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Abstract

Domain adaptation is the task of transferring knowl-
edge from a labeled source dataset to an unlabeled tar-
get dataset. Partial domain adaptation (PDA) investi-
gates the scenarios in which the target label space is a
subset of the source label space. The main purpose of
the PDA is to identify the shared classes between the
domains and promote learning transferable knowledge
from these classes. Inspired by the idea of subset selec-
tion, we propose an adversarial PDA approach which
aims to not only automatically select the most relevant
subset of source domain classes but also ignore the sam-
ples that are less transferable across the domains. In
the absence of target labels, the proposed approach is
able to effectively learn domain-invariant feature repre-
sentations, which in turn can facilitate and enhance the
classification performance in the target domain. Em-
pirical results on Office-31 and Office-Home datasets
demonstrate the high potential of the proposed approach
in addressing different partial domain adaptation tasks.

1. Introduction

Deep neural networks have demonstrated superior
performance in a variety of machine learning prob-
lems such as semantic image segmentation [5, 11, 17],
object detection, and classification [16, 24, 30], etc.
These impressive achievements heavily depend on the
availability of large amounts of labeled training data.
However, in many applications, the acquisition of suffi-
cient labeled data is difficult and time-consuming. One
potential solution to reduce the labeling consumption
is to build an effective predictive model using richly-
annotated datasets from different but related domains.
However, this paradigm generally suffers from the do-
main shift between the distributions of the source and
the target datasets. As a result, deep networks trained
on labeled source datasets often exhibit unsatisfactory

performance on the target domain classification task.
In the absence of target labels, unsupervised domain
adaptation (UDA) seeks to bridge different domains by
learning feature representations that are discriminative
and domain-invariant [1, 12, 21].

Recently, various approaches have been proposed
to combine both domain adaptation and deep feature
learning in a unified framework for exploiting more
transferable knowledge across domains [6, 7, 15, 18, 31,
37] (see [34] for a comprehensive survey on deep domain
adaptation methods). A class of deep domain adapta-
tion methods aims to reduce the misfit between the
distributions of the source and target domains through
minimizing discrepancy measures such as maximum
mean discrepancy [15, 18], correlation distance [27, 29],
etc. In this way, they map the domains into the same
latent space, which results in learning feature repre-
sentations that are domain-invariant. A new line of
research has recently emerged which uses the concept
of generative adversarial networks [13] to align feature
distributions across the domains and learn discrimina-
tors that are able to predict the domain labels of dif-
ferent samples [19, 23, 35]. Specifically, these methods
try to generate feature representations that are difficult
for the discriminators to differentiate.

Despite the advantages offered by the existing UDA
methods, they mostly exhibit superior performance
in scenarios in which the source and target domains
share the same label space. With the goal of consider-
ing more realistic cases, [4] introduced partial domain
adaptation (PDA) as a new adaptation scenario which
assumes the target domain label space is a subset of the
source domain label space. The primary challenge in
PDA is to identify and reject the source domain classes
that do not appear in the target domain, known as out-
lier classes, since they may have negative impacts on
the transfer performance [3, 22]. Addressing this chal-
lenge enables the PDA methods to effectively transfer
models learned on large labeled datasets (e.g. Ima-
geNet) to small-scale datasets from different but re-
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lated domains.
In this paper, we propose an adversarial approach

for partial domain adaptation, which aims to not only
automatically reject the outlier source classes, but also
down-weight the relative importance of irrelevant sam-
ples, i.e. those samples that are highly dissimilar across
different domains. Our method uses the same network
architecture as partial adversarial domain adaptation
(PADA) [4] and incorporates two additional regular-
ization terms to boost the target domain classification
performance. Inspired by the idea of subset selection,
the first regularization is a row-sparsity term on the
output of the classifier, which promotes the selection of
a small subset of classes that are in common between
the source and target domains. The second regular-
ization is a minimum entropy term which utilizes the
output of the discriminator to down-weight the relative
importance of irrelevant samples from both domains.
We empirically observe that our method can effectively
enhance the target classification accuracy on different
PDA tasks.

2. Related Work

To date, various deep unsupervised domain adapta-
tion methods have been developed to extract domain-
invariant feature representations from different do-
mains. Some studies [9, 15, 18, 20, 36] have proposed to
minimize the maximum mean discrepancy between the
source and target distributions. In [28], a correlation
alignment (CORAL) method is proposed that utilizes a
linear transformation to match the second-order statis-
tics between the domains. [29] presented an extension
of the CORAL method that aligns correlations of layer
activations in deep networks by learning a non-linear
transformation. Despite the practical success of the
aforementioned methods in aligning the domain distri-
butions, it is shown that they are unable to completely
eliminate the domain shift [7, 37].

Recently, adversarial learning has been widely em-
ployed to enhance the performance of UDA methods
[2, 8, 10, 19, 32]. The basic idea behind the adversarial-
based methods is to train a discriminator for predicting
domain labels and a deep network for extracting fea-
tures that are indistinguishable by the discriminator.
By doing so, the discrepancy between the source and
target domains can be efficiently eliminated, which re-
sults in significant improvement in the overall classifi-
cation performance [8, 23, 32]. [39] developed an incre-
mental adversarial scheme which gradually reduces the
gap between the domain distributions by iteratively se-
lecting the high confidence pseudo-labeled target sam-
ples to enlarge the training set.

Towards the task of PDA, great studies have been

recently developed which simultaneously promote pos-
itive transfer from the common classes between the do-
mains and alleviate the negative transfer from the out-
lier classes [3, 4, 38]. Selective adversarial network [3]
trains separate domain discriminators for each source
class to align the distributions of the source and target
domains across the shared label space and to ignore
the outlier classes. Partial adversarial domain adapta-
tion (PADA) [4] proposed a new architecture which
assigns a weight to each source domain class based
on the target label prediction and automatically re-
duces the weights of the outlier classes. Importance
weighted adversarial nets [38] develops a two-domain
classifier strategy to estimate the relative importance
of the source domain samples.

Closely related to our work, transferable atten-
tion for domain adaptation (TADA) [35] proposed an
attention-based mechanism for UDA, which can high-
light transferable regions or images. Unlike TADA,
our method is focused on the PDA problem and uti-
lizes a different network architecture with a novel loss
function that efficiently assigns weights to both classes
and samples. Our method differs from PADA [4] in
the sense that we incorporate two novel regularization
terms which not only able to discover and reject the
outlier classes more effectively but also down-weight
the relative importance of the irrelevant samples in the
training procedure.

3. Problem Formulation

This section briefly reviews two well-established do-
main adaptation methods and then provides a detailed
explanation on how our proposed method relates to
them. Let {(xi

s,y
i
s)}

ns

i=1 be a set of ns sample points
drawn i.i.d from the source domain Ds, where xi

s de-
notes the ith source image with label yi

s. Similarly, let
{xi

t}
nt

i=1 be a set of nt sample points collected i.i.d from
the target domain Dt, where x

i
t indicates the i

th target
image. To clarify notation, let X =Xs∪Xt be the set of
entire images from both domains, where Xs = {x

i
s}

ns

i=1

and Xt = {x
i
t}

nt

i=1. The UDA methods assume that
the source and target domains possess the same label
space, denoted as Cs and Ct, respectively. In the ab-
sence of target labels, the primary goal of the UDA is
to learn domain-invariant feature representations that
can reduce the domain shift. One promising direction
to achieve this goal is to train a domain adversarial
neural network [8] which consists of a discriminator Gd

for predicting the domain labels, a feature extractor
Gf for confusing the discriminator by learning trans-
ferable feature representations, and a classifier Gy that
classifies the source domain samples. Training the ad-
versarial network is equivalent to solve the following
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Figure 1: Overview of the proposed adversarial network for partial transfer learning. The network consists of a
feature extractor, a classifier, and a domain discriminator, denoted by Gf , Gy, and Gd, respectively. The blue and
green arrows depict the source flow and target flow. Loss functions Ly, Ld, Le, and L∞ denote the classification
loss, the discriminative loss, the entropy loss, and the selection loss. Best viewed in color.

optimization problem

max
θd

min
θy,θf

λ

ns

∑

x
i∈Xs

Ly(Gy(Gf(x
i;θf);θy),y

i)

−
1

n

∑

xi∈X

Ld(Gd(Gf(x
i;θf);θd), d

i),

where n=ns+ nt, λ> 0 is a regularization parameter,
yi is the one-hot class label of image xi and d i∈{0, 1}
denotes its domain label; d i = 0 if xi belongs to the
source domain and d i = 1 otherwise. Ly and Ld are
cross-entropy loss functions corresponding to the classi-
fier Gy and the domain discriminator Gd, respectively.
Moreover, variables θf , θy, and θd are parameters asso-
ciated with the networks Gf , Gy, and Gd, respectively.
For the brevity of notation, we drop the reference to
the parameters θf , θy, and θd in the subsequent formu-
lations.

As noted earlier, standard domain adaptation ap-
proaches assume that the source and target possess
the same label space, i.e. Cs = Ct. This assumption
may not be fulfilled in a wide range of practical ap-
plications in which Cs is large and diverse (e.g., Ima-
geNet) and Ct only contains a small subset of source
classes, i.e. Ct ⊂ Cs. Under this assumption, aligning
the domain distributions may not necessarily facilitate
the classification task in the target domain due to the
adverse effect of transferring information from the out-
lier classes Cs \Ct [3, 4]. Hence, the primary goal in
partial domain adaptation is to learn a feature extrac-
tor that can align the distributions of the source and
target domains across the shared label space and si-
multaneously identify and reject the outlier classes. A

classifier trained along such feature extractor can gen-
eralize well to the target domain. To this end, PADA
[4] proposed the following weighting procedure to high-
light the shared classes and reduce the importance of
outlier classes

γ =
1

nt

nt
∑

i=1

ŷi
t

where ŷi
t = Gy(Gf(x

i

t)) denotes the output of Gy to the
target sample x

i

t. The weighting vector γ is further
normalized as γ ← γ \max(γ) to show the relative
weights of the classes.

The weights associated with the outlier classes are
expected to be much smaller than that of the shared
classes, mainly because the target samples are signifi-
cantly dissimilar to the samples belonging to the outlier
classes. Ideally, γ is expected to be a vector whose el-
ements are non-zero except those corresponding to the
outlier classes. Given that PADA proposes to train
the adversarial network through solving the following
minimax optimization problem

max
θd

min
θy,θf

λ

ns

∑

x
i∈Xs

γci Ly(Gy(Gf(x
i)),yi)

−
1

ns

∑

xi∈Xs

γci Ld(Gd(Gf(x
i)), d i)

−
1

nt

∑

xi∈Xt

Ld(Gd(Gf(x
i)), d i),

where ci=argmaxj y
i
j denotes the index of the largest

element in yi.
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Besides the outlier classes, the irrelevant samples are
inherently less transferable and they may significantly
degrade the target classification performance in differ-
ent PDA tasks. In the next section, we present a novel
algorithm to simultaneously identify and reject the out-
lier classes and down-weight the relative importance of
the irrelevant samples.

4. Proposed Method

We adopt the same network architecture as PADA
and employ two novel regularization terms to better
align the source and target distributions across the
shared classes and learn more transferable features.

The first regularization is a row-sparsity term which
promotes the selection of a small subset of source do-
main classes that appear in the target domain. This,
in turn, encourages γ to be a vector of zeros except for
the elements corresponding to the shared classes. This
selection regularization can be defined as follows

L∞(Xt,θf ,θy)=
µ

|Cs|

∥

∥Gy(Gf(x
1

t)), . . . ,Gy(Gf(x
|Xt|
t ))

∥

∥

1,∞
,

where |.| denotes the cardinality of its input set, ‖.‖1,∞
computes the sum of the infinity norms of the rows of
an input matrix, and µ is a regularization parameter.
Imposing the above term takes into account the rela-
tion between the entire target samples and encourages
the classifier to generate a sparse output vector with its
non-zero entries located at certain indices correspond
to the shared classes.

The second regularization term seeks to reduce the
importance of irrelevant samples in the training proce-
dure by leveraging the following entropy minimization
term

Le(Xs,Xt,θf,θd,θy)=

1

ns

∑

xi∈Xs

γci(1+Le
d(Gd(Gf(x

i))))Le
y(Gy(Gf(x

i)))

+
1

nt

∑

xi∈Xt

(1+Le
d(Gd(Gf(x

i))))Le
y(Gy(Gf(x

i))),

where Le
y and Le

d are the entropy loss functions cor-
responding to the classifier Gy and the domain dis-
criminator Gd, respectively. The above regularization
encourages assigning higher weights to those samples
whose domain labels are confidently predicted by the
discriminator. This, in turn, reduces the relative im-
portance of the irrelevant samples and helps to learn
more transferable features for classification.

By integrating both regularization terms into the
total loss function, our method can not only automat-
ically identify and reject the outlier classes, but also

Amazon

Webcam

DSLR

Figure 2: Example images of the Office-31 dataset.

down-weight the irrelevant samples that are inherently
not transferable across domains. Figure 1 illustrates
the architecture of our proposed network in details.

5. Experiments

In this section, we conduct empirical experiments
on two benchmark datasets to evaluate the efficacy of
our approach, named SSPDA, for partial domain adap-
tation (PDA) across different tasks. The experiments
are performed in an unsupervised setting, where the
target labels are unknown. In what follows, we briefly
explain the datasets, the PDA tasks, and the network
hyperparameters used in the experiments.

5.1. Setup

Dataset: We evaluate the performance of SSPDA
on two commonly used datasets for domain adapta-
tion: Office-31 and Office-Home. The Office-31 object
dataset [26] consists of 4, 652 images from 31 classes,
where the images are collected from three different do-
mains: Amazon (A), Webcam (W), and DSLR (D).
We follow the procedure presented in [4] to transfer
knowledge from a source domain with 31 classes to a
target domain with 10 classes. The results are provided
as the target domain classification accuracy across six
different PDA tasks: A →W, W → A, D →W, W
→ D, A → D, and D → A.

The Office-Home [33] is a more complex dataset con-
sisting of around 15, 500 images collected from four
distinct domains: Art (Ar), Clipart (Cl), Product
(Pr), and Real-World (Rw), where each domain has
65 classes. Following the procedure presented in [4], we
aim to transfer information from a source domain con-
taining 65 classes to a target domain with 25 classes.
The results on this dataset are also reported as the
target classification accuracy on twelve pairs of source-
target domains: Ar → Cl, Ar → Pr, Ar → Rw, Cl

→ Ar, Cl → Pr, Cl → Rw, Pr → Ar, Pr → Cl, Pr

→ Rw, Rw → Ar, Rw → Cl, and Rw → Pr.
For each of the aforementioned tasks, we report the
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Method A →W D →W W → D A → D D → A W → A Avg

ResNet 54.52 94.57 94.27 65.61 73.17 71.71 75.64

DAN 46.44 53.56 58.60 42.68 65.66 65.34 55.38

DANN 41.35 46.78 38.85 41.36 41.34 44.68 42.39

ADDA 43.65 46.48 40.12 43.66 42.76 45.95 43.77

RTN 75.25 97.12 98.32 66.88 85.59 85.70 84.81

SAN 80.02 98.64 100 81.28 80.58 83.09 87.27

IWAN 76.27 98.98 100 78.98 89.46 81.73 87.57

PADA 86.54 99.32 100 82.17 92.69 95.41 92.69

SSPDA-selection 87.45 95.31 98.48 82.25 91.89 95.34 91.79
SSPDA-entropy 90.51 96.59 97.45 89.08 92.38 95.30 93.55
SSPDA 93.42 97.62 100 90.43 93.45 95.53 95.07

Table 1: Accuracy of partial domain adaptation tasks on Office-31 (ResNet-50).

Method Ar→Cl Ar→Pr Ar→Rw Cl→Ar Cl→Pr Cl→Rw Pr→Ar Pr→Cl Pr→Rw Rw→Ar Rw→Cl Rw→Pr Avg

ResNet 38.57 60.78 75.21 39.94 48.12 52.90 49.68 30.91 70.79 65.38 41.79 70.42 53.71

DAN 44.36 61.79 74.49 41.78 45.21 54.11 46.92 38.14 68.42 64.37 45.37 68.85 54.48

DANN 44.89 54.06 68.97 36.27 34.34 45.22 44.08 38.03 68.69 52.98 34.68 46.50 47.39

RTN 49.37 64.33 76.19 47.56 51.74 57.67 50.38 41.45 75.53 70.17 51.82 74.78 59.25

PADA 51.95 67 78.74 52.16 53.78 59.03 52.61 43.22 78.79 73.73 56.6 77.09 62.06

SSPDA 52.31 68.35 80.17 50.79 51.29 60.87 56.68 42.53 79.15 70.94 56.43 78.92 62.37

Table 2: Accuracy of partial domain adaptation tasks on Office-Home (ResNet-50).

average target classification accuracy of five indepen-
dent runs with different initialization as generated in
[4]. We compare the performance of SSPDA against
several deep transfer learning methods: Deep Adap-
tation Network (DAN) [18], Domain Adversarial Neu-
ral Network (DANN) [8], Residual Transfer Networks
(RTN) [20], Adversarial Discriminative Domain Adap-
tation (ADDA) [32], Importance Weighted Adversar-
ial Nets (IWAN) [38], Selective Adversarial Network
(SAN) [3], and Partial Adversarial Domain Adaptation
(PADA) [4].

Parameter: We adopt ResNet-50 [14] pre-trained on
ImageNet [25] as the backbone for the network Gf .
Also, we fine-tune the entire feature layers and ap-
ply back-propagation to train the domain discriminator
Gd and the classifier Gy. Through the experiments,
parameter λ is set to 1.0 and 2.0 for the Office-31
dataset and Office-Home dataset, respectively. Also,
we set µ = 0.1 for both datasets. Notice that since the
classifier is not appropriately trained in the first few
epochs, we gradually increase parameter µ from 0 to
0.1. To minimize the loss function, we use mini-batch
stochastic gradient descent (SGD) with a momentum
of 0.95 and the learning rate is adjusted during SGD
by: η =

η0

(1+α×ρ)β
where η0 = 10-2, α = 10, β = 0.75,

and ρ is the training progress linearly changing from 0
to 1 [4, 8]. We use a batch size of 72 with 36 samples
for each domain.

5.2. Results

Tables 1 and 2 show the target domain classification
accuracy of various methods on different PDA tasks
including 6 tasks of Office-31 dataset and 12 tasks of
Office-Home dataset. All the results are reported based
on the ResNet-50 and the scores of the competitor
methods are directly obtained from [3, 4, 38].

Observe that some deep domain adaptation meth-
ods such as DAN and DANN have exhibited worse per-
formance than the standard ResNet-50 on few PDA
tasks in both datasets. This can be attributed to the
fact that these methods aim to align the marginal dis-
tributions across the domains and hence are prone to
the negative transfer resulted from the outlier classes.
On the other hand, the PDA methods, such as PADA,
SAN, and IWAN, achieve promising results on most of
the PDA tasks since they leverage weighting mecha-
nisms to highlight a subset of samples that are more
transferable. By doing so, these methods can effec-
tively mitigate transferring knowledge from the outlier
source classes and promote learning from the shared
classes between the domains, which in turn enhance
the classification accuracy in the target domain.

Notice that SSPDA uses the same network archi-
tecture as PADA, but introduce a novel loss function
to identify and reject the outlier classes and irrelevant
samples. The results in Table 1 indicate that SSPDA
performs better than or close to the state-of-the-art
methods at all PDA tasks on Office-31 dataset. In par-
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ticular, it achieves considerable improvement on A →
W and A → D, and generally increases the average
accuracy of all tasks by almost 2.4%. Moreover, Ta-
ble 2 shows that SSPDA maintains the performance of
PADA and exhibits slight improvement in the average
classification accuracy over all partial domain adapta-
tion tasks on Office-Home dataset.

The numerical results provided in the above tables
imply that SSPDA has high potential in transferring se-
mantic information and learning domain-invariant fea-
tures in different tasks of partial domain adaptation.

Ablation Study: To demonstrate the improvements
obtained by each of the proposed regularizations, in
this part, we conduct an ablation study by discarding
the selection regularization (SSPDA-selection) or the
entropy minimization term (SSPDA-entropy). The re-
sults are reported in Table 1. It can be seen that both
SSPDA-selection and SSPDA-entropy generally obtain
better or close results than the baselines. In particular,
SSPDA-entropy works better on some difficult tasks
such as A →W and A → D.

6. Conclusion

This work presented an adversarial approach for the
task of partial domain adaptation. The proposed ap-
proach minimizes a novel loss function to reduce the
effect of the outlier classes and the irrelevant samples,
which results in learning more transferable feature rep-
resentations for classification. The experiments con-
ducted on standard benchmark datasets demonstrate
the high potential of our approach for partial domain
adaptation tasks and highlight the directions for fu-
ture explorations and research. Future work will ex-
plore the effectiveness and the generalization power of
our designed loss functions in different adversarial ar-
chitectures.
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