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Abstract

We present a preliminary report for xBD, a new large-

scale dataset for the advancement of change detection and

building damage assessment for humanitarian assistance

and disaster recovery research. Logistics, resource planning,

and damage estimation are difficult tasks after a disaster,

and putting first responders into post-disaster situations is

dangerous and costly. Using passive methods, such as analy-

sis on satellite imagery, to perform damage assessment saves

manpower, lowers risk, and expedites an otherwise danger-

ous process. xBD provides pre- and post-event multi-band

satellite imagery from a variety of disaster events with build-

ing polygons, classification labels for damage types, ordinal

labels of damage level, and corresponding satellite meta-

data. Furthermore, the dataset contains bounding boxes

and labels for environmental factors such as fire, water, and

smoke. xBD will be the largest building damage assessment

dataset to date, containing ∼700,000 building annotations

across over 5,000 km2 of imagery from 15 countries.

1. Introduction

With recent, abrupt changes in weather patterns around

the world, natural disasters have become more unpredictable

and have wider impacts than ever before [1]. Improvements

in the fields of machine learning and computer vision have

led to increased interest in creating smart, autonomous solu-

tions to problems that many first responders face worldwide.

The increasing availability of satellite imagery from sources

such as USGS, NOAA, and ESA allows researchers to create

models for a variety of humanitarian assistance and disas-

ter recovery (HADR) tasks. Training accurate and robust

models necessitates large, diverse datasets. Unfortunately,

datasets for these use cases are hard to obtain. Although

large-scale disasters bring catastrophic damage, they are rel-

atively infrequent, so the availability of relevant satellite

imagery is low. Furthermore, building design differs depend-

ing on where a structure is located in the world. As a result,

damage of the same severity can look different from place

Figure 1: From top left (clockwise): California wildfire;

Sulawesi tsunami; India monsoon; Lombok earthquake. Im-

agery from DigitalGlobe.

to place, and data must exist to reflect this phenomenon.

Last, guidance for assessing building damage from satellite

imagery for a wide variety of disasters is lacking in available

literature.

In order to fully support machine learning for building

damage assessment, datasets of appropriate scope, scale,

size, and standard must be available. For this reason, we

introduce xBD, a satellite imagery dataset for building dam-

age assessment. xBD addresses the limitations enumerated

above by collecting data across 8 disaster types, 15 countries,

and thousands of square kilometers of imagery. Furthermore,

we introduce a Joint Damage Scale that provides guidance

and an assessment scale to label building damage in satellite

imagery. xBD is used to introduce the xView 2.0 challenge
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problem and address operational concerns of the HADR and

emergency response community.

2. Related Work

Assessing damage from satellite imagery, especially for

disparate disaster types, is a complicated task. Intuitively,

it is easy to imagine that different disasters—for example,

floods versus fires—would impact buildings in drastically

different ways. In order to train robust building damage

assessment models, datasets that can provide imagery from

multiple types and severities of disasters are critical.

2.1. Existing data sources

Existent satellite imagery datasets that contain damaged

buildings cover only single disaster types, with different

labeling criteria for damaged structures [14, 4, 28, 12].

Furthermore, there are limited datasets that provide la-

bels for forces of nature (fire, water, wind, etc.) that caused

damage to a building visible in satellite imagery. Related

datasets [9, 15] provide derivative location information of

where these forces may occur, but they do not contain im-

agery of the damaged structures themselves. From an op-

erational perspective, it is much more useful to be able to

classify a building as, for example, “damage level 5 caused

by fire and wind” as opposed to simply “damage level 5.”

For any given disaster, currently it is too difficult and time

consuming to assess which factors damaged a given build-

ing to any level of granularity. It is simply assumed that a

tornado caused wind damage, a wildfire caused fire-related

damage, and more. However, this ignores secondary issues

that arise because of natural disasters, such as fires that start

after earthquakes, wind damage associated with flooding dis-

asters, and more. A lack of datasets for this problem directly

impedes any potential for model development.

Similarly, there are few public datasets of satellite im-

agery with associated bounding boxes and labels for en-

vironmental factors such as smoke, water, lava, and fire.

Existence of these environmental factors in the satellite im-

agery provides insights that can aid HADR image analysts

in disambiguating the causal factors and severity of building

damage.

Last, many available datasets present multi-view imagery

for change detection, land classification, and other tasks [7,

6, 2, 18]. Imagery from these datasets can span multiple

visits over one site and provide a rich resource for any sort of

time-series imagery analysis. xBD emulates these datasets

and provides pre- and post-disaster imagery over consistent

sites for additional environmental context.

2.2. Assessment scales

There is a large corpus of literature that addresses how to

assess damage after disasters such as fires, earthquakes, and

hurricanes [20, 27, 24, 13]. However, since each scale in

this corpus is specifically scoped to a limited set of disaster

types and is generally meant for in-person damage assess-

ment, the scales cannot be simultaneously used to assess

building damage by multiple disasters in satellite imagery.

There are some notable attempts to assess multiple types of

disasters. The HAZUS software from FEMA [11] is used to

assess earthquakes, floods, and hurricanes. More generally,

the FEMA Damage Assessment Operations Manual [10] de-

scribes damage qualitatively, but mostly relies on in-person

assessments and provides specific criteria only for residen-

tial dwellings. As a result, there does not exist a standard

scale for assessing damage across damage types from aerial

imagery.

3. Dataset Details

In this section we describe the xBD dataset in detail, in-

cluding the image collection considerations, damage scale,

annotation process, and quality control. We also show statis-

tics about the dataset that describe the diversity, scale, and

depth of the imagery.

The dataset consists of the following: building polygons,

which are granular representations of a building footprint;

ordinal regression labels for damage, which rate how dam-

aged a building is on an increasing integer scale; multi-class

labels, which relate all the environmental factors that caused

the damage seen in the imagery; and environmental factor

bounding boxes and labels, which are a rough approxima-

tion of the area covered by smoke, water, fire, and other

environmental factors.

3.1. Motivating processes for image collection

In collaboration with imagery analysts from the Califor-

nia Air National Guard, we identified the process by which

human analysts currently label building damage from satel-

lite imagery and the implicit decisions they make in order

to provide insights to first responders. The process is as

follows: when a disaster occurs, analysts receive aerial and

satellite imagery of the impacted regions from state, federal,

and commercial sources. Analysts make an initial overall

assessment of what sub-regions look the most damaged and

further analyze, identify, and count the number of structures

damaged. The scale used to assess the damage as well as the

types of structures that will be assessed depend on the type of

disaster, requesting agency, and use case for the assessment.

This process informed a set of criteria that guided the

specific data we targeted for inclusion in the dataset, as well

as weaknesses of the current damage assessment processes.

Each disaster is treated in isolation. The process human an-

alysts use is not repeatable or reproducible across different

disaster types. This irreproducible data presents a major

issue for use by machine learning algorithms; different disas-

ters affect buildings in different ways, and building structures
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Figure 2: Disaster types and disasters represented in xBD over the world.

vary from country to country, so determinism in the assess-

ment is a necessary property to ensure machine learning

algorithms can learn meaningful patterns. Therefore, to en-

sure a holistic view of building damage, we source imagery

from a variety of disaster types across many countries and

environments. Table 2 lists all disasters in xBD and their

corresponding disaster types.

An additional consideration for the dataset is the inclusion

of labeled environmental factors such as smoke, landslide,

and water. Human analysts implicitly acknowledge the ex-

istence of these factors, which affects their assessment as

they mentally categorize the type of damage to expect. xBD

contains explicit labels to assist any downstream machine

learning task in accomplishing the same categorization.

A clear understanding of what buildings do not look like

is necessary when training models to look for buildings,

damaged or otherwise. Explicit techniques to establish this

understanding exist; one example is hard negative mining

[26, 25]. In order to support such techniques, we included a

large amount of satellite imagery in xBD that may contain

objects such as vehicles or natural features but no buildings.

3.2. Joint Damage Scale

To address the lack of a scale for building damage as-

sessment that covers the various types of damage in this

satellite imagery dataset, we present the Joint Damage Scale

(Table 3), based mainly on HAZUS [11], FEMA’s Damage

Assessment Operations Manual [10], the Kelman scale [21],

and the EMS-98 [16]. Furthermore, various literature from

the GIS community [5, 30, 8], paired with expert insights

from the California and Indiana Air National Guards and the

US Air Force, help ground the scale in operational relevance.

Assessing damage via satellite imagery is a proxy for the real

task, which requires on-the-ground human analysts using

these cited scales to assign a metric of damage based on the

functionality of the building, not its looks. It is not simple

to reconcile this highly objective task of assessing function-

ality in person with assessing functionality from top-down

satellite imagery. As such, this scale is not meant as an au-

thoritative damage assessment rating, but it does provide the

first attempt to create a unified assessment scale for building

damage in satellite imagery across multiple disaster types,

structure categories, and geographical location. Imagery an-

alysts who provide preliminary building damage assessment

as well as related machine learning applications would find

this scale to be applicable.

The Joint Damage Scale ranges from no damage (0) to

destroyed (3). This granularity is based on satellite imagery

resolution, available imagery features, and operational use-

fulness. The descriptions of each damage level have been

generalized to handle the wide variety of disasters present

in xBD. The scale allows room for analyst discretion, which

can result in some amount of label noise. Although such

nuance is not ideal from an objective assessment standpoint,
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it allows analysts to gracefully handle tough cases that fall

between classification boundaries. Figure 5 and Appendix

Figure 6 show examples of what it means to be in one of

these categories.

Due to the limitations presented by the modality of satel-

lite imagery, such as resolution, azimuth, and smear [29], this

scale presents a best-effort trade-off between operational rel-

evance and technical correctness, and thus cannot accommo-

date the degree of precision that a scale meant for in-person,

human assessment provides.

Figure 3: Joint Damage Scale descriptions on a four-level

granularity scheme.

3.3. Polygons

Polygons for all buildings are provided in standard, well-

known text representation conformant to the ISO/IEC 13249-

3:2016 standard [19]. Polygons will be provided in terms

of their latitude and longitude as well as their respective

pixel location in a given swath of imagery. Structures that

are below a set size in terms of square pixels will not be

annotated in the dataset.

Bounding boxes for environmental factors are rough and

potentially overlap annotated buildings as well. These boxes

are provided for a relative understanding of the environment.

3.4. Multi­class labels

We provide multi-class labels for environmental fac-

tors that caused damage to structures. These labels are

“fire”, “water”, “wind”, “land shift”, and “other” in the

form of a many-hot vector (i.e., a vector in the form of

[0, 1, 0, 0, 1, 0, ...], where a 1 is present at the index of the

correct classes). These labels are high level and meant to

provide a coarse level of discrimination to maintain a low

level of noise in this set of annotations.

3.5. Quality control

Quality control is an essential part of creating an accu-

rate dataset with many labels and often complicated poly-

gons. A three-stage quality control process was adapted

Figure 4: Polygons over a small part of the coast of Florida

with damage labels. Imagery from DigitalGlobe.

from xView 1.0 [22] with significant alterations to account

for the initial round of automated labeling. The first stage

consists of global verification where all annotators verify

the orientation, positioning, and fidelity of all automatic and

human-extracted polygons. After all polygons are verified,

all human-annotated labels are verified.

The second stage uses a targeted, experienced set of an-

notators to check for continuity of polygons, granularity of

multi-class labels, empty chips, and any disagreeing labels.

The final, third stage relies on expert annotators that con-

sist of the authors, HADR subject matter experts, and remote-

sensing/satellite imagery experts who randomly sample 4%

of all individual tasks. If any task is found to be incorrect,

the entire batch—which itself consists of many tasks—is

re-submitted for annotation and sent back for expert verifica-

tion.

3.6. Targeted dataset statistics

All imagery for xBD is sourced from DigitalGlobe.1 Digi-

talGlobe provides high-resolution imagery at ∼0.5m ground

sample distance, which provides ample resolution for this

labeling task. Furthermore, we are able to obtain pre- and

post-disaster imagery in multi-band (3, 4, or 8) formats,

which give xBD greater representational capacity. Each im-

age is also accompanied by metadata such as “sun azimuth”

and “off-nadir”, which enable data processing pipelines to

account for various skews in the imagery itself. The imagery

consists of 22 different disasters and is gathered from 15

countries (Figure 2) at various times of the year. Disasters

were picked on the basis of what impact people often and at a

high severity. Furthermore, disasters had to have a range on

their levels of severity, otherwise their impact on buildings

would not be differentiable enough to provide good labels.

Overall, xBD will provide approximately 700,000 build-

ing polygons with ordinal damage and multi-class damage

1https://www.digitalglobe.com/
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causal labels, as well as approximately 1,000 environmental

factor bounding boxes with corresponding class labels. The

distributions over the labels are unknown at this time, but

figures and exact numbers will be provided once the entire

data collection process has ended.

3.7. Unique dataset features

As briefly covered in Section 2, xBD presents many at-

tributes that are not available in other datasets that could be

used for this task.

xBD contains imagery from the majority of common dis-

aster types labeled with a common, expert-verified damage

assessment scale. By including vastly different modes of

damage in the dataset, we provide a much more robust view

of damage than related datasets.

The dataset also has large geographical diversity. In par-

ticular, imagery contains buildings in both highly dense and

hyper-sparse settings. This range presents difficulties for

proper localization methods. Furthermore, since imagery

is sourced from around the world, buildings are organized

and designed in different ways, providing a representational

complexity not present in existent literature.

4. Challenge

xBD is being released in conjunction with the second

iteration of the global xView challenge. For the purposes

of the challenge, the dataset is used in a specific fashion

that balances research interest and the operational concerns

of various relief-providing agencies, but this use does not

preclude it from being used for other tasks.

4.1. Challenge statement

xBD provides building polygons, ordinal regression la-

bels for building damage, and multi-class labels for environ-

mental factors that caused the damage. Given training data,

the challenge is to create models and methods that can ex-

tract building polygons and assess the building damage level

of polygons on an ordinal scale. Furthermore, the models

and methods must assign an additional multi-class label to

each polygon that indicates which natural force caused the

damage to the building.

4.2. Performance metric

A metric for scoring the xView 2.0 challenge needs to

smoothly combine scores for the tasks of regression, clas-

sification, and localization. An ideal metric would weight

these tasks from high to low in their listed order. xView

1.0 had to make explicit design trade-offs which resulted in

certain classes of objects being scored higher for accurately

localizing them. In the case of xView 2.0, every disaster type

is treated as equally important, but due to the prevalence of

models that can localize building polygons, the weighting for

localization is not high. The majority of the difficulty relies

on the fine-grained regression and classification required to

accurately assess building damage.

4.3. Challenge restrictions

To better accommodate operational use cases, the data

used for inference in the challenge will be purposefully

lowered in resolution in a stochastic fashion. Since high-

resolution imagery cannot be guaranteed for all parts of the

world, for all disasters, around the clock, any models created

must work across dynamic resolution limitations.

As with xView 1.0, inference for any submitted model

will be limited to CPU only with an upper limit on computa-

tion time per image.

5. Potential Use Cases

We provide a brief, non-exhaustive list of compelling

use cases for xBD that are both operationally useful and

academically interesting.

Obstructed road segmentation. The dataset includes

images of many roads that are broken, covered with a variety

of debris, flooded, and otherwise obstructed. Unsupervised

models already excel at road segmentation in satellite im-

agery [3, 23, 17], but limited literature currently addresses

segmentation and identification of roads with obstructions.

Models that can detect obstructed roads would provide ad-

vanced routing capabilities to first responders and disaster

planners who need to know how to navigate through a disas-

ter environment.

Routing across obstructed roads. As an extension to

the previous use case, xBD could also be used as a dataset

for automatic route planning across obstructed or no-longer-

usable roads. Not much literature exists that targets this

problem, partially due to a lack of datasets providing ob-

structed roadways.

Force of nature identification. xBD provides bounding

boxes and labels for many environmental factors—such as

fire, water, and lava—that cause damage. It is essential for

first responders to know where any of these factors may be

present. It is possible to create robust detection models for

this task with the data provided in xBD.

6. Conclusion

xBD presents the largest satellite imagery dataset for

building damage assessment with over 700,000 labeled build-

ing instances covering over 5,000 km2 of imagery.

Furthermore, xBD contains labeled data about environ-

mental factors and hazards that can be used to aid building

damage assessment or other research tasks not considered

by the xView 2.0 challenge.

By combining insights from disaster recovery and emer-

gency response experts from many US Government agencies,
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Figure 5: (From left to right) “No damage”, “minor”, and “major” wind damage. “Destroyed” example not available yet.

we are able to generate a high-quality dataset for research

purposes while maintaining operational relevance.
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Appendices

Figure 6: (Top) “Major” and “destroyed” examples for flooding. (Bottom) “No damage” and “destroyed” examples for fire.

Figure 7: The same chip in red/green/blue (left) and red/near-IR/blue (right).
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