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Abstract

This paper proposes to employ a Inception-ResNet in-

spired deep learning architecture called Tiny-Inception-

ResNet-v2 to eliminate bonded labor by identifying brick

kilns within “Brick-Kiln-Belt” of South Asia. The frame-

work is developed by training a network on the satellite

imagery consisting of 11 different classes of South Asian re-

gion. The dataset developed during the process includes the

geo-referenced images of brick kilns, houses, roads, tennis

courts, farms, sparse trees, dense trees, orchards, parking

lots, parks and barren lands. The dataset1 is made publicly

available for further research. Our proposed network ar-

chitecture with very fewer learning parameters outperforms

all state-of-the-art architectures employed for recognition

of brick kilns. Our proposed solution would enable regional

monitoring and evaluation mechanisms for the Sustainable

Development Goals.

1. Introduction

According to the Global Slavery Index of 2018 24.9 mil-

lion people are trapped in forced labor globally [1]. An es-

timated 12.7 million are within “Brick-Kiln-Belt” of South

Asia (1, 551, 997 km2 between Afghanistan, Pakistan, In-

dia, Bangladesh and Nepal), because indebted labor is a

major contributing factor to the prevalence of slavery in the

Asia-Pacific constituting 55% of all forced labor-mapping

brick kilns and estimating their labor force is an essential

step in eliminating slavery from the region. The UN’s Sus-

tainable Development Goal (SDGs) 8 specifically refers to

forced labor and governs the world over aims for ending

modern slavery by 2025 [2]. They are, however, faced

with a lack of access to reliable, up-to-date and action-

able data on slavery activity. Such data needs to be spa-

tially explicit and scalable to allow governments to monitor

activities and implement strategies to emancipate individu-

1https://cvlab.lums.edu.pk/?p=1779

Figure 1. Example satellite imagery of brick kilns from different

spatial locations showing variation in quality, structure and color

profile

als trapped within institutions of slavery. The absence and

insufficiency of data compromises evidence-based action

and policy formulation, as has been highlighted by various

sustainable development data-gap analysis reports. Thus,

to meet this challenge, new and innovative approaches are

needed.

One of the key challenges faced by all development ef-

forts is selecting target populations, or the beneficiaries of

programs. In order to ensure that interventions reach those

who need them, and have an impact on economic and hu-

man development, one must first identify those who are vul-

nerable and most in need of help. This problem only in-

creases in complexity when we seek to identify individuals

trapped in slavery or forced labor. In the past, household

surveys have generally been the norm in identifying those

in need of development assistance. However, surveys are

costly and cumbersome, and rarely have large enough sam-

ples to be representative at the village or town level. Data is
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Figure 2. Proposed Tiny-Inception-ResNet-v2 Architecture. In Tiny-Inception-ResNet-v2, A inception block (in compressed view) is

repeated 10 times, B is 3 times and C is 3 times as shown in top subfigure.

thus usually aggregated at the national, regional, provincial,

or district level. Statistics estimated at the national or dis-

trict level, however, may mask the fact that there are pock-

ets of space which are severely in need of assistance. In

addition to this, slave owners may hinder data collection in

the areas that they control, or enslaved individuals may face

numerous pressures in disclosing themselves as enslaved to

enumerators or authorities.

Remote sensing is one such method that has been applied

to various social and developing issues to help better inform

policy. Remote sensing refers to the use of satellite or other

sensor technologies to obtain information about the physi-

cal characteristics of an area from afar without conducting

expensive and strenuous surveys. Moreover, new and im-

proved techniques in computer vision and deep learning use

large datasets with somewhat similar proxy variables as are

collected in surveys to gauge vulnerability on a more minute

scale and provides solution with minimal human interven-

tion.

To develop an efficient automated solution for brick kiln

identification, we propose Tiny-Inception-ResNet-v2 net-

work applied to satellite imagery. We also developed a new

satellite image dataset comprising the images of the South

Asian region for 11 different categories. The dataset will

be made publicly available and will help inform the policy

of governments within the region, and allow them to gauge

the success of past interventions, as well as serve as a base-

line by which to assess future progress. To the best of our

knowledge, this will be the first of its kind effort that goes

beyond the geographic boundaries of a specific country and

aims to provide a comprehensive survey of bonded labor at

kilns along with their accurate geolocation.

1.1. Related Work

Availability of high resolution satellite imagery along

with recent advancements in machine learning particularly

deep convolutional neural networks (CNN) have paved a

way for large scale analysis of wide variety of parameters

across the globe. High resolution satellite imagery has been

used by [3] to estimate per capita expenditure in Africa.

Recently, remote sensing images have also been used to

analyze the extent of modern slavery. For instance, [1]

have mapped fish farms suspected of using child slave la-

bor in the Sundarbans Reserve Forest in Bangladesh. Sim-

ilarly, [1],[4], through their “Slavery from Space” project

proposed a crowd-sourced procedure to manually detect

brick kilns from satellite imagery. However, they were only

able to manually annotate 320 geographic cells (i.e. only
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2% of the entire Brick-Kiln-Belt). This study also does not

account for workforce size of each kiln.

The potential inherent within remote sensing and ma-

chine learning for social science research and development

purposes has been noted by many [1, 5, 6, 7]. Residual

Neural Network [8] have been shown to produce favorable

results on satellite imagery for the problem of classifying

imagery into known classes such as road, houses, vegeta-

tion etc. Similarly, [9] proposed algorithm to classify each

pixel of satellite imagery into known classes thus obtain-

ing an exact boundary of the object of interest in the given

satellite image.

One area that has especially benefited from such tech-

niques is poverty studies. Machine learning has been

used to identify poverty stricken populations and their ge-

ographic location through the analysis of high resolution

satellite images. One such technique utilizes the premise

that nighttime luminosity is strongly correlated (if noisily)

with economic activity and development [10]. Using satel-

lite images, such efforts compare daytime and nighttime im-

ages of a specified location (a country, a continent) to iden-

tify which factors are associated with greater night light-

ing e.g. paved road networks. [10] find in their study that

their method of estimating consumption expenditure and as-

set wealth through machine learning is able to explain 75%

of the variation in local level economic outcomes. Though

such methodologies cannot detect poverty at the level of

the individual or household, they can inform policy mak-

ers about which sub-populations or communities are eco-

nomically marginalized or vulnerable, and help them tar-

get their interventions at particular geographical locations

where they are most needed. Recent contribution of [2] an-

alyzed various machine learning techniques to automate the

process of brick kiln identification in the given tile of im-

ages. However, their approach outputs very high false posi-

tive rate. To cope with the scenario they proposed to train a

two-staged R-CNN classifier to achieve acceptable perfor-

mance.

Our approach contributes by proposing Tiny-Inception-

ResNet-v2, an improved architecture inspired from

Inception-ResNet-v2 [11] to identify kilns in the satellite

images. We showed that with fewer learnable parameters

of Tiny-Inception-ResNet-v2 we could easily classify brick

kilns with about 95% accuracy.

2. Challenges

Identifying brick kilns from satellite imagery involves

the following challenges:

2.1. Structural Variations

Brick kilns may significantly vary in structure, shape,

and size as shown in Fig. 1. They come in circular, oval,

rectangular, and elongated structures. These variations are

Barren Land Sparse Trees Brick Kiln

Dense Trees Farms Grass

Ground Houses Orchard

Parking Roads
Figure 3. Example satellite image from every class in dataset

(Satellite image courtesy Google Maps)

usually enforced by geographical locations, environmental

conditions, manufacturing technologies, building material,

and local building regulatory authorities. This is considered

as one of the obvious challenges, for any machine learning

approach, to learn a generic set of visual features for each

type of kilns.

2.2. Environmental Variations

Satellite images are prone to atmospheric variations in-

cluding but not limited to cloud cover, pollution, variation

in luminosity, and seasonal changes in the environment for

which the imagery has been acquired. These variations in

images contributes in confusing the classifier. An obvious

effect of these changes could be observed between the top-

left and top-right images of Fig. 1.

2.3. Sensor Variations

Satellite images are acquired through various imaging

devices and sensors installed on satellites. Some of the

famous ones include WorldView, Pleiades, GeoEye-1, and

QuickBird. Sensor variations are usually caused by differ-

ence in parameters of imaging devices capturing same im-

agery differently over time. When spatial analysis is spread

across multiple cities, these changes in sensors can be ob-
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Figure 4. Inception Block

served as huge variations in the quality, resolution and color

profile of the imagery due to the different satellite data (see

Fig. 1).

3. Proposed Method

3.1. Dataset Generation and Pre­processing

We developed a dataset of satellite imagery from

South Asian region by acquiring images at zoom level

20 with their geo-locations from OpenStreetMaps (OSM).

These images were then manually labelled through crowd-

sourcing into 11 different classes each having around 600
images. All these 6827 images were used to train the pro-

posed classifier for categories of kilns, houses, road, tennis

courts, farms, sparse trees, dense trees, orchards, parking,

parks and barren lands (see Fig. 3).

To identify brick kilns in the ”Brick-Kiln-Belt” we used

the same network, testing it on an entirely different im-

ages from digital globe imagery (787, 100 images) for

the entire Afghanistan-to-Nepal region 1, 551, 997 km2 for

the year 2018. These images acquired at zoom-level 17
(1.193 meters

pixel
on Equator) were first converted to zoom-

level 20 (about 50 million images) using following pre-

processing steps:

1. Finding the midpoint latitude-longitude (lat-lon) of

each image tile of zoom-level 17 using following equa-

tions:

latz17 =

[

(

(Y z17
tile − A) × B

)

+ C

]

, (1)

where

• A = 42295 is a reference tile #. It can be chosen

randomly; however, we selected 42295 through-

out our experiments.

• B = 0.0054931640625 is difference between ad-

jacent tiles of zoom-level 17.

• C = 52.33612060546875 is a relative lat and lon

with respect to A.

lonz17 =

[

(

(Xz17
tile − A) × B

)

+ C

]

, (2)

where A, B and C are given above.

2. Converting zoom-level 17 lat-lon to zoom-level 20 lat-

lon using following equations:

cornerLatz20 = latz17 + 4 ∗D, (3)

cornerLonz20 = lonz17
− 4 ∗D, (4)

where

• D = 6.866455078125 ∗ 10−4 is the difference

between lat/lon of adjacent zoom-level 20 tiles.

In our work each image is associated with its geo-

location which makes it very easy for images classified as

brick kilns class to be identified on the maps. The geo-

location of the identified brick kiln could then be linked

to the census data provided by Punjab-Brick-Kiln-Census-

dataset 2 which is publicly available containing all the rel-

evant information regarding number of workers, number of

children, age of each child and schooling status associated

with each kiln.

We proposed a classifier that is inspired from the well-

known Inception-ResNet-v2 netowrk. The performance

gain of the network as compare to other deep learning ar-

chitectures encompassing the inception block incorporated

in the network.

3.2. Inception Block

The inception module consists of convolutions of differ-

ent sizes that allow the network to process features at dif-

ferent spatial scales. They are then lumped and fed to the

next layer for further processing as shown in Fig. 4. For di-

mensionality reduction, 1x1 convolutions are used before

the more expensive 3x3 and 5x5 convolutions. In many

remote-sensing problems, we need the deeper network to

process features at different spatial scales. To cope with our

challenges, such flexibility can be incorporated in convolu-

tional neural networks by introducing inception blocks.

3.3. Tiny­Inception­ResNet­v2

An improved form of Inception-ResNet-v2 called as

”Tiny-Inception-ResNet-v2” with much less inception

blocks have been proposed to classify satellite images. We

suppose that even fewer number of inception blocks used in

Inception-ResNet network are able to classify the satellite

2http://202.166.167.115/brick kiln dashboard/
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Figure 5. Qualitative Analysis on Kot Radha Kishan, in Pun-

jab Province, Pakistan. It can be seen within the green region-

of-interest; proposed network correctly classified all brick kilns.

(Satellite image courtesy Google Maps)

images in classes. For this purpose optimal number of in-

ception blocks are to be identified. Fig. 2 shows the detailed

architecture of our proposed network with a block level ar-

chitecture at the top of the figure while the expended ver-

sion at the bottom. Three main blocks namely A, B, and C

containing different number of stacked inception blocks are

shown. To identify the optimal number of inception mod-

ules to be used in each block, we tried various combinations

given in Table 1 and found that network with 10 inception

block in A, 3 blocks in B, and 3 blocks in C outperforms

the other combinations. It has also been observed that this

network has much fewer learnable parameters as compare

to other combinations. More inception blocks have been

used in A than B and C, to learn the features of the image

responsible for visual appearance. The later ones focus on

discriminating the learned features.

4. Results and Evaluation

We evaluated our trained network of Tiny-Inception-

ResNet-v2 on unseen dataset consisting of 700 images of

zoom 20 for quantitative analysis and 787,100 images of

zoom 17 acquired from Digital Globe Imagery for qualita-

tive analysis. The classifier with output kiln is considered

as 1 whereas the rest of the class outputs are considered

as non-kiln (0). Following benchmark performance metrics

have been calculated to validate the performance of our ap-

proach.

4.1. Performance Metrics

Precision, Recall, and F1-Score have been calculated for

each of the networks as:

Precision =
True Positives

True Positives+ False Positives
(5)

Figure 6. Qualitative Analysis on Province Punjab, India. It can

be seen within the green region-of-interest; proposed network cor-

rectly classified all brick kilns. (Satellite image courtesy Google

Maps)

Recall =
True Positives

True Positives+ False Negatives
(6)

F1 Score =
2

1

Precision
+

1

Recall

(7)

4.2. Quantitative Results

The proposed method explained in the previous section

to identify brick kilns has been tried for various standard

deep learning residual architectures. Performance metrics

with their number of learnable parameters have been shown

in Table. 2. It is evidently clear from the table that even

though deep ResNets and Inception networks may consists

of many layers and much more learnable parameters, still

they fail to perform for our problem. Our proposed Tiny-

Inception-ResNet-v2 may lag behind in terms of precision

value; however, it leads the list in recall, F1-score, and num-

ber of learnable parameters. One of the major problems

with the two staged R-CNN approach [2] was, huge num-

ber of false positives identified by the binary classifier. The

issue was resolved by adapting the two-staged classification

approach. Our proposed multi-class classifier has very less

false positive results with a recall of about 90.52% and F1-

Score of 94.35% with 19m parameters only.

4.3. Qualitative Results

For the qualitative analysis of our approach we showed

the results of Kot Radha Kishan, Punjab, Pakistan in Fig-

ures 5 and Punjab, India in 6 respectively. The images

clearly show that brick kilns with various structural differ-

ences have been identified by our proposed classifier. More-

over, our classifier efficiently recognizes the brick kiln in

the image despite the variation in size, spatial location and

orientation of the kiln in the image. The heatmap generated

pin points each and every brick kiln identified in block at

zoom 17 adapting the proposed method.
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Table 1. Comparison between different versions of Tiny-Inception-ResNet-v2

A-block B-block C-block Val Loss Precison Recall F1 Score Parameters

11 20 10 0.00037 0.9950 0.8550 0.9200 54,353,643

20 5 5 0.00016 0.9940 0.2990 0.4597 27,243,579

10 3 3 0.00022 0.9854 0.9052 0.9435 19,682,011

10 1 1 0.00041 0.993 0.3130 0.4760 13,354,523

Table 2. Table showing quantitative evaluation of the proposed network with state-of-the-art architectures

Network Architectures Precision Recall F1 Score # of Parameters

Two Staged R-CNN [2] 0.9494 0.9494 0.9494 -

ResNet-152 0.9906 0.8166 0.8952 41,407,238

ResNet-50 0.9909 0.8416 0.9102 21,312,267

ResNet-34 0.9892 0.8841 0.9337 21,312,267

Inception-v3 0.9846 0.7413 0.8458 21,815,078

Inception-ResNet-v2 0.9955 0.8552 0.9200 54,345,958

Tiny-Inception-ResNet-v2 (Proposed) 0.9854 0.9052 0.9435 19,682,011

5. Conclusion

We proposed a novel network architecture: “Tiny-

Inception-ResNet-v2” to identify the brick kilns in satellite

images. The network was trained on zoom-level 20 images

(782 images) of brick kilns of Lahore, Pakistan while tested

on the zoom-level 17 images of South Asia (about 700).

Despite the structural and color variation in the images of

kilns, our proposed network, with very fewer learning pa-

rameters, outperforms all the state-of-the-art network archi-

tectures achieving F1-Score of around 94%. We also pro-

vided detailed geo-referenced dataset and annotations for 11

classes, which will serve as a valuable resource for further

such analysis.
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