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Abstract 

 

In recent years, large-scale datasets together with the 

emergence of deep learning have led to the immense 

success of face recognition. However, face recognition in 

surveillance scenarios is still challenging due to severe blur, 

dramatic occlusion, richer pose, and illuminations. 

Meanwhile, owing to the source of data and cleaning 

strategies, existing large-scale datasets are inevitably 

affected by label noise. In this paper, a pairwise learning 

strategy is proposed to overcome the challenges of 

abundant variants in video-based face recognition (VFR). 

In addition, an online effective example mining (OEEM) 

method is designed to eliminate noisy samples to force the 

model focus more on effective examples during training. 

Experimental results on LFW, COX and one selfie dataset 

validate the effectiveness of the proposed approach. 

 

1. Introduction 

Although considerable progress has been witnessed in 

face recognition area due to the emergence of many deep 

learning-based approaches [ 1 - 8 ], most of them were 

designed for still image based recognition (SIFR).  When 

extended from still image-based face recognition (SIFR) to 

video-based face recognition (VFR), many methods tended 

to ignore the peculiarities of videos compared to SIFR, 

however, VFR is significantly more challenging. Images in 

standard SIFR datasets are usually captured under good 

conditions or even framed by professional photographers, 

e.g., the Labeled Faces in the Wild (LFW) [9] database. On 

the contrary, the image quality of video frames tends to be 

much lower and the faces in the video exhibit much richer 

variations because video acquisition is less constrained. In 

particular, subjects in videos are usually moving, resulting 

in serious motion blur, out-of-focus blur, and a large range 

of pose variations. Hence, it is necessary to design a model 

to overcome challenges for effective and robust video face 

recognition. 

Large scale datasets have been commonly recognized as 

one of the key factors promoting the advance of face 

recognition, and many datasets of still face photos have 

been released in recent years, such as MegaFace [10] and 

MS-Celeb-1M [ 11 ]. Unfortunately, there is no such 

large-scale datasets for VFR. Therefore, how to effectively 

use the still data in VFR has become a hot research topic. A 

number of recent VFR studies attempt to make use of 

redundant information of still image such as frame quality 

evaluation [ 12 - 13 ], and extracting high-quality face 

representations [14-16]. Frame quality evaluation is mainly 

utilized for key frame selection from video clips, such that 

only a subset of best quality frames is selected for efficient 

face recognition. Extracting high-quality face 

representations have been introduced to reduce the impact 

of severe blur in VFR, which has been widely used in VFR 

applications.  

Another problem related to data is the noisy label. As can 

be seen in [17], considerable incorrect identity labels can be 

found in both MegaFace and MS-Celeb-1M, where some 

erroneous labels are easy to remove while many of them are 

hard to be cleaned. The noisy label is a pervasive problem, 

since well-annotated datasets in large-scale are 

prohibitively expensive, which motivates researchers to 

resort to cheap but imperfect alternatives.  

How to reduce noisy samples to help an algorithm focus 

more on effective samples will be a reasonable direction 

toward efficient utilization of imperfect dataset. We 

propose a Pairwise CNN (P-CNN) to efficiently learn face 

representations for VFR, where two CNN networks are 

incorporated, i.e., Base CNN (B-CNN) and Reinforcement 

CNN (R-CNN). B-CNN is trained to learn face 

representations from still face images directly, while 

R-CNN is trained simultaneously to learn face 

representations from video-like images. The video like 

images are artificially generated by manipulating the still 

images to simulate video condition such as adding motion 

blur and out of focus blur. During training, a pairwise 

learning strategy is adopted to force the output of R-CNN to 

be equal with B-CNN. In this way, the model can be trained 

to reduce the influence of the video-based variance.  

In order to reduce the influence of noisy labels, an OEEM 

method is used to eliminate noisy and easy samples and 

force the model focus more on effective samples during 

training.  
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Our main contribution can be summarized as three folds:  

(1) P-CNN structure: Incorporates B-CNN and R-CNN 

networks to efficiently learn face representations for 

VFR. 

(2) A pairwise learning strategy: to overcome the 

challenges of large variants in VFR. 

(3)  OEEM: reducing noisy samples and easy samples to 

help an algorithm focus more on effective samples 

learning. 

The paper is organized as follows. Section 2 briefly 

reviews related work on VFR and noisy label problems. 

Section 3 describes the proposed P-CNN framework, the 

pairwise learning strategy and OEEM method. Finally, we 

present experimental results in Section 4 and conclude this 

paper in Section 5. 

2. Related work 

We review the literature in two parts: 1) video-based face 

recognition, and 2) noisy label problems. 

2.1. Video-based Face Recognition 

Existing studies on VFR can be categorized into two 

classes: methods that exploit redundant information 

contained between video frames, and methods that extract 

high-quality face representations from each frame.  

For the first category, a number of VFR studies have been 

proposed. The sequence-based methods [18-19] aim to 

extract person-specific facial dynamics from continuous 

video frames, which means that they rely on robust face 

trackers. The dictionary-based methods [20-21] construct 

redundant dictionaries using video frames and employ 

sparse representation-based classifiers for classification. 

Frame quality evaluation is mainly utilized for key frame 

selection from video clips, such that only a subset of best 

quality frames is selected for efficient face recognition 

[12-13]. 

For the second category, extracting high-quality face 

representations has always been a core task in face 

recognition [22]. In contrast to still face images, video 

frames usually suffer from severe image blur because of the 

relative motion between the subjects and the cameras. 

Deblur-based methods [14] estimate a blur kernel from the 

blurred image and then deblur the face image prior to 

feature extraction. Blur-robust feature extraction-based 

methods [23]  were proposed to employ the blur-insensitive 

Local Phase Quantization (LPQ) descriptor for facial 

feature extraction, which has been widely used in VFR 

applications. 

To the best of our knowledge, the majority of existing 

works directly employ CNN models trained on large-scale 

still image databases for VFR. One important reason is that 

large amounts of real-world video training data are still 

lacking, and direct CNN training using small volume of 

real-world video data is prone to overfitting. However, few 

CNN-based method has been used to handle the occlusion 

and blur problem in VFR. Therefore, a pairwise learning 

strategy is proposed to overcome the challenges of abundant 

variants in VFR. 

2.2. Noisy label Problems 

Large-scale datasets, such as MegaFace and 

MS-Celeb-1M datasets, play a main role in driving the 

recent development of face recognition, because the DNN 

based face recognition has become a data driven approach. 

However, existing large-scale datasets inevitably contain 

label noises owing to the source of data and cleaning 

strategies as well as the cost of manual cleaning. It was 

reported that face image datasets that are more than a 

million scale typically have a noise ratio higher than 30% 

[17]. Label noise may also bring instability to the model. 

A-Softmax, which usually achieves a better result on a clean 

dataset, was reported to be inferior to Center loss [5] and 

Softmax in the high-noise region.  

Some methods [17] have been proposed in the literature 

to deal with noisy label problems, which can generally be 

classified into three categories. In the first category, robust 

loss functions [24] are designed for the classification tasks, 

in order to learn classification models robust to the presence 

of label noise. In the second category [25], however, the 

quality of training data is improved by identifying 

mislabeled instances. The third category methods [ 26 ] 

directly models the distribution of noisy labels during 

learning, with the advantage of leveraging the information 

about noisy labels during learning. 

Just as mentioned above, collecting and cleaning a large 

scale dataset requires tremendous efforts, as a result, 

leaving the data in this form will be more reasonable in that 

it will encourage researchers to devise new learning 

methods that can naturally deal with the inherent noises.  

3. Approach 

In this section, we first describe the P-CNN, which 

incorporates B-CNN and R-CNN network, to efficiently 

learn face representations robust to occlusion and blur. 

Then, a pair-wise training strategy is introduced to 

effectively optimize the P-CNN parameters.  Finally, an 

OEEM method is used to force the model focus more on 

effective samples during training. 

3.1. Pairwise CNN (P-CNN) 

The P-CNN structure incorporates B-CNN and R-CNN 

network, where, the two networks are trained to learn face 

representations for still face images and video images 

respectively. As we know, motion blur and out-of-focus blur 

are two important characteristics of video images, due to 
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Figure 1, The Proposed Framework of P-CNN 

 

face movement or mobile device camera shake during 

exposure, as well as the limited depth of field (DOF) of 

cameras and the large motion range of faces in videos. To 

solve such problems, a direct idea is to train a network with 

enough video data to learn such characteristic. 

Unfortunately, no such video corpus is available, so, we 

artificially generate video like images by manipulating the 

still images such as adding motion blur and out-of-focus 

blur. In learning, a Siamese network [27] is adopted as the 

basic framework of the P-CNN, to force the R-CNN and 

B-CNN networks have similar outputs, as shown in figure 1. 

In this paper, P-CNN network is implemented based on 

ResNet, while the B-CNN and R-CNN share the same 

structure and weights. The main parameters are tabulated in 

table 1. In the table， Conv1.x, Conv2.x, Conv3.x and 

Conv4.x denote convolution units that may contain multiple 

convolution layers, and the residual units are shown in 

double-column brackets, e.g., 3 3,256 4     denotes 4 

cascaded convolution layers with 256 filters of size 3x3. S2 

denotes that the stride is 2. FC is the abbreviation of fully 

connected layer. 

3.2. A pairwise learning strategy 

A pair-wise training strategy is proposed to effectively 

optimize the P-CNN parameters. Firstly, artificially 

simulated images are generated from still face images. The 

motion blur was simulated by one-dimensional local 

averaging of neighboring pixels [28], while the out-of-focus 

blur was simulated by a Gaussian kernel [16]. For the case 

of occlusion, images was generated by randomly removing 

some forehead region of the face. 

The original still image and the artificially generated images 

are then input to the B-CNN and R-CNN networks 

respectively for feature extraction. The output softmax of 

B-CNN and R-CNN are denoted as follows: 

max( )B BP soft a                           (1) 

max( )R RP soft a                           (2) 

where Ba and Ra  are the pre-softmax activations vector of 

B-CNN and R-CNN.  

RP  is forced to have similar value to BP  during training.  

 

TABLE 1 P-CNN Network Parameters 

Layer 20-layer CNN 64-layer CNN 

Conv1.x 

3 3,64 1,

3 3,64

, 4

2

3 3 6 1

S  




 

   
 

3 3,64 1,

3 3,64

, 4

2

3 3 6 3

S  




 

   
 

Conv2.x 3 3,128

3 3,128

3 3,128 1, 2

2

S  



 

   
 

3 3,128

3 3,128

3 3,128 1, 2

8

S  



 

   
 

Conv3.x 3 3,256

3 3,256

3 3,256 1, 2

4

S  



 

   
 

3 3,256

3 3,256

3 3,256 1, 2

16

S  









   
 

Conv4.x 3 3,512

3 3,512

3 3,512 1, 2

1

S  



 

   
 

3 3,512

3 3,512

3 3,512 1, 2

3

S  



 

   
 

FC1 512 512 

Since
BP might be very close to the one hot code 

representation of the sample’s true label, a relaxation 
parameter 1   is introduced to soften the signal arising 

from the output of the B-CNN, and thus, more information 

can be provided during training. Similarly, the relaxation is 

also applied to the output of R-CNN. Thus, the soften 

softmax, 
B

P


and 
R

P


, can be obtained: 

max( )B
B

a
P soft



                             (3) 

max( )R
R

a
P soft



                            (4)  

In order to make 
R

P


 have similar value to
B

P


, the pairwise 

loss was designed: 

      ( , )
p B R

L H P P
                                  (5) 

where, ( )H  represents cross entropy.  

Besides the pairwise loss, traditional softmax loss functions 

are also applied to both B-CNN and R-CNN, denoted as LB 

and LR. The final loss function is thus the combination of 

the above three losses, as follows: 

                    
B R p

L L L L                            (6) 

3.3. OEEM 

By analyzing the loss during training, it was found that 

the easy samples usually have small loss values and thus 

contribute little to the gradient [29-30].In addition, we 

further found that the loss values of noise samples were very 

large, especially after several training epochs. Therefore, 

different from the traditional method of cleaning data first 

and then training model, we do OEEM in face classification  
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Figure 2, Images sample form O-LFW dataset 

 
Figure 3, Images sample form COX dataset 

task in the training process. Specifically, in each mini-batch, 

the loss values of all samples are computed and ranked in 

the forward propagation phase. Based on the loss values, the 

top   percent of them is removed as noise samples and the 

bottom   percent of them is removed as easy samples. In 

the backward propagation phase, the gradient values are 

computed only for the remained effective samples. This 

method can not only ignore the easy samples that are less 

helpful to strengthen the recognition capability, but also 

eliminate noisy samples that may hamper the discrimination 

of the model. The OEEM strategy could help the algorithm 

automatically focus more on effective examples in learning. 

Moreover, the gradients calculation with a smaller 

mini-batch size becomes faster. 

4. Experiment and results 

4.1. Experiments Settings 

The network model described in section 3.1 is used in our 

experiments. In prior to feature extraction, MTCNN [30] is 

adopted to detect the 5 landmark points in the face, after that, 

faces are aligned by similarity transformation according to 

the landmarks and cropped to 112x96 to remove the 

background information. Since B-CNN and R-CNN share 

the same network structure and weights, the deep features 

are extracted from the output of FC1 layer. The score is 

computed by the cosine distance of two features. 

Training datasets: CASIA-WebFace and 

MS-Celeb-1M are two widely used datasets for training face 

recognition model. CASIA-WebFace contains 500K photos 

of 10K celebrities and it is semi-automatically cleaned via 

tag-constrained similarity clustering. MS-Celeb-1M 

contains 100K celebrities who are selected from the 1M 

celebrity list in terms of their popularities. Public search 

engines are then leveraged to provide approximately 100 

images for each celebrity, resulting in about 10M web 

images. In its initial form, this data is deliberately left 

uncleaned for several reasons. Later, some researchers have 

made much effort to try to remove the incorrect labels and 

photos to avoid pitfalls in training. Unfortunately, some 

noise is still remained, e.g., the estimated noise percentage 

in MS-Celeb-1M is more than 45% [17]. 

 
 Frontal            Pose              lighting     WithoutGlasses   WithGlasses  

Figure 4, Image pair examples of FRDCMobile dataset. 

Testing datasets:  three datasets are used in the testing, 

two public datasets that are the well-known LFW [9] and 

COX Face DB [31], and one private dataset which is called 

FRDCMobile in this paper.  

LFW is a widely used dataset for benchmarking face 

recognition approaches, which consists of 13,000 facial 

images of 1,680 celebrities. 

The COX Face database incorporates 1,000 still images 

and 3,000 videos of 1,000 subjects. A high-quality camera 

in well-controlled conditions was used to capture still 

images to simulate ID photos, and the videos were taken 

while the subjects were walking in a large gym to simulate 

surveillance. Three cameras at different locations were 

installed to capture videos of the walking subject 

simultaneously. An example of video clip from COX is 

shown in Fig.3. Videos captured by the three cameras create 

three subsets, denoted as Cam1, Cam2, and Cam3. The 

standard matching protocols [31] proposed by the author, 

i.e., still-to-video (S2V), video-to-still (V2S), and 

video-to-video (V2V), were adopted in face identification 

evaluation. 

The private dataset, FRDCMobile, contains photos 

captured by mobile phone from 1200 Chinese people. With 

the consideration of the variations in head pose, lighting, 

and accessory, different capturing conditions were designed 

such as with or without glasses, frontal or non-front, normal 

or dark lighting, etc. Some examples of FRDCMobile DB 

are shown in Figure 4. With the above setting, totally 88 

photos were obtained for each subject, which leads to more 

than 100K image pairs in the identification test. 

To verify the effectiveness of the proposed P-CNN in 

case of occlusion, we randomly add occlusion to the 

forehead region of the LFW face image to simulate the 

occlusion image. The new dataset is denoted as 

occlusion-LFW (O-LFW). The image pairs are kept same 

with the original LFW dataset, as shown in the fig.2. 

4.2. Verification of OEEM strategy 

To evaluate the contribution of the proposed OEEM 

strategy, we only use B-CNN to train the ResNet20 model 

with and without OEEM respectively. Besides this, both 

CASIA-WebFace and MS-Celeb-1M are used as the  
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TABLE 2 Accuracy (ACC) and TPR@FAR=0.1%  on LFW, 

training with CASIA-WebFace dataset 

Model ACC TPR@FAR=0.001 

WO OEEM 99.22%+-0.40% 97.01% 

W OEEM 99.35%+-0.34% 98.60% 

TABLE 3 TPR@FAR=0.1%  on FRDCMobile, training with 

CASIA-WebFace dataset 

Model 
TPR@FAR=0.001 

Frontal Pose Light  

WO OEEM 92.9% 75.9% 91.4% 

W OEEM 94.5% 78.7% 91.9% 

TABLE 4 Accuracy (ACC) and TPR@FAR=0.1% on LFW, 

training with Ms-CeleB-1M dataset 

Model ACC TPR@FAR=0.001 

WO OEEM 99.50%+0.34% 98.30% 

W OEEM 99.55%+-0.29% 99.12% 

TABLE 5 TPR@FAR=0.1%  on FRDCMobile, training with 

Ms-CeleB-1M dataset 

Model 
TPR@FAR=0.001 

Frontal Pose Light  

WO OEEM 97.0% 84.2% 94.7% 

W OEEM 98.9% 89.9% 97.8% 

 

training corpus respectively, to reduce the risk of 

occasionality. 

OEEM implementation follows the instructions 

described in section 3.3, and different parameter values are 

tested for   and   in order to get the best accuracy. In our 

experiments, the value of  is set to be 

 0.05,0.1,0.15,0.2,0.25 while the value of  is set to be 

 0.1,0.2,0.3,0.4 .  It is worth noting that the best  of 

CASIA-WebFace and MS-Celeb-1M are 0.1 and 0.15 

respectively, while the best   are 0.3 and 0.2 respectively.  

The best  of CASIA-WebFace is smaller than 

MS-Celeb-1M, which may be CASIA-WebFace is cleaner 

than MS-Celeb-1M. However, the best   of 

CASIA-WebFace is larger than MS-Celeb-1M, which may 

be MS-Celeb-1M have more rich pose, illuminations or 

another variants than CASIA-WebFace. Table 2-5 shows 

the identification accuracy on LFW and FRDCMobile data 

with CASIA-WebFace and Ms-CeleB-1M as training DB 

respectively. 

On LFW, the models trained by CASIA-WebFace and 

MS-Celeb-1M with OEEM strategy outperform without 

OEEM by 0.13% and 0.05% respectively. On FRDCMobile, 

the models trained by CASIA-WebFace and MS-Celeb-1M 

with OEEM also outperform without OEEM, especially on 

FRDCMobile pose. The results suggested that the accuracy 

with OEEM is better than that without OEEM. However, 

the improvement of CASIA-WebFace is more obvious than 

MS-Celeb-1M on LFW. This is because the accuracy of 

model trained by MS-Celeb-1M has been very high on LFW, 

so the improvement is not obvious. Although the 

TABLE 6 Accuracy (ACC) and TPR@FAR=0.1% on O-LFW 

Model ACC TPR@FAR=0.001 

B-CNN  99.38+-0.31% 98.83% 

P-CNN 99.58+-0.32% 99.13% 

TABLE 7 TPR@FAR=0.1%  on FRDCMobile 

Model 
TPR@FAR=0.001 

WO-WO* W-W* WO-W* W-WO* 

B-CNN 99.9% 99.9% 99.6% 99.5% 

P-CNN 99.9% 99.9% 99.9% 99.8% 

*‘Wo’ means without glasses, ‘W’ means with glass. WO-WO 

means gallery without glasses and probe without glasses; W-W 

means gallery with glass and probe with glass; WO-W means 

gallery without glasses and probe with glass; W-WO means 

gallery with glass and probe without glasses. 

performance of model trained by MS-Celeb-1M is higher 

than model trained by CASIA-WebFace without OEEM 

strategy on FRDCMobile, the improvement of model 

trained by MS-Celeb-1M is still more obvious than model 

trained by CASIA-WebFace with OEEM strategy. This is 

because the noise ratio of MS-Celeb-1M is higher than 

CASIA-WebFace. It is suggested that OEEM can help an 

algorithm focus more on effective samples learning. 

4.3. Effectiveness for Occlusion 

This experiment is designed to evaluate the effectiveness 

of the proposed P-CNN for the case of occlusion. Because 

of the lack of publicly occluded face data sets, where, 

O-LFW and FRDCMobile datasets were used for test. 

Similar to previous test, ResNet20 is selected again as the 

basic network. The B-CNN model is firstly trained as a 

benchmark, based on which the P-CNN model is built using 

pairwise learning strategy. The results on the two datasets, 

O-LFW and FRDCMobile, are shown in Table 6 and Table 

7. 

On O-LFW, both the accuracy and true positive rate 

(TPR@FAR=0.001) of P-CNN is higher than B-CNN by 

around 0.2% and 0.3% respectively. In the case of accessory 

variations, e.g. with vs. without glasses, P-CNN 

outperforms B-CNN by around 0.3% and 0.3% on 

FRDCMobile set respectively. It is interesting to observe 

that although the artificially occluded images was generated 

by randomly adding occlusion, the performance of wearing 

glasses is improved. The result convincingly shows that the 

proposed pairwise learning strategy is essential to achieve 

occlusion-robustness in face recognition. 

4.4. Performance on COX Face DB 

In this part, we mainly focus on the evaluation of the 

proposed strategies in video face recognition, where, three 

experiments are designed: (1) B-CNN-WO, where B-CNN 

model is trained without blur data augmentation; (2) 

B-CNN-W, where data augmentation method is adopted by 

adding blur to the training data randomly; (3) P-CNN, 

which applies the proposed pairwise learning strategy. The 
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TABLE 9 Rank-1 Identification Rates (%) under the V2S Setting 

for Different Strategies on the COX Face Database. 

Model V2S_1 V2S_2 V2S_3 

B-CNN-WO 93.01±0.49 85.40±0.77 98.01±0.14 

B-CNN-W 93.13±0.57 88.59±0.97 97.77±0.17 

P-CNN 95.01±0.20 90.50±0.70 98.91±0.14 

TABLE 10 Rank-1 Identification Rates (%) under the V2S Setting 

for Different Methods on the COX Face Database 

Model V2S_1 V2S_2 V2S_3 

PSCL[31] 38.60±1.39 33.20±1.77 53.26±0.80 

LERM[32] 45.71±2.05 42.80±1.86 58.37±3.31 

VGG Face[33] 88.36±1.02 80.46±0.76 90.93±1.02 

TBE-CNN[16] 93.57± 0.65 93.69±0.51 98.96±0.17 

P-CNN(ResNet20) 95.01±0.20 90.50±0.70 98.91±0.14 

P-CNN(ResNet64) 97.69±0.22 93.83±0.46 99.46±0.12 

COX dataset is used for evaluation, and the experimental 

results are shown in Table 9. In this table, the number i in 

V2S_i denotes the video captured by camera i is used as 

probe, while the still images are kept as the gallery. 

It was shown from Table 9 that the performance of 

B-CNN-W is better than B-CNN-WO, but the improvement 

is not obvious, even slightly decreased in V2S_3. However, 

P-CNN achieves the best performance in comparison with 

training model directly. 

Finally, we compare the face verification performance of 

P-CNN with state-of-the-art approaches on the COX Faces 

database. Generally speaking, larger backbone networks 

yield higher accuracy. At present, the mainstream face 

recognition uses large models, for example, TBE-CNN[16] 

implementation is based on GoogLeNet. Therefore, besides 

the ResNet20 P-CNN model built in the previous 

experiments, an even deeper model, ResNet64, is also built. 

The rank-1 identification rate is adopted as the comparison 

criterion, and the results are tabulated in Table10. In 

comparison with the strategy of training model directly by 

augmented data, Table 10 shows that our proposed method 

can achieve better performance, and it get superior result 

than state-of-the-art methods. 

5. Discussion 

In this paper, we propose a pairwise learning strategy to 

overcome challenges in VFR. In addition, we propose an 

OEEM method to reduce noisy samples to help model focus 

more on effective samples during training. The noisy label 

problem is pervasive since some noisy labels are easy to 

remove while many of them are hard to be cleaned. 

Therefore, well-annotated datasets in large-scale are 

prohibitively expensive and time-consuming to collect. 

That motivates researchers to resort to cheap but imperfect 

alternatives. While our method is designed for video face 

recognition, it can also be applied in other computer vision 

tasks, especially for other face applications such face 

detection, tracking, which is an interesting future work. 

Although some strategies have been studied for noisy label 

problem, massive noisy label is still an open issue for deep 

learning methods. 
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