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Abstract

Deep neural networks are widely used for image restora-

tion, however the loss criteration is usually set as ℓ2. ℓ2

penalizes larger errors, which is unstable for outliers. To

avoid the disadvantages, ℓ1 is utilized as a more robust and

well behaved loss. This paper proposes a novel loss func-

tion for restoration networks, which measures geodesic dis-

tance in Riemannian manifold and exploits the outstanding

properties of ℓ1. Different from ℓ1 and ℓ2 loss which reflects

pixel distance, our loss in Riemannian reflects the structure

distance of image. The proposed loss not only preserves

the robutness of ℓ1 loss, but also reflects the image con-

trasts. Experimental results on image super resolution and

compressed sensing show that our proposed loss function

achieves more accurate reconstructions, according to both

the objective and perceptual qualities.

1. Introduction

Image restoration is a fundamental problem in image

processing, which reconstructs the high-quality image x

from its corrupted observation y = Hx+ v, where v is the

additive noise, and H is the degradation operation, e.g. con-

volution and down-sampling. The success of deep neu-

ral networks has led to dramatic improvements in image

restoration [1–4], including compressed sensing [2] and

super-resolution [1, 4], etc. However researchers have fo-

cused on the new architectures, and paid less attention on

the loss function, which is effective for network learning.

ℓp(p = 1,2) is the most widely used measurement for

restoration networks. The ℓ2 loss (MSE) is the major per-

formance measure of image (PSNR). However, it works un-

der the assumption of white Gaussian noise, which is not

valid in general. Also the outliers have a great influence

on the weight allocation of ℓ2 loss, which sharply reduces

the network performance. Recently, networks trained with

ℓ1 as loss function provides a promising and robust perfor-

mance [3].

This paper proposes a loss function, which measures the

geodesic distance of image. We take advantage of the suc-

cess of ℓ1 loss and measure the ℓ1 norm of geodesic dis-

tance. Fillard et al. [5] defined a new family of metrics on

symmetric positive definite named Log-Euclidean Metric

(LEM), which is geodesic distance induced by Riemannian

metrics [6]. The geodesic distance between points Ti and

Tj is written as: d (Ti,Tj) =
∥

∥log(Ti)− log(Tj)
∥

∥

F
, where

‖·‖F denotes the Frobenius matrix norm. The LEM can

be regarded as the Euclidean distance in logarithm domain,

which not only has the properties of Euclidean distance, but

also has promising invariance properties such as inversion

invariant and similarity invariant [6]. According to Weber’s

law [7], the small contrasts which are more sensitive to per-

ceive by human eyes are enhanced.

We compare the proposed loss with ℓp loss on super res-

olution and compressed sensing. And the experimental re-

sults show that the proposed loss function outperforms ℓp in

both objective and subjective qualities. To summarize, the

main contributions of our work are concluded as: i) We fo-

cus on the loss metric of image restoration networks which

is significant fot network performance, and propose a Rie-

mannian loss which reflects the image structures. ii) To the

best of our knowledge, we are the first to utilize the LEM-

based loss on image restoration networks.

2. The Proposed Loss Function

Inspired by the properties of Riemannian metric, we

propose a new loss function for image restoration net-

work to reflect the image structures. As Gaussian kernel

exp
(

−γ ‖·‖2
2

)

is the most popular and versatile kernel in

Euclidean spaces [8]. It is attractive to generalize this kernel

to manifolds, by exploiting the geodesic distance to replace

the Euclidean distance in the Gaussian kernel.

Inspired the idea of ℓ1 norm, the proposed loss is:

L(xxxi,yyyi) =
1

N
∑

i

exp(γ |log |yyyi|− log |xxxi||) (1)

where γ ≤ 1
/

|log |xxxi|− log |yyyi||.
The derivative of the loss function is:

∂L(xxxi,yyyi)
∂yi

= exp(γ |log |yi|− log |xi||)

·
(

γ · sign(log |yi|−log |xi|) ·
|xi|
|yi|

· sign(yi)
) (2)



(a) Gradient of the observed image (b) Gradient of the transformation

Figure 1: Gradients of logarithmic transformed image.

, since ∀i 6= j,∂L(xxxi,yyyi)
/

∂yyy j = 0. exp(·)>0, 1
|x| · sign(x)

is not differentiable at 0. As we do not need to update the

weights when error equals 0, we set const · 0
|0| · sign(0) = 0.

So that our proposed loss function is differentiable under all

the circumstance.

In addition, log
∣

∣

y
x

∣

∣ can be interpreted into Weber’s law

[7], which simulates human vision perception mechanism.

Weber’s law states that just noticeable difference is a con-

stant proportion of the original stimulus value, i.e. when the

intensity variation reaches the constant it can be observed

by human. According to Weber’s law, the logarithmic trans-

formation can also enhance the small contrasts, which is

more sensitive to perceive by human eyes. More specifi-

cally, for image x, its gradient variation in the linear domain

is ∇x, and its gradient variation in the log-transformed do-

main is ∇ log(x) = 1
x
∇x. That is to say, when x is very

small, the gradient variation in the log-transformed domain

is amplified, as shown in Fig. 1.

As mentioned above, the proposed loss not only has the

characteristics of ℓp loss, but also describes the geodesic

distance which reflects the image structures.

3. Experimental Results

Due to the space limitation, in this section, we only

demonstrate the results of two restoration tasks- super res-

olution and image compressive sensing reconstruction. Ex-

tensive evaluation experiments show that the proposed met-

ric outperforms the ℓp loss with the state-of-the-art net-

works both quantitatively and qualitatively. For the time

complexity, our loss function is at the same level of the orig-

inal network. It is worth mentioning that we compare the

performance of different loss functions without modifying

the network architectures.

3.1. Image Super Resolution

In recent years, there are a large number of networks for

image super resolution, including SRCNN [1], VDSR [4]

and EDSR [3], etc. We use the same training dataset and

architectures with these methods. For SRCNN, we use bi-

linear method for initialization, since bicubic interpolation

introduces high-frequency artifacts. For EDSR, due to the

hardware limitation, we only train the baseline model in [3].

The Set5, Set14, B100, and Urban100 in [4] are used to

evaluate the performance of upscaling factors 2, 3, and 4.

The PSNR comparison is shown in Table. 1, and our loss

presents the highest average PSNR. The visual comparison

is shown in Fig. 2. It is evident that the images recovered

by the proposed scheme better preserve edges and textures.

Especially for the regular region, only our loss perfectly re-

constructs the line in the images.

3.2. Image Compressive Sensing Reconstruction

In recent years, there are many networks for image com-

pressive sensing reconstruction, and ReconNet [2] is the

benchmark method. We employ the proposed loss function

on this network to compare with the performance of ℓp met-

ric as loss function.

The Set12 [9] and LIVE1 [9] are used to evaluate the

performance of rate 0.1, 0.25 and 0.4. The PSNR compar-

ison is shown in Figure. 3, and our loss function presents

the highest average PSNR. Fig. 4 demonstrates visual im-

provement of the proposed metric at ratio 0.25. It is evident

that the images recovered by the proposed scheme better

preserve details and textures. We also utilize some other

methods to measure the validation of our loss function, in-

cluding SSIM, GMSD [10], FSIM and FSIMc [11]. Our

proposed loss function outperforms ℓp loss on all the qual-

ity assessment metrics.

4. Conclusions

In this paper, we focus on the loss layer of neural net-

works which is significant for image restoration framework.

We present a novel Riemannian metric with ℓ1 norm, which

measures the geodesic distance of image. Our proposed

loss can enhance the small contrasts, meanwhile preserve

the large errors. Our loss not only inherits the advantages

of ℓp, but also reflects the image structures. The new loss

is simple, fast, suitable for most network architectures. We

choose several state-of-the-art networks of super resolution

and compressed sensing reconstruction. Our loss function

outperforms ℓp loss both objectively and subjectively.
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Figure 3: Performance of Compressed Sensing.
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Figure 4: Qualitative comparison of compressed sensing at
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