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Abstract

Detailed maps help governments and NGOs plan infras-

tructure development and mobilize relief around the world.

Mapping is an open-ended task with a seemingly endless

number of potentially useful features to be mapped. In this

work, we focus on mapping buildings and roads. We do

so with techniques that could easily extend to other fea-

tures such as land use and land classification. We dis-

cuss real-world use cases of our maps by NGOs and hu-

manitarian organizations around the world—from sustain-

able infrastructure planning to disaster relief. We investi-

gate the pitfalls of existing datasets for building detection

and road segmentation and highlight the way that models

trained on these datasets—which tend to be highly specific

to particular regions—produce worse results in regions of

the world not adequately represented in the training set.

We explain how we used data from OpenStreetMap (OSM)

to train more generalizable models. These models outper-

form those trained on existing datasets, even in regions in

which those models are overfit, and produce these same

high-quality results for a diverse range of geographic ar-

eas. We utilize a combination of weakly-supervised and

semi-supervised learning techniques that allow us to train

on the noisy, crowdsourced data in OSM for building detec-

tion, which we formulate as a binary classification problem.

We then show how weakly supervised learning techniques in

conjunction with simple heuristics allowed us to train a se-

mantic segmentation model for road extraction on noisy and

never pixel-perfect training data from OSM.

1. Introduction

A country’s census shows how many people live in a

particular census tract, but it doesn’t indicate where peo-

ple live within a tract, and sometimes these tracts can en-

compass thousands of square miles. For example, Africa’s

largest census tract is 150,000 square miles and encom-

passes some 55,000 people. While highly accurate, census

data is not granular enough for efforts like vaccination cam-

paigns. These campaigns generally have limited resources

that need to be allocated efficiently. Precise population dis-

tribution data facilitates and expedites humanitarian work

like this by enabling organizations to locate those in need

and reach them efficiently. The High Resolution Settle-

ment Layer (HRSL), introduced by Tiecke et al. [19], com-

bines census data with a building detection algorithm run on

high resolution satellite imagery to create population den-

sity maps with 30 by 30 meter granularity. This level of

granularity greatly facilitates development and relief efforts

like vaccination campaigns by allowing humanitarian actors

to allocate their resources to the precise areas where people

live.

The building detection work discussed here builds on

the work of Tiecke et al. [19] by increasing the accu-

racy and the geographic robustness. Using a combination

of weakly-supervised and semi-supervised training tech-

niques in conjunction with the freely available data in Open-

StreetMap(OSM), we are able to locate buildings in high

resolution satellite imagery [15]. Following the methodol-

ogy outlined by Tiecke et al. [19], these results are joined

with census data to produce extremely accurate, high res-

olution population density maps. Outside of the computer

vision classification of patches of imagery as either build-

ing or non-building, our approach to generating population

density maps is the same as in the original HRSL. Our final

result is in the same format, but with higher accuracy and

greater geographic coverage. The datasets resulting from

this work will be released as an update to the HRSL. The re-

lease will be done region by region as we consult with inter-

disciplinary experts to ensure that the potential for misuse

and abuse of this data is minimized and the accuracies of

the resulting datasets meet the standards for release.

These maps are already having real world impact. For

example, the population density map that we produced for

Malawi enabled the Red Cross to quickly and remotely map

around 1 million houses and 120,000 km of roads for a

measles and rubella immunization campaign. This facili-

tated over 100,000 house visits in 3 days with just 3,000 vol-
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unteers on the ground and allowed volunteers to reach many

households that would have otherwise been overlooked.

Our population density maps have been used for similar

immunization campaigns in Mozambique by the Bill and

Melinda Gates Foundation: verifying the number of chil-

dren under five years old that needed polio vaccines, de-

termining how much vaccine to procure, and validating ex-

isting vaccination coverage estimates. Additional uses of

our maps include The World Food Programme’s analyses

on disaster preparedness and disaster response and Human-

itarian OpenStreetMap Team’s targeted rural electrification

studies.

The other focus of our work is road segmentation. Road

vectors are often at the core of user experience in map-

ping applications today. They make up a great deal of

the visual stimulus, are the organizational system onto

which addresses—and therefore homes and businesses—

are mapped, and the road network they compose is used

for navigation. Road segmentation does not directly lead to

road vectors, but there are well established post-processing

steps to extract road vectors from segmentation masks [12]

[4]. In this work, we focus on the segmentation aspect of the

problem. Like population density maps, road network maps

allow for increased efficiency of both time and resources

when responding to disasters and planning for development.

Most map providers lack detailed road network information

for many parts of the world, particularly in many areas of

the developing world. Many of these areas are vulnerable

to disasters, and when disaster strikes, the quickest way to

get the detailed road information needed to provide aid and

relief is through open source manual mapping, which often

takes place through mapathons organized by groups like the

Red Cross.

To best support humanitarian efforts, road network maps

should be as accurate as possible in as many regions as

possible. However, most available datasets for road seg-

mentation are heavily biased towards particular regions.

For example, the SpaceNet Roads Dataset exclusively con-

tains data from four major cities and the DeepGlobe Roads

dataset only contains data from Thailand, India, and Indone-

sia [1] [5]. The models that are trained on these datasets

perform well in the regions well represented in the training

set, and perform much worse in other regions. We use data

from OSM to train more accurate and geographically robust

road segmentation models. In particular, we use a threshold

on the number of roads mapped in a particular area to find

areas that are more completely mapped; we then use this

data to train a weakly supervised road segmentation model

with much greater geographic robustness. Our road seg-

mentation models are already having real world impact. In

2018, a large area of Kerala was flooded and neither OSM

nor proprietary map providers had mapped the road network

sufficiently for humanitarian actors to efficiently deliver aid

to those in need. A large scale human mapping effort was

undertaken to provide road network data to humanitarian

actors through OSM. In this instance, we released road vec-

tors generated by our methods to the OSM community to

expedite mapping of the region and therefore expedite re-

lief to the region. We have also used these road vectors for

large scale mapping efforts in Thailand and Indonesia and

uploaded the results to OSM. We currently share road vec-

tors generated through our pipeline with trusted humanitar-

ian partners, and we are working on finding an effective and

responsible way to share these road vectors with the greater

humanitarian and mapping communities. While our road

vectors are accurate enough to be directly used for some

humanitarian efforts, we mostly use our road predictions to

assist human mapping. This process allows human mappers

to spend their time mapping the nuanced details of an area

while our machine learning algorithm automatically maps

out the road network. This leads to increased mapping effi-

ciency, which is particularly valuable in times of crisis.

We are sharing our work with the immediate purpose of

helping humanitarian actors pursue progress on the United

Nations Sustainable Development Goals. We see immedi-

ate and obvious applications of this work in fighting hunger,

poverty, and disease by locating where exactly populations

are and which roads to take to reach these people. Work

using this data has already begun with many partner organi-

zations and we hope to continue to expand the positive im-

pact of this work and better understand its utilities as well

as its failings. We also hope that sharing this work will

help highlight some of the failings of more regionally spe-

cific datasets and approaches to these problems. Using ap-

proaches that fail to generalize can negatively affect groups

that fall outside of the training distribution by providing in-

correct information about these areas and populations. We

show empirically that there are large benefits to seeking out

diverse sources of data. We hope to encourage researchers

to prioritize the use of diverse sources of training data when

trying to make progress on global problems.

2. Related work

Extracting information from aerial imagery has been an

important research area since imagery became widely avail-

able. Due to the size of Earth, manually extracting all in-

stances of a particular class or classifying all areas into cat-

egories is not feasible. The fields of remote sensing and

Earth observation have been approaching these problems

computationally for decades. Recently, deep learning has

been applied to the problem. Roads and buildings are just

a few of the features that deep learning has been used to

compute [12] [19] . Others include crosswalks and oil palm

trees [9] [2].

Data is a persistent area of attention in this research. In

lieu of manually labeling training data for road detection,
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Mnih and Hinton [14] investigated learning directly from

data in OSM, a noisy, crowdsourced dataset. Their work de-

veloped a robust loss function to allow training on the noisy

data. In contrast, we propose a processing of OSM data

that allows typical Deep Neural Nets(DNNs) to be applied

with typical loss functions and optimizers despite the noisi-

ness of the data. We also approach our work at much larger

scale, focusing on the geographic diversity of the training

data.

Kaiser et al. [8] also investigate OSM data for training

building detection and road segmentation models. They find

that using OSM to pretrain their models improves segmen-

tation results, but that using only OSM data “achieves rea-

sonable (albeit far from optimal) results.” They approach

the building and road problems from the same semantic

segmentation framework whereas we instead frame build-

ing detection as a classification problem. Their work is

focused on urban environments where open data tends to

be relatively complete. In contrast, we extend the use of

OSM data beyond these urban environments to all areas of

the world where buildings and roads exist and have been

mapped. Maggiori et al. [10] also train convolution neural

nets to detect buildings. They found that using OSM data

improved results for their task, but their investigation was

limited to just a few select locations.

The Functional Map of the World(fMoW) dataset also

built a large dataset spanning six continents [3]. FMoW en-

compasses a broad range of features, whereas we focused

on just two categories. FMoW has over a million annotated

images and over a million annotated points of interest; its

most common category is recreational facility, which has

between 80,000 and 90,000 occurrences [3]. In contrast,

our building detection dataset has over 50 million annotated

buildings, and our road dataset has around 1.8 million im-

ages, each covering around one square kilometer and con-

taining at least 25 roads.

3. Crowdsourced Data from OpenStreetMap

A major roadblock to scaling our maps, of both popula-

tion densities and of roads, from regional projects to fully

global projects has been a dearth of labeled data. As this

work is unprecedented in terms of its scale, and as we found

that models trained on particular regions tend to underper-

form in dissimilar regions, a traditional supervised learn-

ing approach to training more global models would have

likely entailed manually labelling many millions more im-

ages from all over the globe—a task likely to require a large

team of human annotators over a long period of time, en-

tailing a large organizational and temporal cost. This ob-

servation, as well as the observation that OSM serves as a

crowdsourced geospatial dataset of the world, led us to con-

sider using OSM to train global models.

OSM has many labeled features, is freely available, and

has data for almost all regions in the world. OSM contrib-

utors include individuals, NGOs, corporations, and many

other groups. These groups have different motivations for

mapping and therefore map a range of features in varying

locations. This creates a diverse dataset. The regional di-

versity of OSM largely allows us to avoid the developed-

world bias found in many other training sets; however, even

though OSM has more data from the developing world than

other data sources, the developed world is still overrepre-

sented in OSM data. Additionally, using OSM data for la-

bels has several major challenges. The first challenge is the

quality and correctness of available data. Another challenge

is correspondence between our imagery and OSM data. We

need to ensure the OSM tags correspond temporally and

spatially to our data. Another is, that in our experience,

OSM’s tagged features are high precision, but extremely

low recall. We solve these problems in different ways for

building detection and road segmentation.

4. Building Detection at Global Scale

4.1. Dataset Creation

Starting with a seed dataset of around 1M labeled

patches of imagery, D, we use a combination of weakly-

supervised and semi-supervised learning techniques along

with data in OSM to generate a dataset, D′, of more than

100 million labeled training images with an exact 50% −
50% positive and negative example split. Starting with

around 1M images, we increase the total ground area la-

beled in our training set from around 1 billion square me-

ters of imagery to around 100 billion square meters dis-

tributed as 1000 square meter patches across 79 distinct re-

gions spanning 6 continents and a massive range of cultural

and architectural styles. Though this process is automated,

it does rely on a small amount of manually labeled data for

a given region in order to create the larger training set for

that region. In our case, we create a dataset with 100 im-

ages for every 1 image manually labeled. Figure 1 gives a

visualization of how this process works for Great Britain, a

relatively densely populated region where both the weakly-

supervised and semi-supervised data collection steps play

important roles. More details on D and D′ are in the Sup-

plementary Materials.

Weakly Supervised Approach We approach the prob-

lems of data correctness and spatial and temporal align-

ment through our weakly supervised approach to collect-

ing positive examples. We solve these problems simulta-

neously by labeling an image as a positive example if, and

only if, there is a house in that image according to a la-

bel in OpenStreetMap and our pre-processing step detected

straight edges in that image. The pre-processing step is

the same as described in Zhang et al. [21]. In our experi-
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ments, the images found through this approach in a region

of the Sahara where buildings are quite sparse and where

we would expect this method to have the most difficulty,

were correctly labeled as having houses for 996 out of 1000

images[99.6% accuracy]. According to the analysis done

by Zhang et al. [21], this is more accurate than the hu-

man labelers they used for data collection. Despite the high

accuracy of our labels, we acknowledge the possibility of

systematic errors and biases in the labels accrued through

OpenStreetMap due to issues such as imagery misalignment

or incorrect mapping. Thus, we characterize our approach

as weakly rather than fully supervised learning.

Semi-Supervised Approach The low recall of OSM fea-

ture tags makes the collection of negative examples more

complex. The lack of a labeled building could mean there

is no building there, but it could also mean that the area

has not been mapped yet, in which case it gives no insight

into whether or not we should label this image as contain-

ing a building. Treating all areas without tagged buildings

as non-building images provides only a slight bias towards

returning non-building images. Here, we rely on a semi-

supervised bootstrapping approach along with a simple sta-

tistical approach to bound the expected error rate of our non-

building labels to below 1 percent. We note that this boot-

strapping combined with processing has similarities with

the data distillation work done by Radosavovic et al. [17].

We use the outputs of our 18 layer Resnet that we’ve

trained on D, our original one million manually labeled

images, to find examples of tiles not containing buildings

for our new training set, D′ [6]. For each region, we set a

threshold, τ , for the output— above this threshold, images

are considered to contain a building, and below this thresh-

old, they are not. For our negative samples, we uniformly

sample from the images that we predicted to be negative.

Given the outputs of our 18 layer Resnet, p, on a valida-

tion set with ground truth labels, l—the number of false

negatives(FN ), the number of predicted negatives(PN ),

and the f1 score are all a function of p, τ , and l. Since

p and l are fixed for a given region, FN , PN , and the f1
score are all functions of τ . Our expected labeling error in a

given region is therefore FN / PN . To ensure an expected

labeling error less than 1 percent, we set τ to maximize the

f1 score subject to the constraint that our FN /PN < .01.

That is:

Given a fixed p and l:

f(τ) = FN , g(τ) = PN , h(τ) = f1 (1)

τ = argmax
x∈[0,1]

h(x) | f(x)/g(x) < .01 (2)

Then, for each region, for each image with no houses

tagged in OSM, we use the outputs from our 18-layer

Resnet to score it as building or non-building using τ as

Figure 1. Satellite images from Great Britain. From left to right,

images where we’ve detected edges(but there are no mapped build-

ings in OSM), images our approach labels as containing buildings,

images our approach labels as not containing buildings.

Figure 2. Road extraction from satellite imagery in Mexico.

our threshold. If we have pulled x labeled houses from a

given region, we then randomly sample x non houses from

the region to create our new training set, D′, with a 50-50

building/non-building split.

4.2. Training

First we trained 18, 34, and 50 layer Resnets on our seed

dataset, D [6]. On these seed set, we found overfitting to

negatively affect the performance of the 34 and 50 layer

Resnets and our best performing model was the 18 layer

Resnet. We use this model as a baseline with which to com-

pare the models trained on our new dataset D′. Then, using

around 30 million of our newly collected dataset, D′, from

our weakly-/semi-supervised approach (around 400,000 la-

beled images from each of 78 regions), we trained 18, 34,

and 50 layer Resnets. As expected the 50-layer Resnet was

the best performing model of this group. We then explore

using the initial seed dataset, D, to finetune this model and

see even larger accuracy improvements.

4.3. Results

We compare our approach to two baselines. The first

baseline is the fully trained model produced by Zhang et al.

[21]. This model is intended to be a fully global building

detection model, but was trained on a more limited dataset

using a weakly supervised semantic segmentation-based ap-

proach to classification. It is the state of the art in the liter-

ature for building detection from satellite imagery and uti-

lizes the same imagery source and testing methodology. It

therefore seems the best comparison of our approach to ex-

isting approaches in the literature. The second baseline is
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Table 1. Number of regions in which approach on the left outper-

forms approach on top. ”Finetune” signifying first training on D′

and then finetuning on D.

Zhang et al. [21] D D′ Finetune

Zhang et al. [21] 6 6 5

D 67 14 4

D′ 67 59 18

Finetune 68 69 55

Table 2. Number of regions with above a certain f1 score for each

approach

.2 .4 .6 .8 .85 .9 .95

Zhang et al. [21] 73 71 68 55 41 11 2

D 73 73 73 72 67 52 5

D′ 73 73 73 73 69 53 6

Finetune 73 73 73 72 70 57 10

the 18-layer Resnet that we trained on our seed dataset D.

There are 73 distinct geographic regions for which we

have test data for both Zhang et al. [21]’s work and our own

work. We first compare our two baselines with our model

trained on our new OSM-based dataset D′. To focus on

both generalizability and accuracy we focus on two accu-

racy measurements: in how many regions each approach

provided the highest f1 score and the mean f1 score across

regions, weighting each region equally. We use the f1 score

since this is a strongly class imbalanced classification prob-

lem. The model trained on D′ gets the best f1 score on

53 regions, the model trained on D gets the best f1 score

on 14 regions, and Zhang et al. [21]’s model performs the

best on 9 regions. The largest improvement in accuracy

is from Zhang et al. [21]’s work to our baseline with our

seed dataset with an increase of mean f1 from .818 to .907.

However, there is still a large accuracy improvement from

our baseline to our OSM-trained model with the mean f1
score improving further to .914. We then finetune our model

trained on our OSM-based dataset D′ with the manually la-

beled data in D and see a further improvement of mean f1
to .920. More detailed results are shown in tables 1 and 2

and in the Supplementary Material.

5. Road Segmentation at Global Scale

Mahajan et al. [11] show that, for classification tasks,

deep neural nets trained on large datasets are robust to, yet

still negatively effected by, label noise. In this work, we

show the same robustness for the task of semantic segmen-

tation. We first process OSM data into a training dataset

using simple heuristics. We then train a modified version of

the DLinkNet-34 model that won 2018’s DeepGlobe chal-

lenge on this data[22] [5].

5.1. Dataset Creation

The structure of the building classification problem as

well as the test sets we had available for each region allowed

for a conceptually simple approach to creating a training set

with a bounded expected labeling error rate. The structure

of semantic segmentation, due to pixel level rather than im-

age level labels is not obviously amenable to that sort of ap-

proach. Thus, rather than try to construct a training dataset

with certain guaranteed desirable properties, we started with

a naive approach.

We structure our dataset to minimize the complexity of

composing the dataset while also attempting to retrieve rel-

atively high quality training labels. OSM represents roads

as vectors. Most road segmentation work attempts to get

per pixel raster labels that exactly match road contours; this

type of label is labor intensive to generate. To keep the

dataset generation simple, we rasterize each edge of each

road vector to 5-pixel-width lines, noting that this label is

almost never fully correct. We show in figure 2 that even

though we use the same pixel width for all training labels,

the model learns to predict roads that match the more com-

plex contours and varying widths of the roads shown in the

imagery. We handle the removal of low quality training ar-

eas due to incomplete map data in similarly naive fashion.

We first tile the world using the Bing Map Tile system [16].

We collect our training set at zoom level 15, which we rep-

resent as 2048 by 2048 pixel input images. We throw out

all tiles where less than 25 roads have been mapped, as we

found tiles with fewer roads often only mapped out major

roads . For each remaining tile we rasterize the road vec-

tors as explained above and use the resulting mask as our

training label. To work at the same resolution as the Deep-

Globe dataset, we use a random 1024 by 1024 pixel crop

from the initial 2048 x 2048 data and labels. At the time

of our OSM snapshot, we find around 1.8 million tiles that

meet our heuristic of having at least 25 roads mapped. This

adds up to more than 1.8 million square kilometers of land

area coverage, an increase of more than 1000X from the

1,632 square kilometers of data in the DeepGlobe dataset.

The geographic distribution of this dataset is shown in the

Supplementary Material.

5.2. Training

We train using the DLinkNet34 model that won last

year’s DeepGlobe challenge. We train using SGD rather

than Adam as we found it generalized better. We initially

found that training the model on just one region at a time

using the OSM-based dataset worked, but that attempting

to train on several regions or all available regions failed to

converge. As noted by Wu and He [20], Batch Normal-

ization does not perform well on small batches and our

large input image size required small batches [7]. After

switching Batch Normalization layers to Group Normaliza-
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tion layers, we found that the more regions in the training

set, the better the model performed, strengthening our be-

lief that more geographic diversity improves model perfor-

mance. We trained on satellite imagery from almost all re-

gions in the world that had some areas of relatively com-

plete OSM data. After training the model on the OSM data,

we also investigate finetuning the model on the DeepGlobe

dataset and produce results that are state of the art on the

road extraction challenge [5].

5.3. Results

We first evaluate our model on the DeepGlobe road ex-

traction challenge. Having only trained on weakly super-

vised OSM data, our model receives a road IOU score 0.565

on the validation set. This is an improvement over the base-

line put forward in the challenge [5]. Unlike most entrants

to the challenge, we run our model only once per image

with no Test Time Augmentation(TTA) or post-processing;

despite this, we find that our model is competitive with

other entries. It is outperformed by the best entrants, like

the original DLinkNet34 submission, but outperforms many

other entrants[5]. Our model is the first trained solely on

OSM data to be competitive with road segmentation mod-

els trained in a fully supervised manner. This result is more

meaningful because the models trained on DeepGlobe are

being evaluated on the very region to which the DeepGlobe

dataset is overfit. We then test our finetuned model on the

same dataset, again with a single pass and no TTA or post-

processing and produce a mean road IOU score of 0.6352.

The winning submission, the DLinkNet34 model that we

have adopted, receives a road IOU score of 0.6466, but at-

tributes 0.029 of that IOU to TTA alone. This brings their

single pass, no TTA score down to 0.6176. Our model

thus outperforms the winning submission of the DeepGlobe

challenge in single pass accuracy by around 2%. This falls

in line with other literature showing that pretraining on

OSM data and finetuning on a manually labeled dataset im-

proves accuracy [8] [10]. As we discuss later, the globally

trained model outperforms regionally trained models by a

large margin on regions outside of the regional training dis-

tribution of the regionally trained models.

6. Comparison to existing Datasets

In the building detection problem, we reconfirmed the

findings of Zhang et al. [21] that, even with a large dataset,

the more regions involved in the training set, the better the

model does on all regions. For example, the model trained

on data from all 78 regions outperforms a model trained on

millions of labels from only 9 Sub-Saharan African regions

on every single region, including those 9. In road segmen-

tation, we also find that diversity of data appears to be more

important than the quantity of data. Models trained on the

global OSM data outperform models trained on OSM data

Table 3. IOU score of Zhou et al. [22]’s DeepGlobe-trained

DLinkNet34 and our OSM-trained DLinkNet34 on various

datasets outside the DeepGlobe datasets geographic training dis-

tribution.

Dataset DG IOU OSM IOU

Spacenet - Paris .161 .324

Spacenet - Vegas .172 .425

Spacenet - Shanghai .171 .249

Spacenet - Khartoum .184 .312

Spacenet - Mean .172 .328

Mnih [13] .399 .464

Mean of all .218 .355

from Thailand, Indonesia, and India alone.

For road segmentation, we qualitatively show the differ-

ence between a globally trained model and a model trained

on the DeepGlobe regional data in the Supplementary Mate-

rial. We quantitatively show the difference in generalizabil-

ity of the two approaches by evaluating each of the models

on the road detection test set proposed in Mnih [13] and

on each of the regions of the Spacenet Roads dataset with

the labels rasterized as in Singh et al. [18] [1]. The model

trained on global OSM data outperforms the model trained

on DeepGlobe data on all regions. Across these 5 test sets,

the mean IOU score of the DeepGlobe model is .218 and

the mean IOU score of the OSM trained model is .355 with

a 62 percent relative improvement and a 13.7 percent ab-

solute improvement. The results are shown in full in table

3.

There is a clear trend of increased diversity of training

data increasing both accuracy and generalizability, yet all

benchmark datasets are highly specific to certain regions.

Developing more diverse datasets is crucial to increasing

performance and understanding how models perform in dif-

ferent parts of the world.

7. Conclusion

Our work is the first to consider using OSM pretrain-

ing on a global rather than regional scale. Furthermore, our

work is the first to show that training on OSM alone (and

not finetuning at all) provides high enough quality results to

use in development and relief efforts. This creates a clear

path forward expanding road segmentation and building de-

tection models from regions in which they work well into

regions in which they do not. One option is training exclu-

sively on global OSM data. A path to even stronger results

is pretraining on global OSM data and finetuning on a small

amount of manually labeled data for regions of interest.
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Supplementary Materials

Figure 3. Visualization of the geographic distribution of training data for the OSM road segmentation model. Missing areas are due to

satellite imagery being unavailable at the time of experiments.

Figure 4. Road extraction from satellite imagery in rural Mexico. Left: Satellite Imagery. Middle: THA/IND/IDN trained model. Right:

Global OSM trained model. The model trained on DeepGlobe data misses the road in the top left almost entirely and leaves several roads

in the middle of dense trees whereas the globally trained model performs well.

Figure 5. Road extraction from a relatively well mapped area in Kampala, Uganda. From left to right: satellite imagery, OSM(manually

mapped), THA/IND/IDN trained model, Global OSM trained model. The model trained on DeepGlobe draws numerous non-existent roads

through the middle of houses whereas the globally trained model performs well.
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Table 4. Number of training samples in given regions for datasets

D and D′. Information about some regions withheld until they go

through a data release clearance process.
ISO3 Samples in D Samples in D′

AGO 9999 336978

ARG 0 400000

AUT 0 400000

BEL 21281 400000

BEN 8347 400000

BFA 12687 0

BGD 9429 400000

BWA 235 400000

CAF 19999 400000

CHL 38857 189079

CIV 10059 0

CMR 38987 0

COL 0 400000

DOM 0 135776

DZA 28611 0

EGY 21342 0

ESP 0 400000

EST 19399 400000

FIN 20000 400000

FRA 19602 400000

GBR 19478 400000

GHA 12462 0

GIN 0 400000

GRC 0 400000

GTM 0 400000

HKG 0 64629

HND 0 321302

HTI 25377 0

IDN 3283 400000

IRL 10000 400000

ISL 39492 112124

ITA 0 400000

JPN 0 400000

KAZ 0 400000

KEN 7502 0

KHM 17926 346119

KOR 0 384946

LBR 0 400000

LKA 2110 0

LSO 19418 400000

LTU 18504 400000

LUX 0 264771

LVA 1990 400000

MDG 43241 9657

MEX 19491 0

MLI 0 400000

MOZ 21379 285596

MRT 0 117375

MWI 23789 0

MYS 0 400000

NER 29342 377679

NGA 21829 400000

NOR 39944 400000

NPL 14713 400000

NZL 0 400000

PER 30515 11461

PHL 5498 0

PNG 19702 75867

POL 0 400000

PRI 0 400000

RWA 25384 400000

SEN 29235 0

SLE 0 400000

SLV 0 79790

SWE 19777 400000

TCD 20501 400000

THA 24018 0

TUN 0 114604

TWN 18208 157117

TZA 18689 400000

UGA 13661 400000

UZB 37764 0

VNM 46143 361541

ZAF 17339 400000

ZMB 10000 400000

Table 5. f1 score of the various approaches on the 73 regions

for which we had test sets for all approaches. Seed Dataset D′

refers to the Resnet18 trained on D′, OSM Dataset D′ refers to

the Resnet50 trained on D′, and the final column refers to the

Resnet50 first trained on D and then finetuned on D′. One re-

gion name withheld as it has not gone through the process to be

released publicly.

.
ISO3 Zhang et al. [21] Seed Dataset D′ OSM Dataset D′ Pretrain D and Finetune D′

AGO 0.812 0.905 0.906 0.928

ARG 0.898 0.951 0.956 0.958

AUT 0.846 0.929 0.940 0.942

BEL 0.732 0.855 0.853 0.857

BEN 0.887 0.926 0.936 0.931

BGD 0.855 0.872 0.877 0.902

BWA 0.788 0.887 0.899 0.909

CAF 0.761 0.926 0.929 0.937

CHL 0.873 0.936 0.966 0.951

COL 0.872 0.926 0.919 0.930

DOM 0.915 0.891 0.889 0.903

ESP 0.859 0.929 0.943 0.942

EST 0.631 0.836 0.835 0.846

FIN 0.555 0.831 0.852 0.854

FRA 0.765 0.874 0.884 0.889

GBR 0.675 0.844 0.843 0.852

GIN 0.842 0.918 0.936 0.934

GRC 0.883 0.929 0.946 0.948

GTM 0.885 0.935 0.938 0.939

HKG 0.866 0.897 0.901 0.909

HND 0.889 0.900 0.907 0.915

IDN 0.933 0.911 0.914 0.918

IRL 0.672 0.862 0.860 0.875

ISL 0.333 0.780 0.784 0.800

ITA 0.856 0.926 0.935 0.938

JPN 0.870 0.924 0.925 0.928

KAZ 0.901 0.908 0.892 0.914

KOR 0.815 0.835 0.844 0.856

LBR 0.928 0.907 0.903 0.920

LSO 0.767 0.869 0.883 0.868

LTU 0.801 0.910 0.908 0.913

LUX 0.863 0.926 0.928 0.936

LVA 0.724 0.893 0.897 0.908

MLI 0.852 0.940 0.946 0.953

MRT 0.829 0.915 0.912 0.924

MYS 0.897 0.906 0.914 0.925

N/A 0.880 0.942 0.941 0.945

NER 0.782 0.912 0.920 0.929

NGA 0.853 0.931 0.936 0.942

NOR 0.287 0.874 0.859 0.879

NPL 0.816 0.924 0.927 0.933

NZL 0.858 0.940 0.938 0.947

PER 0.922 0.941 0.949 0.947

PNG 0.854 0.917 0.898 0.908

POL 0.843 0.932 0.924 0.928

PRI 0.919 0.951 0.960 0.964

SEN 0.879 0.955 0.970 0.976

SLE 0.896 0.913 0.928 0.924

SLV 0.887 0.909 0.914 0.917

SWE 0.571 0.877 0.849 0.863

TCD 0.611 0.825 0.837 0.845

TUN 0.906 0.925 0.937 0.943

TWN 0.821 0.871 0.890 0.892

UGA 0.829 0.923 0.916 0.924

VNM 0.948 0.938 0.947 0.950

ZMB 0.715 0.903 0.901 0.914
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