑

n=1

σk
c,n. (6)

With the image label Y = {y1, y2, . . . , yC}, the loss for kth

detection branch Lk and the total loss L are defined as:

Lk = −
C∑

c=1

{yc log p
k
c + (1− yc) log(1− pkc )} (7)

L =

K∑

k=1

Lk (8)

Instead of fusing the results of different detectors after

the training procedure, we propose a simple online fusion

strategy. After forward propagation in each training step,

we can get the final scores of detection branches, and then

fuse the results of different detection branches based on

these scores. The fused results will be further refined by

training instance classifiers. Here we follow [26, 25, 27] to

design the refinement module, which refines the fused re-

sults in a cascaded manner. For more details, please refer to

[26, 25, 27].

4.2. Online Fusion Strategy

After getting the final scores of each detection branches,

we introduce a simple online fusion strategy, called sur-

rounded candidates suppression (SCS), to fuse the results of

K detection branches in every training step. The proposed

strategy is based on the observation that WSDDN tends to

localize the discriminative object parts or the whole object,

rather than selecting bounding boxes that contain multiple

objects or too many background regions. Thus, if a top scor-

ing bounding box of a detector is surrounded by that of an-

other detector, it is very likely that the surrounded bounding

box only contains part of object and should be discarded.

Formally, we first get the set of top scoring proposals of all

detection branches P = {P1, P2, . . . , PK}. Then we re-

move from P all proposals that are surrounded by another

Algorithm 1 Surrounded Candidates Suppression (SCS)

Input: The final score of K detection branches

{σ1, σ2, . . . , σK}; object proposals B; image la-

bel Y .

Output: Fused detection result Bfused.

1: Set Bfused ← {}.
2: for c = 1 to C do

3: if yc = 1 then

4: Set Btop ← {}.
5: for k = 1 to K do

6: bkc ← argmaxbn∈B σk
c,n.

7: Btop ← Btop

⋃
{bkc}.

8: end for

9: for bck ∈ Btop do

10: if ∃b ∈ Btop s.t. bck is surrounded by b then

11: Btop ← Btop \ {b
c
k}.

12: end if

13: end for

14: Bc
fused ← NMS(Btop).

15: Bfused ← Bfused

⋃
Bc

fused.

16: end if

17: end for

proposal in P . Finally, a standard NMS with threshold 0.1

is performed among the remained proposals to get the fused

result. With SCS, we can discard the bad candidate propos-

als and keep the good ones as many as possible. To make it

clear, we summarize the process of SCS in Alg. 1.

4.3. Orthogonal Initialization

The detection branches in the proposed network is sup-

posed to be different with each other, so the fused results

can be better than the results of original branches. The dif-

ference of detection branches comes from the randomness

of initialization, which is not reliable. We argue that the

proposed method can benefit from more significant differ-

ence between the initial parameters of detection branches.

So we propose an orthogonal initialization method, making

sure that the parameters of the fully connected layers of dif-

ferent detection branches are orthogonal with each other on

every class.

Similar initialization methods have been proposed in

[21] to avoid the vanishment of gradient in recurrent neural

networks. We follow the implementation in [21] to design

our orthogonal initialization method. For the kth detection

branch, the parameters of the fully connected layer is de-

noted as a matrix mk ∈ R
l×C , where l denotes the length

of the feature vector of a proposal. For each class c, we con-

struct get an orthogonal matrix qc ∈ R
l×K by performing

QR factorization on a random matrix. Then we assign the

value of the kth column in q to the cth column of mk.

5 15



Method aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mAP

WSDDN [2] 46.4 58.3 35.5 25.9 14.0 66.7 53.0 39.2 8.9 41.8 26.6 38.6 44.7 59.0 10.8 17.3 40.7 49.6 56.9 50.8 39.3

OICR [26] 58.5 63.0 35.1 16.9 17.4 63.2 60.8 34.4 8.2 49.7 41.0 31.3 51.9 64.8 13.6 23.1 41.6 48.4 58.9 58.7 42.0

WCCN [9] 49.5 60.6 38.6 29.2 16.2 70.8 56.9 42.5 10.9 44.1 29.9 42.2 47.9 64.1 13.8 23.5 45.9 54.1 60.8 54.5 42.8

TS2C [31] 59.3 57.5 43.7 27.3 13.5 63.9 61.7 59.9 24.1 46.9 36.7 45.6 39.9 62.6 10.3 23.6 41.7 52.4 58.7 56.6 44.3

PCL [25] 57.1 67.1 40.9 16.9 18.8 65.1 63.7 45.3 17.0 56.7 48.9 33.2 54.4 68:3 16:8 25.7 45.8 52.2 59.1 62.0 45.8

MLEM [29] 55.6 66.9 34.2 29.1 16.4 68.8 68.1 43.0 25.0 65.6 45.3 53.2 49.6 68.6 2.0 25.4 52.5 56.8 62.1 57.1 47.3

WSRPN [27] 60.3 66.2 45.0 19.6 26.6 68.1 68.4 49.4 8.0 56.9 55.0 33.6 62.5 68.2 20.6 29.0 49.0 54.1 58.8 58.4 47.9

OICR+FRCNN [26] 65.5 67.2 47.2 21.6 22.1 68.0 68.5 35.9 5.7 63.1 49.5 30.3 64.7 66.1 13.0 25.6 50.0 57.1 60.2 59.0 47.0

ZLDN [32] 55.4 68.5 50.1 16.8 20.8 62.7 66.8 56.5 2.1 57.8 47.5 40.1 69.7 68.2 21.6 27.2 53.4 56.1 52.5 58.2 47.6

CL [30] 61.2 66.6 48.3 26.0 15.8 66.5 65.4 53.9 24.7 61.2 46.2 53.5 48.5 66.1 12.1 22.0 49.2 53.2 66.2 59.4 48.3

PCL+FRCNN [25] 63.2 69.9 47.9 22.6 27.3 71.0 69.1 49.6 12.0 60.1 51.5 37.3 63.3 63.9 15.8 23.6 48.8 55.3 61.2 62.1 48.8

WSRPN+FRCNN [27] 63.0 69.7 40.8 11.6 27.7 70.5 74.1 58.5 10.0 66.7 60.6 34.7 75.7 70.3 25.7 26.5 55.4 56.4 55.5 54.9 50.4

Baseline(WSDDN+ODR) 44.3 71.0 45.6 24.2 15.4 70.0 69.5 47.0 21.8 65.9 37.5 59.8 52.7 70.4 7.2 26.4 59.8 60.5 67.5 64.4 49.0

Ours 63.4 70.5 45.1 28.3 18.4 69.8 65.8 69.6 27.2 62.6 44.0 59.6 56.2 71.4 11.9 26.2 56.6 59.6 69.2 65.4 52.0

Ours+FRCNN 62.7 69.1 43.6 31.1 20.8 69.8 68.1 72.7 23.1 65.2 46.5 64.0 67.2 66.5 10.7 23.8 55.0 62.4 69.6 60.31 52.6

Table 1. Detection average precision (AP %) on the PASCAL VOC 2007 test set. The upper part shows the results of weakly supervised

detectors, and the second part shows the results of fully supervised detector trained by using the output of weakly supervised detectors as

pseudo ground truth.

Method aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv mAP

WSDDN+context[15] 64.0 54.9 36.4 8.1 12.6 53.1 40.5 28.4 6.6 35.3 34.4 49.1 42.6 62.4 19.8 15.2 27.0 33.1 33.0 50.0 35.3

WCCN [9] - - - - - - - - - - - - - - - - - - - - 37.9

OICR [26] - - - - - - - - - - - - - - - - - - - - 37.9

TS2C [31] 67.4 57.0 37.7 23.7 15.2 57.0 49.1 64.8 15.1 39.4 19.3 48.4 44.5 67.2 2.1 23.3 35.1 40.2 46.6 45.8 40.0

PCL [25] 63.4 64.2 44.2 25.6 26.4 54.5 55.1 30.5 11.6 51.0 15.8 39.4 55.9 70.7 8.2 26.3 46.9 41.3 44.1 57.7 41.6

MLEM [29] - - - - - - - - - - - - - - - - - - - - 42.4

OICR+FRCNN [26] - - - - - - - - - - - - - - - - - - - - 42.5

ZLDN [32] 54.3 63.7 43.1 16.9 21.5 57.8 60.4 50.9 1.2 51.5 44.4 36.6 63.6 59.3 12.8 25.6 47.8 47.2 48.9 50.6 42.9

CL [30] 70.5 67.8 49.6 20.8 22.1 61.4 51.7 34.7 20.3 50.3 19.0 43.5 49.3 70.8 10.2 20.8 48.1 41.0 56.5 56.7 43.3

WSRPN [27] - - - - - - - - - - - - - - - - - - - - 43.4

PCL+FRCNN [25] 69.0 71.3 56.1 30.3 27.3 55.2 57.6 30.1 8.6 56.6 18.4 43.9 64.6 71.8 7.5 23.0 46.0 44.1 42.6 58.8 44.2

TS2C+FRCNN [31] 73.9 64.2 45.7 30.7 16.4 62.0 56.7 62.4 16.1 52.2 20.0 39.5 54.0 72.1 2.7 25.9 46.6 44.7 47.9 54.4 44.4

WSRPN+FRCNN [27] - - - - - - - - - - - - - - - - - - - - 45.7

Ours 72.7 68.8 51.6 29.4 29.1 60.3 58.0 59.0 22.6 61.9 22.4 52.3 59.8 74.0 7.2 28.1 53.4 33.5 54.5 60.7 48.0

Table 2. Detection average precision (AP %) on the PASCAL VOC 2012 test set.

5. Experiments

5.1. Datasets and Evaluation Metrics

We evaluate our method on two widely used datasets,

PASCAL VOC 2007 and 2012 [11]. For each dataset, we

use the trainval set for training, and the test set for testing.

Only image-level labels are used to train the network.

For evaluation, we choose two kinds of measurements:

1) Average Precision (AP) and the mean of AP (mAP) on

the test set, following the standard PASCAL VOC protocol;

2) CorLoc [8] on the trainval set to evaluate the localization

accuracy. Based on the PASCAL criterion, a bounding box

is considered to be positive if it has an IoU ≥ 0.5 with the

ground-truth for both metrics.

5.2. Implementation Details

We built our model on a VGG16 [23] network pretrained

on ImageNet [6]. We remove the last fully connected layer,

and replace the last max-pooling layer with an ROI pooling

layer. The mini-batch for training is set to 2. The momen-

tum and weight decay is set to 0.9 and 5×10−4 respectively.

The learning rate is 5×10−4 for the first 10 epochs and then

decrease to 5× 10−5 for the following 5 epochs.

The image proposals are generated by selective

search [28]. For data augmentation, we use five image

scales {480, 576, 688, 864, 1200}, with horizontal flips for

Figure 5. Averaged CorLoc and mIDR of fused results with differ-

ent fused detector numbers K, obtained by randomly sampling K

WSDDNs 10 times.

both training and testing. In each training step, we randomly

choose a scale to resize the image and then the image is ran-

domly flipped. For all experiments, an NMS of 0.3 is em-

ployed to get final detection result. The average score of

10 augmented images is used as the final proposal scores.

Our experiments are implemented based on PyTorch deep

learning framework, and are conducted on NVIDIA GTX

TitanX GPU.

5.3. The Effectiveness of Utilizing the Instability

To demonstrate the effectiveness of utilizing the insta-

bility, we choose WSDDN as the basic detector, and fuse
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Method aero bike bird boat bottle bus car cat chair cow table dog horse mbike person plant sheep sofa train tv CorLoc

WSDDN [2] 68.9 68.7 65.2 42.5 40.6 72.6 75.2 53.7 29.7 68.1 33.5 45.6 65.9 86.1 27.5 44.9 76.0 62.4 66.3 66.8 58.0

OICR [26] 85.4 78.0 61.6 40.4 38.2 82.2 84.2 46.5 15.2 80.1 45.2 41.9 73.8 89.6 18.9 56.0 74.2 62.1 73.0 77.4 61.2

WCCN [9] 83.9 72.8 64.5 44.1 40.1 65.7 82.5 58.9 33.7 72.5 25.6 53.7 67.4 77.4 26.8 49.1 68.1 27.9 64.5 55.7 56.7

TS2C [31] 84.2 74.1 61.3 52.1 32.1 76.7 82.9 66.6 42.3 70.6 39.5 57.0 61.2 88.4 9.3 54.6 72.2 60.0 65.0 70.3 61.0

PCL [25] 81.7 82.4 63.4 41.0 42.4 79.7 84.2 54.9 23.4 78.8 54.4 46.0 75.9 89.6 22.8 51.3 72.2 66.1 74.9 76.0 63.0

MLEM [29] - - - - - - - - - - - - - - - - - - - - 61.4

WSRPN [27] 81.2 81.2 60.7 36.7 52.3 80.7 89.0 65.1 20.5 86.3 61.6 49.5 86.4 92.4 41.4 62.6 79.4 62.4 73.0 75.6 66.9

OICR+FRCNN [26] 85.8 82.7 62.8 45.2 43.5 84.8 87.0 46.8 15.7 82.2 51.0 45.6 83.7 91.2 22.2 59.7 75.3 65.1 76.8 78.1 64.3

ZLDN [32] 74.0 77.8 65.2 37.0 46.7 75.8 83.7 58.8 17.5 73.1 49.0 51.3 76.7 87.4 30.6 47.8 75.0 62.5 64.8 68.8 61.2

CL [30] 85.8 80.4 73.0 42.6 36.6 79.7 82.8 66.0 34.1 78.1 36.9 68.6 72.4 91.6 22.2 51.3 79.4 63.7 74.5 74.6 64.7

PCL+FRCNN [25] 83.8 85.1 65.5 43.1 50.8 83.2 85.3 59.3 28.5 82.2 57.4 50.7 85.0 92.0 27.9 54.2 72.2 65.9 77.6 82.1 66.6

WSRPN+FRCNN [27] 83.8 82.7 60.7 35.1 53.8 82.7 88.6 67.4 22.0 86.3 68.8 50.9 90.8 93.6 44.0 61.2 82.5 65.9 71.1 76.7 68.4

Baseline 64.2 83.5 63.1 45.2 38.5 82.2 86.7 57.6 35.5 83.6 41.8 69.5 69.0 90.4 20.1 56.8 83.5 66.9 78.3 79.6 64.8

Ours 84.2 84.7 59.5 52.7 37.8 81.2 83.3 72.4 41.6 84.9 43.7 69.5 75.9 90.8 18.1 54.9 81.4 60.8 79.1 80.6 66.9

Ours+FRCNN 86.7 85.9 63.4 55.3 42.0 84.8 85.2 78.2 47.2 88.4 49.0 73.3 84.0 92.8 20.5 56.8 84.5 62.9 82.1 78.1 70.0

Table 3. CorLoc on the trainval set of VOC 2007.

Method VOC 2012

WSDDN+context[15] 54.8

ZLDN [32] 61.5

OICR [26] 63.5

TS2C [31] 64.4

PCL [25] 65.0

CL [30] 65.2

OICR+FRCNN [26] 65.6

WSRPN [27] 67.2

PCL+FRCNN [25] 68.0

WSRPN+FRCNN [27] 69.3

Ours 67.4

Table 4. CorLoc on the trainval set of VOC 2012.

the results of WSDDNs that are initialized with different

parameters. We use the same fusion strategy introduced in

Section 4.2, while we only keep the proposal with largest

final score after NMS for the convenience of calculating

CorLoc. As shown in Fig. 5, the CorLoc of the fused re-

sult increases monotonically as the number of fused detec-

tors increases, and the instability of fused result decreases.

Even by fusing two WSDDNs, the CorLoc increases from

42.54% to 46.27%, showing the effectiveness of utilizing

the instability.

5.4. Ablation Studies

We first compared the proposed method with the base-

line model, which combines WSDDN and the refinement

module. Then we discuss the influence of detection branch

number and the class-specific orthogonal initialization strat-

egy. Without loss generality, we only conduct the ablation

experiments on VOC 2007.

Comparison with Baseline To show the effectiveness of

the proposed framework, we compare the result of our

method with a baseline framework containing a original

WSDDN. As shown in Table. 1, our method improves the

mAP from 49.0% to 52.0%. The performance on almost all

classes has been improved, such as aeroplane (mAP from

44.3% to 63.4%), cat (mAP from 47.0% to 69.6%) and chair

Figure 6. Results of different settings of branch number K and ini-

tialization strategies. ”Orthogonal” indicates the orthogonal ini-

tialization method. ”Gaussian” indicates the Gaussian initializa-

tion method.

(mAP from 21.8% to 27.2%). Our model can mine more

complete object bounding boxes by the fusion of multiple

detectors while WSDDN can only find object parts. Also,

the fusion strategy has the capacity of generating multiple

candidate proposals with high confidence for the refinement

module, further improving the detection performance.

Influence of Detection Branch Number In Fig. 6, we il-

lustrate the result of ablation study on different numbers of

detection branches. Even adding one more detection branch

can significantly boost the performance (mAP from 49.0%

to 51.6%), which confirms the effectiveness of our method.

With 3 detection branches, the performance achieve the

peak. The detection performance decreases slightly as the

number of branches further increases. We think the reason

may be that the online fusion strategy introduce the risk of

localizing too big bounding boxes and this risk outweighs

the gain of adding more branches when the number of de-

tection branches is greater than 3. Thus, we set the detection

branch number K to 3 in other experiments.

Influence of Orthogonal Initialization To validate the

effectiveness of orthogonal initialization, we compare the

proposed initialization method with a popular Gaussian ini-
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Figure 7. Some detection results of the proposed method. The green rectangles denote the correct detections (IoU ≥ 0.5), and the red

rectangles denote the failed ones.

tialization method, which samples values from Gaussian

distribution to initialize the parameters. As shown in Fig. 6,

orthogonal initialization method significantly improves the

detection performance. The effectiveness of orthogonal ini-

tialization further confirms the analysis in Section 3.

5.5. Comparison with StateoftheArt

In this subsection, we present the result of our frame-

work compared with other state-of-the-art methods. Ta-

ble. 1 shows the result on VOC 2007 dataset, and Table. 2

shows the result on VOC 2012 dataset. On VOC 2007, our

model obtains 52.0% mAP. On VOC 2012, our model ob-

tains 48.0% mAP. Our method outperforms previous meth-

ods with a large margin on both datasets.

Many works propose to train a fully supervised detec-

tor by using the result of MIL based detector as pseudo

ground-truth, and show significant improvement of perfor-

mance. Following Tang et al. [26], we also use the top-

scoring proposals produced by the proposed framework as

pseudo ground-truth to train a Fast-RCNN [13]. As shown

in Table. 1, the detection performance on VOC 2007 is fur-

ther improved to 52.6% in mAP, which is the new state-of-

the-art. The CorLoc results of ours on VOC 2007 and VOC

2012 are reported in Table. 3 and Table. 4, which also show

the same trend.

We illustrate some detection results of our framework in

Fig. 7. Although our model creates the new state-of-the-art,

the detection results on some classes, such as person, chair

and bottle, are still undesirable. The main failure for person

is that the proposed method only finds different parts of per-

son, such as face and hand. Although the inconsistency be-

tween the multiply detection branches is large, they all con-

verge to object parts. As for indoor objects such as chairs

and bottles, the co-occurrence of objects and backgrounds,

or of different objects, is more common and makes it diffi-

cult to separate objects from contexts or from each other.

6. Conclusions

In this paper, we analyze the instability of MIL-based de-

tector and introduce a metric IDR to measure the instability.

Although the instability seems harmful, we propose to uti-

lize it to get more accurate localization result. We propose

an end-to-end network architecture and introduce an online

fusion strategy to reduce computation cost. Also, a novel

orthogonal initialization method is introduced to increase

the difference between detection branches. Combined with

refinement module, the proposed framework surpasses all

previous methods and creates new state-of-the-art.
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