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Abstract

Single image super-resolution (SISR) is a challenging

ill-posed problem which aims to restore or infer a high-

resolution image from a low-resolution one. Powerful

deep learning-based techniques have achieved state-of-the-

art performance in SISR; however, they can underperform

when handling images with non-stationary degradations,

such as for the application of projector resolution enhance-

ment. In this paper, a new UNet architecture that is able

to learn the relationship between a set of degraded low-

resolution images and their corresponding original high-

resolution images is proposed. We propose employing a

degradation model on training images in a non-stationary

way, allowing the construction of a robust UNet (RUNet)

for image super-resolution (SR). Experimental results show

that the proposed RUNet improves the visual quality of the

obtained super-resolution images while maintaining a low

reconstruction error.

1. Introduction

Modern state-of-the-art single image super-resolution

(SISR) methods have been deep learning-based meth-

ods [1–5], which have demonstrated significant reconstruc-

tion quality improvements. For example, generative adver-

sarial network-based SR methods [1, 2] have been able to

generate realistic results, but these methods suffer from un-

stable training. On the other hand, convolutional neural net-

work (CNN) based methods [3–5] have shown effectiveness

in learning a nonlinear relationship between low and high

resolution images. However, such methods [3–5] underper-

form when handling images with non-stationary degrada-

tions. One of the reasons is that a majority of these meth-

ods [3, 4] leverage a Bicubic down-sampling image degra-

dation model for approximating the true degradation [6],

which is not true in many practical scenarios such as pro-

jector resolution enhancement. Furthermore, such network
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architectures [3–5] are limited in their ability to learn com-

plex non-stationary degradations.

Motivated by this, we propose a robust UNet (RUNet)

architecture for image super-resolution to learn how to treat

different image contents in a way that achieves better super-

resolution results. More specifically, the proposed RUNet

leverages long-range connections to improve learning capa-

bilities, and leverages a degradation model based on spa-

tially varying degradations that force the network to learn

handling spatially non-stationary image degradations. Ex-

perimental results show that the proposed RUNet offers

super-resolution images with improved visual quality while

maintains a low reconstruction error.

2. Proposed Method

The proposed resolution enhancement scheme consists

of a degradation module and a new UNet architecture as

shown in Figure 1. During training, a set of input train-

ing images of high resolution are first downsampled by a

factor of two in both directions and then blurred, at random,

using a Gaussian filter. Next, every blurred image is upsam-

pled by a factor of two in both x and y directions using the

Bicubic interpolation for initializing the proposed network.

For training the proposed network, every upsampled blurred

image and its corresponding image at the original resolution

are used. In testing, given a low-resolution input image, an

upsampling operator by a factor of two is performed in both

the x and y directions, and then the trained network is used

to predict the enhanced high-resolution image.

2.1. Network Architecture

The proposed RUNet architecture consists of a number

of convolutional layers, batch norms, ReLU activation func-

tions, and tensor operations as shown in Figure 1. Un-

like the conventional UNet [7] architecture, the left path

shown in Figure 1 consists of a sequence of blocks each

followed by a tensor addition operation to feed forward the

same block input to the subsequent block, so-called resid-

ual block [4]. This allows the network to learn more com-

plex structures. In order to efficiently upscale the low-

resolution image, the sub-pixel convolutional layers [8] are
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Figure 1. An overview of the proposed robust UNet (RUNet), where kz1nz2 represents a convolutional layer with kernel size of z1 × z1

and with z2 feature maps. The test of robustness is based on the presence of degradation in training.

Action Comedy & Romance Documentary Fantasy Graphics & Animation
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Figure 2. Sample frames for the ten video categories in the Visual

Projection Assessment Dataset (VPAD).

used for feature expansion in the expansive path, the right

path shown in Figure 1. In order to achieve better perceptual

performance, we use the perceptual loss function [3] during

training as shown in the following section.

2.2. Perceptual Loss Functions

Recently, perceptual loss functions have been used for

the tasks of image generation and super-resolution [1, 3, 9].

Rather than considering pixel-wise distance as in [4], the

perceptual loss functions [3] map the predicted SR image

Î and the target image IHR into a feature space and then

measure the distance between the two mapped images in

the feature space. Let Φ = {φj , j = 1, 2, ..., Np} denote a

loss network [10] that extracts features from a given input

image and consists of Np convolutional layers, where φj(I)
denotes a feature map of size Cj × Hj × Wj obtained at

the jth convolutional layer for a given input image I , and

Np = 5 is used in this paper. Given a predicted image Î

and a target image IHR fed into the network Φ, the feature

distance Lj at the jth layer can be computed as follows:

Lj =
1

CjHjWj

‖φj(Î)− φj(IHR)‖
2

2
(1)

3. Experimental Results

3.1. Dataset

A Visual Projection Assessment Dataset (VPAD) is cre-

ated for image and video resolution enhancement assess-

ment. The VPAD dataset consists of a set of videos for

various movies, documentary, sports, and TV news chan-

nels with the presence of moving and text-like regions. The

video sequences were obtained from a wide range of open

websites, such as [11] and [12], and Figure 2 shows a sam-

ple frame from each category. The dataset includes a total

of 233 video sequences and is publicly released1 to encour-

age further research and the assessment of projector resolu-

tion enhancement in practical scenarios. More specifically,

this dataset includes the following ten categories: Action,

Comedy and Romance, Documentary, Fantasy, Graphics

and Animation, Horror, News, Sports, TV Shows, and TV

Episodes. The videos from the same category share some

common features, such as similar background or contents.

3.2. Discussion

The proposed RUNet is evaluated on the VPAD video

dataset for 2× super-resolution, and compared with the per-

formance of the Bicubic interpolation and the baseline UNet

[7] without using the proposed degradation model. Table 1

summarizes the quantitative results, and example qualita-

tive results are shown in Figure 3. Although it is shown

from Table 1 that the proposed RUNet offers the lowest

PSNR and SSIM values and the highest MSE value, it can

be clearly observed from the example qualitative results

shown in Figure 3 that the proposed RUNet can offer signif-

icantly improved super-resolution quality with noticeably

sharper details than that provided by the other tested meth-

ods. This observation suggests the need of developing new

evaluation metrics that can assess the SR image enhance-

ment techniques different than the existing metrics. The

same conclusion was drawn in past studies when evaluating

similar deep-network-based super-resolution methods as in

[1, 3, 9], where the use of perceptual loss function led to

significant reductions in SSIM and PSNR scores of the re-

constructed images similar to what we observed in Table 1.
1URL: uwaterloo.ca/vision-image-processing-lab/research-demos/vip-vpad
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Figure 3. Example qualitative results for the proposed RUNet, Bicubic Interpolation, and UNet [7] without degradation model (baseline)

on four low resolution images sampled from four different VPAD sequences. The proposed RUNet produces super-resolution images with

sharper edges and finer details while retaining the quality of un-blurry regions in low-resolution images.

Table 1. Quantitative comparison among the proposed method, the

baseline UNet architecture [7] without degradation, and Bicubic

interpolation. Consistent with past studies that leveraged percep-

tual loss [1, 3, 9], it is observed that standard metrics fail to capture

perceptual quality of image super-resolution.

Method SSIM MSE PSNR

Bicubic Interpolation 0.800 0.008 25.569

UNet [7] without degradation 0.760 0.016 23.443

RUNet 0.736 0.020 22.753
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