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Abstract

The state-of-the-art semantic segmentation and object

detection deep learning models are taking the leap to gen-

eralize and leverage automation, but have yet to be use-

ful in real-world tasks such as those in dense circuit board

robotic manipulation. Consider a cellphone circuit board

that because of small components and a couple of hun-

dred microns gaps between them challenges any manipu-

lation task. For effective automation and robotics usage in

manufacturing, we tackle this problem by building a con-

volutional neural networks optimized for multi-task learn-

ing of instance semantic segmentation and detection while

accounting for crisp boundaries of small components in-

side dense boards. We explore the feature learning mech-

anism, and add the auxiliary task of boundary detection

to encourage the network to learn the objects’ geomet-

ric properties along with the other objectives. We exam-

ine the performance of the networks in the visual tasks

(separately and all together), and the extent of generaliza-

tion on the recycling phone dataset. Our network outper-

formed the state-of-the-art in the visual tasks while main-

taining the high speed of computation. To facilitate this

globally concerning topic, we provide a benchmark for E-

waste visual tasks research, and publicize our collected

dataset and code, as well as demos on our in-lab robot at

https://github.com/MIT-MRL/recybot.

1. Introduction

Recycling E-Waste is not only environmentally friendly

but also economically rewarding and scientifically a chal-

lenging problem. While the speed of designing and pro-

ducing new electronic devices is creating opportunities for

us to innovate and implement new ideas and technologies,

the urge for a sustainable advancement is becoming more

salient. The rather awakening global statistics [2, 17] about

producing millions of metric tons E-Waste per year, with

only about 20% recycling seems to be a call-out for the

AI and robotics community: This percentage, although low,

mainly means destroy-then-melt, an easy one-solution-for-

all, without much of intelligence. Although melting 1 mil-

lion phones could potentially recover 16,000kg of copper,

350kg of silver, 34kg of gold and 15kg of Palladium, it not

only is causing environmental and health hazards to local

communities, but is driven by low-cost rather than higher

revenue which ignores the opportunity for more advanced

recycling [31]. How can we build intelligent solutions to

automate semantic detection and categorization of such ob-

jects, to leverage the autonomous robotics manipulation and

disassembling tasks?

The problem is scientifically interesting because of the

special design of the objects. Consider a cellphone cir-

cuit board that because of small components and micron-

scale gaps (clearance) between them challenges any manip-

ulation task. Components have a limited pose (and thus

limited viewpoints) making it difficult to capture RGB-D

or point clouds with an effective precision without using

a several-thousand-dollar high-end 3D scanner. Moreover,

the amount of data is limited due to the specificity of design

from each manufacturer and the way the components are fit

together which often causes occlusion. So any visual intel-

ligence solution has to meet several criteria: detection with

respect to special sizes (e.g., screws vs batteries), seman-

tic segmentation (i.e., pixel to pixel prediction of the com-

ponents’ labels), instance segmentation (e.g., being able to

count two connected cables), and crisp boundaries detec-

tion (e.g., finding a clear gap between two components for

sending an actuator for prying/pulling out the component).

Furthermore, ideally, the learning has to take into account

the extent of performing all of these tasks in the vicinity of

having diverse designs of components from different brands

and manufacturers (e.g., different shapes for a cable or same

black color for all the components).

While current deep learning AI models, specifically

Convolutional Neural Networks (CNNs or ConvNets), have

demonstrated outstanding achievements in training for vi-
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sual intelligence in each of the above tasks (object detec-

tion, semantic instance segmentation, and crisp boundaries

detection) with reasonable power of generalization on natu-

ral scene images, they are yet to be utilized for our problem.

When it becomes to detection of small objects with limited

data, ConvNets are more prone to under/over-fitting. Con-

vNet hierarchy supports for encoding high-level vision and

semantics into the higher (deeper) levels of the network, and

thus capturing objects and context, but it also loses the spa-

tial details around boundaries of the objects. An interesting

observation is that object cores have different probability

distributions than their boundaries [13]. So it is natural that

weakly correlated boundaries’ pixels result in low activa-

tions than the highly correlated cores, and thus get washed

away during transition between layers and levels (unless we

force the network to learn a specific distribution). But how

can ConvNets be modified to account for details in our prob-

lem?

We tackle the multi-faceted dense circuit problem by

building upon state-of-the-art ConvNets and end-to-end (no

pre/post-processing) optimizing for multi-task learning of

detection, localization, and instance semantic segmentation

while accounting for crisp boundaries of small components.

Specifically, our method extends the Mask R-CNN [11] by

addressing the inherent problems of ConvNets – the trade-

off between semantic top levels and detailed bottom lev-

els. First, we explore the proposal feature by pooling fea-

ture maps from all levels (top and bottom) of the backbone

while benefiting from lateral skip-connections between all

levels. The key idea is to regain the higher spatial reso-

lution information of the objects’ boundaries from the fea-

ture maps at lower-levels of the CNN hierarchy. Second,

we add an auxiliary branch for predicting objects’ bound-

aries on each Region of Interest (RoI), in parallel with the

existing branch for classification, bounding box regression,

and masks segmentation. During training, the feature maps

produced by the edge branch is cascaded with that of the

mask branch to compute the final segmentation mask (Fig-

ure 1). This encourages the network to learn the location

of boundaries and implicitly captures the geometric proper-

ties of phone components along with the others objectives.

Thereby, we achieved increased accuracy for the segmen-

tation of our phone dataset by over 3% of standard metric,

and more importantly, retained the crisp boundaries for our

robotic tasks compared to Mask-RCNN while maintaining

the same level of computing speed.

We examine the performance of the networks in the vi-

sual tasks (separately and all together), and the extent of

generalization, for effective automation and robotics usage

in manufacturing. For experiments, we have collected and

annotated 533 images of cellphones and their components.

We provide a benchmark for E-waste, and will release our

data and code to facilitate future research.

2. Related Work

We are interested in the end-to-end learning (for creat-

ing autonomous systems) of multi-tasking using ConvNets

for object detection and localization, semantic segmenta-

tions, instance segmentation, and crisp boundaries detec-

tion, all together. Learning ConvNets for each of these tasks

has been explored separately and benchmarked on public

datasets, and yet each is an active topic of research. For ex-

ample, for semantic segmentation, fully convolutional net-

works, FCN [22, 25], SegNet [1] and U-Net [29] architec-

tures have been successful. Since these networks do not per-

form well in details and boundaries, several improvements

have been suggested [7, 27, 18].

FPN: Driven by the idea of building high-level seman-

tic feature maps at all scales, recent architectures are based

on skip connections from encoder to decoder for using de-

tails from different feature maps’ level (Laplacian recon-

struction in LLR [8], SharpMask [27]). One such architec-

ture is FPN [19] which demonstrates significant improve-

ment as a generic feature extractor in several visual applica-

tions. FPN utilizes a pyramidal structure (i.e., multi-level)

for encoder and decoder, similar to human visual system

in multi-scale visual tasks [4]. FPN further uses an adap-

tive pooling mechanism for aggregating the feature maps

of corresponding encoder/decoder levels together (through

lateral skip-connections as well as the inherited layer skip-

connections from ResNet [12]) with losses at each level of

the decoder. This architecture gives state-of-the-art for any

ConNet’s backbone. FPN is also used as the backbone in

Mask R-CNN [11] which does object detection, localiza-

tion, and instance semantic segmentation together.

Mask-RCNN is currently state-of-the-art for object de-

tection and instance segmentation, and part of its strength is

due to region-based detection mechanism . In fact this net-

work is an evolution of prior work – RCNN [9], Fast RCNN

[8], and Faster RCNN [28]. The core idea in this family

of networks is to scan over the predefined regions called

anchors. For each anchor, the Region Proposal Network

(RPN) does two different type of predictions: the score of it

being foreground, and the bounding box regression adjust-

ment to best fit the object. RPN then chooses a fixed number

of anchors with highest score, and apply the regression ad-

justment to get the final proposal for objects prediction at

the network head. This mechanism works better for us (as

we compared to SegNet). Note that there are other instance

segmentation works [26, 6] that use the region proposals,

however, Mask R-CNN learns all the tasks at the head (i.e.,

for inference).

It is also conceivable to train ConvNets for edge and

boundaries detection [32, 30, 5, 33, 10], e.g., HED [32] uses

loss on edge maps at different levels of a ConvNet to force

the network for finding boundaries in images. While find-

ing edges and object cores could be two different compet-
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Figure 1. Network architecture. The blue path illustrates the baseline model with box, class, and mask at the head. Note that the green

mask path is different from the implementation in the baseline. We modify the pooling mechanism from the backbone and illustrate it via

the gray path. When we add only the green mask, we call it Mask R-CNN + FPN + Adaptive Pooling. When we add the purple edge path

as well, we call it Mask R-CNN + FPN + Adaptive Pooling + Edge Detection. Note for avoiding clutter, we did not draw depth of the

feature maps. Also, the icons in left-bottom corner apply to all colors.

ing tasks, there are works that explore doing both tasks as a

multi-task learning [15, 14, 23, 3]. The main idea is a com-

bination of a loss function that accounts for both tasks and

one or several networks that learn features for each task. We

learn the edges on the same network of other tasks, and in

our implementation, we concatenate (using 1 × 1 convolu-

tion) edge learned feature maps to the ones for segmentation

mask. That is, we want the edge detection to be an auxiliary

task that forces the network to be aware of boundaries.

3. Method

Our goal is to semantically detect and localize compo-

nents with clean boundaries. For this, we want to devise

a method that learns multi-tasks in an end-to-end learn-

ing fashion. Our method is borrowed from the concept of

region-based detection for instance-segmentation. For mod-

eling we take Mask R-CNN as the baseline and build upon

it. We first discuss the objective and the multi-tasking and

then describe the architecture in details.

3.1. Objective

We want to optimize our learning with respect to several

tasks. Technically, besides the three inference terms, the

bounding box, class, and mask, we also want a geometric

term which incorporates the boundary information of the

segmentation mask into a single loss function.

In the baseline Mask R-CNN model, three tasks are done

at the inference. Formally, the model optimizes the follow-

ing total loss function:

L = Lbbox + Lclass + Lmask. (1)

Here, Lbbox, Lclass, and Lmask correspond to the L2 re-

gression loss for the bounding box of each component (lo-

calization), class-agnostic presence of a component (detec-

tion), and per-pixel label (semantic segmentation), respec-

tively. In our case, we also want to emphasize on the bound-

aries of the components to find clear gaps between compo-

nents for manipulation tasks, e.g., prying. Therefore, we

explicitly include the semantic edge loss to the total loss as

follows:

L = Lbbox + Lclass + Lmask + λLedge. (2)

Here, Ledge corresponds to the loss between the edge

mask (per-pixel ground truth of boundaries of each compo-

nent) and the predicted edge mask. To regularize the weight

of the edge loss in the total loss, we use λ coefficient, and

treat it as a hyper-parameter in our experiments.

3.2. Network Architecture

Our goal is to design end-to-end ConvNets for learning

with the objectives formulated in Equation (1) and Equa-

tion (2). We compare the results of these networks with the

baseline in Sec. 4.

Figure 1 illustrates the network architecture with differ-

ent colors to highlight different parts and designs. The blue

path shows the schematic structure of the base model: it

starts with an FPN backbone (with fully enabled lateral con-

nections) [19], and ends with the three branches for bound-

ing box, class, and mask predictions to correspond to the ob-

jective defined in Equation (1). For the FPN backbone, we

used ResNet50 architecture with initialized weights from

ImageNet. Because we have a different design for the mask
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branch, we replaced the original one with “edge + mask” in

purple and green (instead of blue). Specifically, in our de-

sign, there are two main different parts in the adaptation of

the base model, as follows:

3.2.1 Feature Pooling

This part refers to the gray part in Fig. 1, and corresponds

to the different usage of RoIAlign in the base model. That

is, we use all levels of feature maps for reconstruction of a

mask. The intuition behind this idea is to use information

of top levels for context and low levels for details (bound-

aries in our case). This idea is also explored in [21] and

called “Adaptive Feature Pooling.” We stick to this term in

our work; and further, we note that they pool these features

from an extra (shallow multi-scale) encoder following the

FPN backbone. We pool (max-element-wise) the proposals

computed by RoIAlign from the decoder of the FPN back-

bone.

3.2.2 Network Head

We now explain the head branch for mask prediction –the

green and purple paths (in Fig. 1). We denote m × m for

size of the mask, and K for number of component classes.

After the adaptive feature pooling, we send the RoIAligned

feature maps (proposals) with size of m
2
×

m
2
×depth to the

green path to apply four convolutions followed by ReLU

and then a convolution-transpose to upsample to the same

size of ground truth mask, m × m. This design concludes

our green path “Mask-RCNN + FPN + Adaptive Pooling”

network (in Sec. 4) for Equation (1). To implement Equa-

tion (2), we add the purple path: We take the convolution-

transposed feature maps and first learn the edges by apply-

ing a 1 × 1 convolution and a sigmoid which results in an

m×m×K prediction. We also take the edge feature maps

(before prediction) and concatenate it with the mask feature

maps to support the mask prediction with the edge informa-

tion. This design concludes our purple and green paths to-

gether which we refer to as ”Mask-RCNN + FPN+Adaptive

Pooling + Edge Detection” network (in Sec. 4), for Equa-

tion (2).

4. Experiments

We ran experiments using the architecture in Fig. 1 on

a dataset of cellphones. Here, we discuss the details on the

dataset, implementation, and evaluation metrics. Further-

more, we discuss an experiment to examine the extent of

generalization on the framework for our data.

4.1. Dataset

We have collected a dataset of cellphone images with

their annotations. This dataset includes 10 cellphones we

have disassembled in the lab. We have taken images of each

layer of a phone as well as its individual components. So

far, we have collected data for Apple iPhone 3GS, iPhone

4, iPhone 4S, iPhone 6, Samsung GT-i8268 Galaxy, Sam-

sung S4 Active, Samsung Galaxy S6 and S6 Edge, Samsung

S8 Plus, Pixel 2 XL, Xiomi Note, HTC One, Huawei Mate

8, 9, 10, and P8 Lite. Moreover, we have collected im-

ages from online search engines. We created a taxonomy of

components and parts, of which we selected 11 classes. We

annotated all the images according to these classes. So far,

we have collected over 533 images.

We first split data to 90% for training and 10% for val-

idation, and then apply augmentation on the training set.

We add random noise, Gaussian blur, sharpness, and ran-

dom change in lightness, as well as constant normalization.

This results in over 4,000 training images. For validation,

we take at least one image from each cellphone model such

that it is not shown to the model during training. However,

we note that because each cellphone has several images for

different layers, there might be a chance that the model sees

some components (e.g., camera) stayed in several layers.

This effect is inevitable and mainly happens in the real-

world scenarios. Nonetheless, to examine the generaliza-

tion capacity of the modeling, we test the model against the

two held-out cellphone models.

4.2. Implementation Details

We have tried different sizes of RoIAlign, mask size

(m × m in Sec. 3.2.2), and coefficient λ in Equation (2).

Although, it would be intuitive to take RoIAligns relative

to the size of each level in FPN, we found that one size of

14×14 gives us the best results. This counter-intuitive effect

could be due to the fact that RoIAlign is already an approx-

imation of feature maps and a large size means having more

interpolated activations than the actual activations. We ex-

perienced that mask size of m × m = 28 × 28 (same as

in the baseline model) is much better than larger sizes. Fi-

nally, we found that the hyper-parameter λ = 1.2 gives us

the best results for component boundaries detection. Figure

2 illustrates these results for a few number of cellphones in

the dataset.

4.3. Evaluation Metrics

The standard metrics for pixel to pixel segmentation are

mainly the COCO [20] average precision (AP) metrics:

AP is average precision of multiple IoU’s (Intersection of

prediction and ground truth over Union of prediction and

ground truth) values. AP50 and AP75 are average preci-

sion at IoU threshold of 0.5 and 0.75. APS , APM , APL are

the average precision for objects with different area scales.

Area is measured as the number of pixels in the segmen-

tation mask. Small object: area < 322, Medium object:

322 < area < 962, Large object: area > 962. In Table
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Model AP AP50 AP75 APS APM APL Mean F-measure

Mask-RCNN + FPN 54.9 70.6 62.5 29.9 46.4 77.2 0.329

Mask-RCNN + FPN + Adaptive Pooling 56.2 72.4 63.2 33.6 51.8 77.5 0.349

Mask-RCNN + FPN + Adaptive Pooling + Edge Detection 58.7 73.8 65.0 35.3 49.4 80.1 0.363

Table 1. Mean of mask and boundaries for the three models. AP’s are COCO average precisions for segmentation mask. Mean F-measure

is the arithmetic mean of F-measure (harmonic mean) of all classes for boundaries.
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Figure 2. Results of our method. From top, rows are: Input image, ground truth, Mask R-CNN + FPN, Mask R-CNN + FPN + Adaptive

Pooling, and Mask R-CNN + FPN + Adaptive Pooling + Edge Detection. Note that the last two rows qualitatively have more accurate

(respect to the baseline) boundaries detection for each object, and the last row has even better boundaries detection. Also note that we

picked images where we have several objects in the dense board, otherwise doing the multi-tasks on an image of a single component is

much easier and less interesting to us.

1, we report these numbers for the three models. Here, we

observe that the latest model has highest accuracy almost in

all AP metrics, importantly for APS .

For evaluating our boundary detection, we compute the

F-measure based on the precision-recall curve in [24]. Here

precision is number of overlap (between the ground truth

and the predicted pixels) over the number of predicted pix-

els. Intuitively, it means how many pixels the machine cor-

rectly captured. On the other hand, recall means number

of overlap over the number of ground truth pixels, account-

ing for how much the machine missed to capture the ground

truth. Note that our goal was not to capture the human bias
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Figure 3. Visualization of boundaries (edges) predicted by Mask R-CNN + Adaptive Pooling + Edge Detection model. For the interest of

space, we only show patches containing the object of interest. For each class, we use its color legend and draw the boundaries. Note that

the thicknesses of the boundaries are only for visualization, and we did not normalize it across all the classes.
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Figure 4. Examining generalization capability of the model: Testing unseen cellphone models from online (ifixit.com [16]) images. For

testing, we use Mask R-CNN + Adaptive Pooling + Edge Detection. These cellphone models are, from left: BlackBerry Z10, Nexus 5X,

Samsung Note 8, and Sony Xperia. The detection of components are reasonable, however, in the real-world scenarios and for manufacturing

purposes one would need to train the model on an example of any new brand model before using the ConvNet model for prediction to get

better results.

in annotating what a boundary is. Furthermore, as noted by

Isola et al. [13], for boundary detection, we not only have

to find the “correct” pixels, but also need to find the “crisp-

ness.” The latter term refers to the set of pixels that are

correctly detected and reside on the boundaries, as opposed

to being closer to the core of the object. While it is a com-

mon practice for boundary detection metrics to take about

4 pixels to account for the intersection of ground truth and

prediction, we only take 2 pixels in our report.

Finally, to account for perceptual quality that might not

be completely captured by the standard measures, we pro-

vide results of the three models in Fig. 2. It is important to

note that our ground truth are not quite accurate, due to in-

herent human bias (which in turn could affect the detection),

yet reasonable for our attempt. For qualitative examination

of how the edge prediction behaves, we show boundaries

predicted for each class in few examples in Fig. 3.

4.4. Generalization

To explore how much the model can generalize the task,

we performed the following study: We trained on our

dataset, and then tested the model on images of cellphone

models it has not seen. These images are randomly selected

from the Web (ifixit.com [16]), without prior annotations.

Here, we show qualitative results in Fig. 4. We note that our

model can produce reasonable predictions for both mask

and edge on unseen phone models. Furthermore, this proves

that the extra edge branch does help our model to learn the

common phone components geometry (e.g., battery is rect-

angular). Nonetheless, prior work on model generalization

indicates that obtaining more (in terms of diversity but not

necessarily quantity) data could help for better generaliza-

tion. We note that our current focus is multi-tasking on

small objects and boundaries, and a formal investigation of

generalization is an important direction of future work.

5. Conclusion

In this paper, we addressed the problem of visual intel-

ligence systems for autonomous robotics manipulation and

disassembling tasks, as such intelligent operations are es-

sential for effective and low-cost E-Waste recycling. We

explored several designs of ConvNets for end-to-end multi-

tasking of detection, localization, instance semantic seg-

mentation, and boundaries detection. We examined these

designs on a dataset of cellphones we collected. We showed

how our methods can improve segmentation accuracy while

retaining the crisp boundary predictions suitable for dense

boards. Our proposed method outperformed the state-

of-the-art in both mask segmentation and edge detection,

showing the effectiveness of our work. To facilitate research

in this direction, we provide a benchmark along with data

and code to the community. Finally, we invite the commu-

nity to participate in this challenge.
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