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Abstract

Despite recent success of deep neural networks, it re-

mains challenging to efficiently learn new visual concepts

from limited training data. To address this problem, a pre-

vailing strategy is to build a meta-learner that learns prior

knowledge on learning from a small set of annotated data.

However, most of existing meta-learning approaches rely

on a global representation of images and a meta-learner

with complex model structures, which are sensitive to back-

ground clutter and difficult to interpret. We propose a novel

meta-learning method for few-shot classification based on

two simple attention mechanisms: one is a spatial atten-

tion to localize relevant object regions and the other is a

task attention to select similar training data for label pre-

diction. We implement our method via a dual-attention net-

work and design a semantic-aware meta-learning loss to

train the meta-learner network in an end-to-end manner. We

validate our model on three few-shot image classification

datasets with extensive ablative study, and our approach

shows competitive performances over these datasets with

fewer parameters.

1. Introduction

A particular intriguing property of human cognition is

being able to learn a new concept from only a few examples,

which, despite recent success of deep learning, remains a

challenging task for machine learning systems [14]. Such

a few-shot learning problem setting has attracted much at-

tention recently, and in particular, for the task of classifica-

tion [13, 33, 31]. To tackle the issue of data deficiency, a

prevailing strategy of few-shot classification is to formulate

it as a meta-learning problem, aiming to learn a prior on

the few-shot classifiers from a set of similar classification

tasks [33, 17]. Typically, a meta-learner learns an embed-

ding that maps the input into a feature space and a predictor

that transfers the label information from the training set of

each task to its test instance.
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While this learning framework is capable of extracting

effective meta-level prediction strategy, it suffers several

limitations in the task of image classification. First, the i.i.d

assumption on tasks tends to ignore the semantic relations

between image classes that reflects the intrinsic similarity

between individual tasks. This can lead to inefficient em-

bedding feature learning. Second, most of existing work

rely on an off-the-shelf deep network to compute a holis-

tic feature of each input image, which is sensitive to nui-

sance variations, e.g, background clutter. This makes it

challenging to learn an effective meta-learner, particularly

for the methods based on feature similarity. Moreover, re-

cent attempts typically resort to learning complex prediction

strategies to incorporate the context of training set in each

task [23, 17], which are difficult to interpret in terms of the

prior knowledge that has been learned.

In this work, we aim to address the aforementioned

weaknesses by a semantic-aware meta-learning framework,

in which we explicitly incorporates class sharing across

tasks and focuses on only semantically informative parts

of input images in each task. To this end, we make use

of attention mechanisms [32] to develop a novel modular-

ized deep network for the problem of few-shot classifica-

tion. Our deep network consists of two main modules: an

embedding network that computes a semantic-aware fea-

ture map for each image, and an meta-learning network that

learns a similarity-based classification strategy to transfer

the training label cues to a test example.

Specifically, given a few-shot classification task, our em-

bedding network first generates a convolutional feature map

for each image. Taking as input all these feature maps, the

meta-learning network then extracts a task-specific repre-

sentation of input data with a dual-attention mechanism,

which is used for few-shot class prediction. To achieve

this, the meta-learning network first infers a spatial attention

map for each image to capture relevant regions on the fea-

ture maps and produces a selectively pooled feature vector

for every image [34]. Given these image features, the net-

work employs a second attention module, referred as task

attention, to compute an attention map over the training set

of the task. This attention encodes the relevance of each
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Figure 1: An illustration of few-shot classification via our attention-based network. See text for more details.

training example to the test image class in the task and is

used to calculate a context-aware representation of the test

instance [33] for its class prediction. To improve its dis-

criminative power, we can further refine the context-aware

representation by stacking multiple layers of two attention

modules and the resulting deep network is referred as the

Spatial-Task Attention Network (STANet). Figure 1 shows

an overview of few-shot classification via our dual attention

network.

For training our STANet, we design a multi-task loss

to incorporate the shared class semantics of all tasks and

to learn a meta-level classification strategy. To this end,

we introduce a semantic branch and integrate a semantic

prediction loss for the embedding network with a meta-

classification loss for the overall network.

We evaluate our STANet extensively on three challeng-

ing few-shot image classification benchmarks, including the

Omniglot dataset, MiniImageNet and a new dataset based

on the CIFAR-100. The empirical results and ablative study

demonstrate the superior or comparable performance of our

method over the prior state-of-the-art approaches. The main

contributions of our work are two-fold:

• We develop an efficient attention-based deep network

for one-shot prediction, which is also easy to interpret

in terms of learned knowledge for task-level general-

ization. Our network achieves the state-of-the-art ac-

curacies with much fewer parameters and simpler net-

work structure.

• We propose to learn a semantic-aware representation

for few-shot classification, which exploits the label

correlation across tasks and location of objects. More-

over, we build a new benchmark of few-shot classifi-

cation based on CIFAR-100 to study the impact of task

similarity and benefits of shared representations.

2. Related Work

Few-shot learning: Inspired by data-efficient learning in

human cognition [12], few-shot learning aims to learn a new

concept representation from only a few training examples.

Such a learning paradigm has attracted much attention in

the literature [5, 33, 21] as the traditional data-driven deep

learning approaches, despite their recent success, have dif-

ficulty in handling new classes with limited data annota-

tion [15]. Existing few-shot learning approaches can be

largely categorized into three main groups: Bayesian learn-

ing based, metric learning based and meta-learner based

methods.

Early works on few-shot learning aim to build a Bayesian

prior model that can be transferred to new classes. Fei-Fei

et al. [4, 5] utilized a hierarchical Bayesian model to rep-

resent the prior knowledge on visual classes for one-shot

image classification. More recently, Lake et al. [13] pro-

posed a hierarchical Bayesian program learning (HBPL) to

effectively learn the prior knowledge on object categories.

A second strategy in few-shot learning learns to predict

class-agnostic similarity between data instances. In particu-

lar, deep siamese network [9] trains a convolutional network

to embed data samples so that samples in the same class are

close while samples in different classes are far away. Re-

cent works [33, 26, 27, 31] refine this idea by introducing

recurrent network structure, attention mechanisms, or novel

learning objective to improve the similarity learning. Sung

et al. [29] propose to use relation networks to compare the

images within episodes. However, these methods typically

rely on a global feature representation of images and thus

lack the capacity to choose relevant regions when embed-

ding the images. In contrast, our approach employs dual

attention mechanism to focus on object features in images.

Meta-learning, or learning-to-learn strategies [19, 30,

25], have been applied to few-shot learning and made sig-

nificant progresses recently [1, 21, 6, 18, 16]. Ravi and
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Larochelle [21] proposed an LSTM meta-learner to learn

the exact optimization algorithm used to train the neural net-

work classifier in the few-shot regime. MAML [6] learns an

update step that a learner can take to successfully adapt to

a new task. Other work [3] combines metric learning and

meta-learning to learn task-specific learners.

In addition to the meta-optimizers, other complex deep

network models have been adopted as meta-learners for

few-shot learning, such as memory augmented neural net-

works [23], graph neural networks [24] and Meta net-

works [18], which encode a meta-level inductive biases

across tasks. Temporal convolution network [17] models

each classification task as a sequence prediction problem.

Recently, [20] propose to generate the parameters of the last

network layer from the activations of a pre-trained feature

embedding. [7] use an attention kernel to produce a mix-

ing of pre-trained linear weights for novel categories. In

contrast to these models, our method is based on a simple

attention-based neural network that has a compact structure

and is easy to interpret in terms of learned prior knowledge.

Attention-based representation: Attention mechanism

enables a deep network to attend relevant parts of input

data, which is important for learning an object representa-

tion robust toward cluttered background. Additive atten-

tion [2, 34] and multiplicative attention [32, 28] are the

two most commonly used attention mechanism. We exploit

the self-attention [32] to capture the data similarity in our

method. The Matching Network [33] also uses an atten-

tion mechanism over a learned embedding of training ex-

amples to predict classes for the test data. By contrast, our

dual attention network further incorporates the spatial atten-

tion [34] to learn a better representation of input images.

3. Problem Setting and Overview

We aim to learn an image classification model that can

predict object classes using only a few annotated images per

class as training data. To this end, we formulate the few-

shot image classification as a meta-learning problem [33].

Formally, we consider each instance of few-shot classifica-

tion as a task T (also called an episode) sampled from a

task distribution T . Each task T is defined by a class label

set LT , a task-train set Dtr
T (also called support set) con-

sisting of N annotated images, and a task-test example xts
T

with its groundtruth class label ytsT ∈ LT . The task-train

set Dtr
T = {(x(1)

T , y
(1)
T ), · · · , (x(N)

T , y
(N)
T )}, where x

(i)
T de-

notes the i-th input image in task T , and y
(i)
T ∈ LT is its

class labels, 1 ≤ i ≤ N .

The problem of meta-learning is to build a meta-learner

M, or a mapping from the task-train set Dtr
T and the task-

test data xts
T to the task-test label ytsT . Its learning frame-

work typically consists of two phases: meta-training and

meta-test. In the meta-training phase, we train the meta-

learner M on a set of tasks {T = (LT ,D
tr
T ,xts

T , ytsT )}
sampled from T , denoted as Smeta

tr . The entire label set

used in meta-training is denoted by Ltr = ∪T∈Smeta

tr
LT . In

the meta-test phase, we evaluate the meta-learner by test-

ing it on a separate set of task Smeta
ts with new classes

only. In other words, let the label set in the meta-test be

Lts = ∪T∈Smeta

ts
LT , and we have Ltr ∩ Lts = ∅. We use

the one-shot learning setting throughout the model sections

for notation clarity.

In this work, we address the meta-learning problem in

the context of image classification by explicitly incorpo-

rating spatial and semantic cues of object categories and

develop an easy-to-interpret deep network architecture for

few-shot classification. Our approach is motivated by three

key observations: 1) Object categories are mostly localized

in the images and using only relevant features allows us

to learn an object representation robust toward background

clutters; 2) A simple attention mechanism can be used to

find semantically similar images and encode the context of

task-train set Dtr
T for label prediction; and 3) A good im-

age representation is critical for building an effective meta-

learner and can be learned by incorporating the semantic

class information across the individual tasks (i.e., Ltr) in

the meta-learning setting. We instantiate these ideas by de-

signing a deep dual-attention neural network for the few-

shot image classification problem, which is detailed in the

following section.

4. Model Architecture

We now introduce our deep neural network based meta-

learner, which learns a class-relevant feature representation

of images based on a spatial attention and a context-aware

representation of test instances using a task attention. To

effectively train the dual-attention network, we also propose

a meta-learning loss with novel semantic regularization.

Specifically, our deep network consists of two main net-

work modules: an embedding network module that com-

putes convolutional feature maps for all the images in the

input (Dtr
T ,xts

T ) and a meta-learning network that uses a

dual spatial-task attention mechanism to predict the task-

test label ytsT . To facilitate the network learning, we also in-

troduce an auxiliary semantic branch in the meta-training

stage. We refer to our deep meta-learner as the Spatial-Task

Attention Network (STANet). An overview of our entire

model pipeline with two attention layers is shown in Figure

1 and we will describe each module in details below.

4.1. Embedding network

Given a task (or episode), the first stage of our STANet is

an embedding network module that extracts convolutional

feature maps of every training and test image in this task.

The embedding module consists of a series of convolution
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layers with residual connections and multiple strides [8].

Unlike prior work, we do not collapse the image feature

maps into a feature vector with full-connected layers. By

maintaining the spatial structure of the feature maps, we are

able to select regions relevant to the image categories, and

ignore the background clutters in the next stage.

Formally, denoting the embedding network as F and a

task T = (L,Dtr,xts, yts), we compute the feature maps

of images in T as,

Ctr
i = F(x(i)), x(i) ∈ Dtr, 1 ≤ i ≤ N, (1)

Cts = F(xts) (2)

where Ctr
i and Cts are feature representations of task-train

and task-test images respectively. Here we omit the task

index T for clarity. Let (Hf ,Wf ) be the height and width

of the feature maps. We represent the features as a matrix

in R
nch×nloc , where nch is the number of feature channels

and nloc = Hf ×Wf .

4.2. Meta­learning network

Taking as input the conv features and task-train labels

(Dtr,xts), the second component of the STANet is a meta-

learning network that builds a classifier to predict the class

label yts. To achieve this, we introduce a dual-attention

mechanism to locate the relevant image regions and pro-

duce a context-aware representation of task-test image for

transferring task-train labels.

We implement the dual-attention mechanism as a spatial-

task attention (STA) layer, composed of a spatial attention

and a task attention module. The STA layer takes the im-

age features and task-train labels in T to produce a context-

aware representation of the test example xts, which also al-

lows us to stack multiple STA layers to generate a set of

refined task-test image features for classification. Below

we will introduce those two attention modules and an one-

layer STA network first, followed by the multi-layer STA

network.

4.2.1 Spatial attention module

To focus on the regions related to their semantic class,

we introduce a spatial attention module to generate object-

centric representations of images in a task by exploiting

spatial information in the conv features. Specifically, we

derive a spatial attention map as for each conv feature

map C ∈ {Ctr
i }Ni=1 ∪ {Cts} based on the task-test fea-

ture, which will be detailed below. Here the attention

as ∈ ∆nloc ,∆nloc = {as ∈ R
nloc ,as � 0,1⊺as = 1},

indicating the relevance of each spatial site w.r.t. the tar-

get class yts. Given the attention map as, we can take a

weighted average of the feature map to obtain an object-

centric representation z = a⊺sC, where z ∈ R
nch .

Figure 2: Spatial attention module of meta-learning branch,

which generates object-aware representations of images.

To compute the attention maps, we first estimate a task-

test representation hts ∈ R
dh that captures distinctive fea-

tures of the test class of the task. We initialize hts by tak-

ing an average pooling of the test feature map Cts, which

typically generates a global semantic feature descriptor for

the test image. We use the task-test representation hts as a

query and search for the relevant spatial sites on the conv

feature maps. Formally, we adopt the attention mechanism

proposed in [32], which maps the query feature (hts) and

the conv features ({Ctr
i }Ni=1 ∪ {Cts}) into a key space, and

measures the key similarities based on their inner product.

To this end, we apply an 1 × 1 convolution to each conv

feature map C to compute its key representation Ks, and a

linear transform to the query hts to compute its key qs:

qs = Wqs
hts, Ks = WKs

C (3)

where Wqs
∈ R

dks
×dh , WKs

∈ R
dks

×nch , and the di-

mensions of the resulting keys are qs ∈ R
dks and Ks ∈

R
dks

×nloc

. The spatial attention map on C is then derived

by a weighted inner product between the query and the conv

feature keys, followed by a softmax function:

as = softmax

(

qsKs
√

dks

)

(4)

Such an attention map will have larger weights on the loca-

tions sharing similar features as the task-test representation.

For each task, the spatial attention module generates an

attention map for every task-train and task-test image, and

we denote them as {a(i)s }Ni=1 and atss respectively. Given

those attention maps, we compute an object-aware feature

representation for each image as follows:

zts = ats⊺s Cts, ztri = a(i)⊺s Ctr
i , 1 ≤ i ≤ N, (5)

where zts, ztri ’s ∈ R
nch . Figure 2 shows the structure of the

spatial attention module.

4.2.2 Task attention module

Given the object-centric image features zts, {ztri }Ni=1 of a

task, the second module of the meta-learning network aims
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Figure 3: Task attention module produces context-aware

representations for few-shot classification via task attention.

to produce a context-aware test feature for predicting the

test class yts. Our goal is to find the task-train instances that

are semantically similar to the test one for label transfer. To

this end, we implement a task attention mechanism inspired

by [17] to compute the context-aware test feature.

Concretely, we use the task-test image feature zts as

a query and produce a task attention vector at ∈ ∆N

(here ∆ denotes a simplex). Each element of the task

attention vector encodes the similarity between the task-

test feature and the corresponding training feature. We

adopt a similar strategy as in the spatial attention mod-

ule: First, we compute the key representations as qt =
Wqt

zts, Kt = WKt

[

ztr1 , ztr2 , · · · , ztrN
]

, where Wqt
∈

R
dkt

×nch , WKt
∈ R

dkt
×nch , and the dimensions of the

resulting keys are qt ∈ R
dkt and Kt ∈ R

dkt
×N . The

task attention on the task-train set is then calculated by

at = softmax

(

qtKt√
dkt

)

.

Given the task attention, we compute a context-aware

representation to encode the task-train examples that are

similar to the test instance, which is then used to predict

the test label. Specifically, we compute a linear embedding

of the training features and labels, and take the weighted av-

erage of the embedded features based on the task attention

at :

Vt = Wvt

[ (

ztr1
y1

)

,

(

ztr2
y2

)

,· · · ,
(

ztrN
yN

) ]

(6)

og = a
⊺

tVt, (7)

where yi are the one-hot encoding of label y(i) for a

given task, and y(i) ∈ {1, . . . , |L|}. The embedding ma-

trix Wvt
∈ R

dvt
×(nch+|L|), the embedded feature Vt ∈

R
dvt

×N , and the context-aware representation og ∈ R
dvt .

Here og can be viewed as a summary of the task-train infor-

mation relevant for predicting the test class in the task. The

computation flow of this module is illustrated in Figure 3.

Based on the context-aware feature, we predict the label

of the task-test instance by a fully connected layer followed

by a softmax function as follows,

Pmeta = softmax(Woog) (8)

where Pmeta ∈ ∆|L| is the probability vector over the label

space of the task, Wo ∈ R
|L|×dvt is the weight for the fully

connected layer, and ŷtsmeta = argmaxl∈{1,...,|L|} Pmeta(l)
is the predicted label.

4.2.3 Multi-layer STA Net

Our one-layer STA network relies on an estimated task-

test representation hts to initialize the first spatial attention

module and hence the efficacy of our dual attention mech-

anism depends on the quality of hts . While the average

pooling provides a good initial estimate, our task context

feature og can be further improved given a better task-test

representation. Specifically, we re-estimate the task-test

representation hts at the end of the task attention module

based on the features zts and an attention-weighted average

of {ztri }Ni=1:

os = a
⊺

t

[

ztr1 , ztr2 , . . . , ztrN
]

, hts = [zts
⊺

,o⊺

s ]
⊺ (9)

where os ∈ R
nch encodes the task context and is used to

enrich the test feature zts.

Using the new hts, we stack a second STA-layer into

the meta-learning module and generate a new task context

presentation og . Such process can be repeated and produce

M outputs {o(0)
g ,o

(1)
g , · · · ,o(M−1)

g } with an M -layer STA

network. We concatenate o
(m)
g s from all the STA layers to

form a multi-level task-context representation, which is then

pass through a logistic regressor to predict the final label.

4.3. Meta­training with semantic regularization

To estimate the model parameters, we train our STANet

in the meta-learning framework. Specifically, we assume a

meta-train dataset Smeta
tr = {T = (LT ,D

tr
T ,xts

T , ytsT )} is

provided in the meta-train stage, which is sampled from the

task distribution T . Our goal is to minimize the expected

task loss by learning an image representation through the

embedding network and a spatial-task attention mechanism

through the meta-learning network. To this end, we pro-

pose a novel meta-learning loss that consists of the empir-

ical task loss on the meta-train dataset and a semantic loss

that exploits the class correlation between different tasks.

The empirical task loss is the average log-loss of the net-

work predictions on the task-test instances, defined as,

Ltask(Θ) =
∑

T∈Smeta

tr

− logPmeta(y
ts
T |Dtr

T ,xts
T ; Θ)

|Smeta
tr | (10)

where Θ denotes all the model parameters.
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To learn a better embedded feature representation, we

further introduce a semantic loss defined on a shared class

space across different tasks. To achieve this, we augment

the embedding network with a Semantic Branch that pre-

dicts a label distribution in the global label space Ltr. This

allows us to inject additional supervisory signal into the em-

bedding network training. Specifically, our semantic branch

takes average pooling on each convolutional feature map C

and passes the resulting features through a logistic regres-

sor, which predicts a label distribution Psem ∈ ∆|Ltr|over

the global label set,

Psem = softmax(Wsem1⊺C) (11)

where Wsem is the weight for the logistic regression. The

semantic loss is defined by the average log-loss of the se-

mantic branch prediction:

Lsem(Θ) =
∑

T∈Smeta

tr

∑

(xT ,yT )

− logPsem(yT |xT ; Θ)

|Smeta
tr |(|Dtr|+ 1)

(12)

where the dataset size equals to the number of task-train

data |Dtr
T | plus the number of task-test examples. And the

overall meta-train loss is defined as,

Lfull = Ltask(Θ) + λLsem(Θ) (13)

where λ is a weight balancing the regularization from the

semantic loss. As the semantic loss is closer to the embed-

ding network and shared across different training tasks, it

enables us to significantly speedup the feature learning, and

learn a better convolutional feature representation for the

meta-learning network.

5. Experiments

We evaluate our STANet method on the task of few-

shot image classification by conducting a set of exper-

iments on three datasets. In addition to two publicly-

available datasets, MiniImageNet [11] and Omniglot [13],

we propose a new few-shot learning benchmark using real-

world images from CIFAR100 [10], which is referred to

as Meta-CIFAR100 dataset. In this section, we introduce

the datasets and report detailed experimental results. We

perform different N -way m-shot experiments on the three

datasets, with 95% confidence interval in the meta-test

phase1.

5.1. MiniImageNet

Dataset. MiniImageNet is a subset of the ILSVRC-12

dataset [22], consisting of 84 × 84 RGB images from 100

different classes with 600 examples per class. We adopted

the splits proposed by [33, 21] with 64 classes for training,

16 for validation, 20 for testing in the meta-learning setting.

1Details of network architecture and experiments configuration are

listed in the supplementary material.

Table 1: MiniImageNet Performance. STANet-S refers to

shallow embedding network.

Method # Params Feature
5-way Accuracy

Extractor 1-shot 5-shot

Matching Net [33] 0.1M Conv64 43.56± 0.84% 55.31± 0.73%

Prototypical Net(Snell et al. 2017) 0.1M Conv64 49.42± 0.78% 68.20± 0.66%

MAML (Finn et al. 2017) 0.1M Conv64 48.70± 1.84% 63.11± 0.92%

RelationNet[29] 0.23M Conv64 50.44± 0.82% 65.32± 0.70%

(Gidaris et al. 2018) 0.24M Conv64 56.20± 0.86% 72.81± 0.62%

GNN (Satorras et al. 2018) 1.6M Conv64 50.33± 0.36% 66.41± 0.63%

STANet-S(1-Layer) 0.24M Conv64 50.38± 0.65% 65.67± 0.66%

STANet-S(3-Layer) 0.24M Conv64 53.11± 0.60% 67.16± 0.66%

SNAIL [17] 6.1M ResNet-12 55.71± 0.99% 68.88± 0.92%

(Gidaris et al. 2018) 2.6M ResNet-12 55.45± 0.86% 70.13± 0.68%

[20] 40.5M WRN-28 59.60± 0.41% 73.74± 0.19%

STANet(1-Layer) 2.6M ResNet-12 57.25± 0.40% 69.45± 0.50%

STANet(3-Layer) 2.6M ResNet-12 58.35± 0.57% 71.07± 0.39%

Table 2: Ablation study for STANet on MiniImageNet using

3 layers dual-attention. SR-Semantic Regularization, SA-

Spatial Attention, TA-Task Attention.

Components 5-way(Normal)

SR. SA. TA. 1-shot 5-shot

✗ Uniform ✓ 53.41± 0.61% 64.32± 0.57%

✗ Gaussian ✓ 54.29± 0.66% 65.41± 0.55%

✗ ✓ ✓ 55.52± 0.64% 66.75± 0.62%

✓ ✓ ✓ 58.35± 0.57% 71.07± 0.39%

Quantitative Results. We compare the performance of

our STANet with previous state-of-the-art meta-learning

methods in Table 1. The top section compares our net-

works with other methods using the same shallow embed-

ding network, while the bottom section shows comparison

results with deeper embedding networks. In both settings,

our 3-Layer STANet outperforms the previous approaches

that use the same type of embedding networks by a sizable

margin. Moreover, our network achieves comparable accu-

racies to [20]’s method but has a much simpler architecture:

only 6% of their model in parameter size.

Visualizing Results. To understand the dual attention

mechanism, we visualize the spatial attentions of the 3-

Layer STANet by overlaying them on the images and the

task attentions in Figure 4. We can see that spatial atten-

tion helps the model locate salient region of task-test image

(e.g., the foreground objects), and the matching regions in

the task-train set. Based on the localized features, the task

attention weight for each task-train image indicates how rel-

evant an image is for predicting the label of the task-test im-

age. Moreover, Figure 4 shows that spatial attention gener-

ates sharper focuses on salient regions with increasing num-

ber of layers, while task attention also concentrates more on

the task-train image in the same class as the task-test ones.
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Figure 4: Visualization of attention maps in the 3-Layer STANet on one-shot classification (MiniImageNet). Green indicates

the correct class for the test image. First row: input images, classes and predicted scores. Second-Fourth row: spatial

attention-masked images. at denotes the task attention values.

Figure 5: Validation curves of the STANet with and with-

out the semantic branch. Green curve shows the training of

the full STA-Net and Red curve is for the STA-Net without

semantic branch.

Ablation Study. We conduct a series of ablation studies

to evaluate the importance of each component used in our

STANet model. Table 1 and Table 2 summarize the results

of our ablative experiments, in which we compare our full

model with several partial model settings.

First, we compare the single-layer STANet with the

multi-layer model in Table 1 (last two rows). We can see

that the multi-layer STANet further promotes the accuracies

in both few-shot settings. While the improvement seems

mild, it demonstrates that more STA layers can refine the

image representations to achieve better performance.

Second, in Table 2, we create three baseline models by

removing the semantic branch or the spatial attention. By

comparing with the full model, we show that adding the se-

mantic branch improves the performance of the model from

55.52% to 58.35% with a 3% gain. We also compare our

spatial attention with uniform and Gaussian attention, and

our learned attention achieves favorable performance. We

note that the MiniImageNet has a strong center-bias, which

may cause the mild improvements.

Finally, we compare the training process of the full

STANet model with the STANet without semantic regular-

ization. We plot the validation performance curves of these

two STANets during training in Figure 5. It is evident that

the semantic branch is able to improve the convergence and

the final performance significantly, which indicates that the

full STANet exploits the semantic information efficiently.

5.2. Meta­CIFAR100

Dataset. To investigate the impact of task distributions in

the few-shot learning, we design a new few-shot classifi-

cation benchmark, Meta-CIFAR100, based on the CIFAR-

100[10] dataset. We use all the classes from the CIFAR-100

in our dataset, which contains 32 × 32 RGB images from

100 classes with 600 images per class. The label classes of

CIFAR100 have a balanced hierarchical structure: they are

included in 20 parent categories and each parent category

comprises 5 base categories. This allows us to design dif-

ferent types of task distributions when building training and

test splits in the meta-learning setting.

Specifically, we introduce three kinds of dataset splits:

Easy, Moderate and Hard as follows2, which indicates

how related the test tasks are to the training tasks, and how

much semantic knowledge can be transferred.

Easy: We choose one base category from each parent cat-

egory to construct the meta-test set, which represents the

2We include more split details in the supplementary material.
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Table 3: Classification on CIFAR-100

Method # Params Feature
Easy Moderate Hard

Extractor 1-shot 5-shot 1-shot 5-shot 1-shot 5-shot

MAML (Finn et al. 2017) 0.1M Conv64 55.17± 1.90% 74.12± 0.86% 46.30± 1.90% 58.49± 0.94% 38.46± 1.83% 52.17± 0.89%

STANet(1-layer) 0.1M Conv64 65.51± 0.44% 78.31± 0.38% 56.62± 0.46% 67.38± 0.51% 42.94± 0.41% 54.91± 0.38%

STANet(3-layer) 0.1M Conv64 66.11± 0.42% 78.54± 0.51% 57.31± 0.39% 68.71± 0.43% 42.98± 0.43% 55.23± 0.42%

Table 4: Omniglot Performance

Method # Params Feature
5-way Accuracy

Extractor 1-shot 5-shot

Matching Net [33] 0.1M Conv64 98.1% 98.9%

Prototypical Net (Snell et al. 2017) 0.1M Conv64 97.4% 99.3%

GNN (Satorras et al. 2018) 0.4M Conv64 99.2% 99.7%

MAML (Finn et al. 2017) 0.1M Conv64 98.7± 0.4% 99.9± 0.3%

SNAIL [17] 2.7M Conv64 98.96± 0.20% 99.75± 0.11%

STANet(1-Layer) 0.1M Conv64 98.10± 0.11% 99.41± 0.09%

STANet(3-Layer) 0.1M Conv64 98.69± 0.22% 99.59± 0.33%

case that at the meta level, the test and train set are from

different categories but share the same parents.

Moderate: We select 2 or 3 base categories from 7 parent

categories to build the meta-test set with 20 base classes,

and use the remaining 80 classes for the meta-train set.

Hard: We choose 4 parent categories randomly, and use

their 20 base categories as the meta-test set. The remaining

16 parent categories and 80 base categories are employed

for the meta-train set.

Experimental Results. Our experiments on the Meta-

CIFAR100 dataset aim to investigate the impact of the task

distribution in the few-shot classification. We include the

MAML method [6], which has released its code, for com-

parison with the state of the art.

From results in Table 3, we can see that our approach

outperforms the baseline method by a large margin in all

three different settings. In addition, as the STANet is able

to exploit the semantic similarity during feature learning,

it achieves the largest performance gain for the Easy case

where the meta-train and meta-test sets have the highest

similarity in semantic features. When the meta-train and

test are less similar, the meta-learning task becomes more

difficult but the performance gap only decreases mildly.

5.3. Omniglot

Dataset. The Omniglot dataset [12] consists of 1623 char-

acters (classes) from multiple alphabet vocabularies. We

follow the setting in [33] to split the dataset into 1200

classes for training and the remaining 423 for testing, and

augment the dataset by rotation proposed by [23].

Experimental Results The Omniglot dataset [12] has

been widely used for testing few-shot learning methods and

most recent methods achieve strong performances. Here we

use it as a sanity check to validate our method. For seman-

tic regularization, we choose the parent level of the base

categories, which include 39 classes, as a coarse-level su-

pervision in training the embedding network.

The overall comparison results are shown in Table 4. We

can see that our STANet achieves competitive performance

on the Omniglot dataset in comparison with the state-of-

the-art methods. This indicates that our approach performs

well on different types of image data.

5.4. Implementation Details

Task Sampling and Evaluation We focus on few-shot

image recognition task and conduct all our experiments in

the N -way m-shot setting. Specifically, we build our meta-

training and meta-test dataset by sampling tasks as follows:

for each task, we first randomly sample N image classes

and then sample Nm+1 examples from N classes, includ-

ing m images per class for the task-train and one for the

task-test set.

We adopt a mini-batch learning strategy and in each

training epoch, we use sample-without-replacement to se-

lect N classes for each training task. This makes sure that

each training class occurs once in every epoch. For evalu-

ation, we report the average accuracy on the meta-test set,

which consists of tasks sampled from the test data.

Training strategy For MiniImageNet, We use adam opti-

mizer with learning rate at 3e−4, weight decay at 5e−4 and

a meta batch size of 16 and 8 for 1-shot and 5-shot in the

training phrase respectively. The λ of multi-loss is 0.5.

6. Conclusion

In this work, we have proposed a simple and yet effective

meta-learning method based on a dual attention deep net-

work. Our approach has several advantages over the prior

works. First, by exploiting the spatial attention and shared

semantics, we are able to learn a robust semantic-aware im-

age representation. In addition, our attention mechanism is

easy to interpret in terms of the prior knowledge learned by

the meta-learner. Furthermore, we demonstrate the efficacy

of our approach by extensive experiments on the MiniIm-

ageNet, Omniglot and a new Meta-CIFAR100 benchmark,

which clearly show that our network has achieved competi-

tive or the state-of-the-art performances.
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