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Abstract

Automatic, accurate crop type maps can provide un-

precedented information for understanding food systems,

especially in developing countries where ground surveys

are infrequent. However, little work has applied exist-

ing methods to these data scarce environments, which also

have unique challenges of irregularly shaped fields, fre-

quent cloud coverage, small plots, and a severe lack of

training data. To address this gap in the literature, we

provide the first crop type semantic segmentation dataset

of small holder farms, specifically in Ghana and South

Sudan. We are also the first to utilize high resolution,

high frequency satellite data in segmenting small holder

farms. Despite the challenges, we achieve an average

F1 score and overall accuracy of 57.3 and 60.9% in

Ghana and 69.7 and 85.3% in South Sudan. Addition-

ally, our approach outperforms the state-of-the-art method

in a data-rich setting of Germany by over 8 points in

F1 and 6 points in accuracy. Code and a link to the

dataset are publicly available at https://github.

com/roserustowicz/crop-type-mapping.

1. Introduction

According to the UN, approximately 815 million peo-

ple around the world are undernourished [4]. In particu-

lar, some countries in Sub-Saharan Africa suffer extreme

food insecurity and malnutrition. Within some districts in

Ghana, for example, 33-40% of people face chronic malnu-

trition [25], 74-82% of children suffer from anaemia [25],

and economically, Ghana loses 6.4% of its GDP to child

under-nutrition [1]. Furthermore, Ghana’s employment is

heavily dependent on agriculture, where 90% of households

in northern Ghana depend on agricultural livelihoods [25].

South Sudan faces similar problems – after years of civil

conflict, nearly 60% of the population or a record 6.1 mil-

lion people needed food assistance in the lean season be-

tween July and August, 2018 [32].

Although agriculture plays a critical role in these re-

gions, current food systems are poorly understood. Ground
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Figure 1. Distribution of crop type in the Ghana (top) and South

Sudan (bottom) datasets. Up to 3km of random jitter have been

added to locations for privacy. We use a subset of the datasets

which includes all fields shown in color. We disregard non-crop

labels and non-top crops (both in gray), but release the full datasets

to enable further exploration of other cover types

.

surveys are conducted to collect information from farm-

ers on the types of crops they are growing and with what

yields, but are infrequent and expensive to acquire. At the

same time, there has been a surge in satellite imagery col-

lection. From 2014 to 2016, the Copernicus program de-

ployed Sentinel-1 (S1) and Sentinel-2 (S2) satellites with

six to twelve day revisit rates and ten meter spatial resolu-

tion. Meanwhile, companies such as Planet Labs and Dig-

ital Globe capture several terabytes of earth imagery every
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day with higher spatial resolution. Combined with develop-

ments in computer vision, there is an unprecedented oppor-

tunity to understand issues in food security through satel-

lite imagery. Accurate crop type segmentation could help

in understanding how farmers decide what crops to grow,

provide insight into interactions of crop types with environ-

mental factors, give information on crop diversity and nu-

trition outcomes, and facilitate crop monitoring and yield

estimation.

In this work, we apply deep-learning based semantic seg-

mentation models to remotely sensed data in order to map

crop type from space. Specifically, given a temporal se-

quence of satellite imagery over an agricultural area, we

classify each pixel as one of several different crop types.

As described above, we explore crop type classification in

Ghana and South Sudan, where this problem is particularly

relevant [25, 1, 4]. Automatic crop type classification in

developing countries has unique challenges in that small-

holder farms such as those in Africa tend to have smaller

fields and sparser ground truth labels as compared to larger

studies conducted in places such as the United States and

Europe. Smaller fields give less pixels of information, while

sparse labels introduce missing data gaps. Additionally, the

growing season in our study area is dominated by rain and

cloud cover, leading to low visibility in optical imagery.

In this paper, we make the following contributions:

• We release a novel dataset for crop type segmentation

of small holder farms in Africa.

• We develop an approach achieving state-of-the art per-

formance on a large crop type dataset in Germany (a

data rich regime).

• To the best of our knowledge, we give the first experi-

mental evaluation of deep learning segmentation meth-

ods for crop type mapping of small holder farms.

• We demonstrate our system achieves an average F1

score and overall accuracy of 57.3 and 60.9% in Ghana

and 69.7 and 85.3% in South Sudan.

2. Related Work

We explore supervised machine learning techniques for

land cover classification of agricultural crop types. Land

cover classification algorithms are used to predict labels of

surface types, where each pixel is given a class label. Class

labels may include cover types such as forest, urban, wa-

ter, agriculture, etc. Historically, these methods have used

information from one satellite image to predict land cover

types, while recent work also incorporates temporal obser-

vations [14]. Inputs include spectral features collected by

the satellite, which often extend beyond the red, green, and

blue features in a typical color image. Other bands based on

texture or vegetation indices may be constructed, and pre-

dictions are usually made on a pixel-by-pixel basis without

the use of contextual information.

Region Fields Cover Types Source

S. Sudan subset 837 4

S. Sudan all 5,604 38 [36]

Ghana subset 4,439 4

Ghana all 8,937 24 [2]

Germany 137k 17 [27]

Table 1. Dataset Statistics

Cropland classification studies often use many temporal

observations as input, since the spectral properties of crops

change throughout a growing season [28, 23, 12]. In addi-

tion, a combination of both optical and radar data has often

lead to improved results for land cover and crop type clas-

sification [15, 34, 16].

In the general computer vision community, we relate our

task with semantic segmentation for video, as well as ac-

tion recognition in which several temporal observations are

used to make predictions. Some of the first work in ex-

ploring CNNs for video classification began with [19], in

which video frames were concatenated and input into a sin-

gle stream model. This work was extended to use two data

streams to model temporal features by pre-computing opti-

cal flow vectors [30], further extended for longer time-range

modeling [11, 35] and with learnable flow vectors [39]. [22]

and [9] instead build upon work from RNNs and use a CNN

+ LSTM network to incorporate spatial and temporal infor-

mation. A similar work [33] uses a CNN and convolutional

RNN to predict pixel level labels of objects vs background

for semantic segmentation in video. 3D convolutions are

applied to video volumes in [31], and attention was incor-

porated with a 3D CNN network in [37]. [7] also incorpo-

rate 3D models into two stream networks, further extended

in [8].

In recent years, deep learning methods have also gained

popularity for crop classification [17]. Studies have used

1D CNN [6] [24] [38] and 2D CNN architectures [20] [18],

RNNs [26] [21], convolutional RNNs [27], and 3D CNNs

[10]. Additionally, most datasets used in crop classifica-

tions fall into two extremes – small, limited datasets that

may be easy to overfit on a local region but fail to general-

ize across a wider area, and large datasets often set in the

United States or Europe with large field sizes and dense la-

bels. Among the limited works that study crop type classi-

fication in Africa, we note that incorporating both radar and

optical information often improves performance, but the of-

ten small size of the dataset makes generalization question-

able [13].

3. Dataset and Features

Locations and labels: Our dataset is made up of sparse

ground truth labels of crop fields in South Sudan and north-

ern Ghana. Ground truth labels consist of geo-referenced
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Figure 2. The 2D U-Net + CLSTM model architecture used in this study; “nc” denotes number of output classes

.

polygons, where each polygon represents an agricultural

field boundary with a crop type label. Plots of the pro-

vided polygon locations for both countries overlaid on maps

are shown in Figure 1. Locations on this visual map have

been randomly jittered by up to 3km in order to preserve

anonymity of field locations.

The Ghana and South Sudan subset datasets in Table

1 are used in this study. Both datasets use the top four

crop types in the respective regions, which make up more

than 90% of the available crop data. In Ghana, we focus

on Maize (51%), Groundnut (15%), Rice (14%), and Soya

Bean (10%). In South Sudan, we focus on Sorghum (67%),

Maize (10%), Rice (9%), and Groundnut (7%). Note that

we release the full datasets in addition to only the fields

and cover types used in our subset, which may provide the

chance to further expand on our study. The full South Sudan

dataset also includes a majority of non-crop classes which

may be further leveraged for a crop vs. non-crop classifica-

tion task.

Input features: We create inputs to the model by map-

ping S1, S2, and Planet satellite imagery to the labelled lo-

cations within our dataset. Both Sentinel satellites have a

10m spatial resolution and a temporal revisit rate of 6-12

days. Planet’s PlanetScope imagery has 3m spatial resolu-

tion and a temporal revisit rate of 1-2 days. With high cloud

cover and small field sizes, we believe incorporating Planet

imagery will be beneficial. The number of satellite obser-

vations for each scene varies from 25 to 100+ observations,

as we filter out all scenes with less than 25 observations.

Ground truth data was collected in 2016 for Ghana and in

2017 for South Sudan. As an exception, we use Planet im-

agery from 2017 rather than 2016 in Ghana due to higher

data availability, with the assumption that most fields do

not change crop from year to year. Table 1 provides fur-

ther dataset statistics as well as attribution to the sources of

ground truth labels.

We normalize all input bands to zero mean and unit vari-

ance based on statistics from the training set. We use ran-

dom data augmentation of both rotation and flips. As input

features, we use ten S2 bands (blue, green, red, near infrared

(NIR), four red edge bands, and two short wave infrared

(SWIR) bands), both S1 bands (vertical-vertical (VV) and

vertical-horizontal (VH) polarizations), and all four Planet

bands (blue, green, red, NIR). We also include day of year

as an input band, and construct additional bands commonly

used in remote sensing. For example, for Planet and S2,

we explore normalized difference vegetation index (NDVI)

and green chlorophyll vegetation index (GCVI) vegetation

indices. For S1, we use a ratio of VH/VV as an additional

input.

Splits: We subdivide our area of interest into 32 x 32

pixel grids in Ghana and South Sudan, and use the provided

48 x 48 pixel grids in Germany. We split according to a 80

/ 10 / 10 split for train, validation, and test. Our splitting al-

gorithm attempts to best preserve the relative percentages of

all crops, allowing for consistent class balances in all splits.

4. Methods

In this work, we explore two approaches to crop type

segmentation: a 2D U-Net + CLSTM approach, and a 3D

CNN. We chose these two architectures as both are still be-

ing explored in this domain and differences in behavior be-

tween the two models has yet to be understood, especially
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2D U-Net +

Crop Type RF CLSTM 3D U-Net [27]

Germany

Sugar Beet 79.6 94.7 95.5 85.3

Summer Oat 40.7 86.5 84.1 75.8

Meadow 83.2 90.7 91.5 88.2

Rapeseed 95.9 98.2 97.7 92.6

Hop 74.9 95.2 92.9 91.7

Winter Spelt 7.7 77.4 76.8 65.6

Winter Triticale 18.0 78.3 72.8 61.8

Beans 75.2 94.4 93.5 89.6

Peas 34.2 93.4 87.2 80.4

Potato 85.9 94.8 95.5 89.5

Soybeans 40.7 91.1 93.5 87.7

Asparagus 65.9 89.5 86.9 83.7

Winter Wheat 87.8 97.1 96.4 90.3

Winter Barley 87.0 97.0 96.0 91.0

Winter Rye 16.9 81.7 79.0 60.7

Summer Barley 74.3 95.3 93.9 85.4

Maize 92.5 98.1 97.8 93.9

Macro Avg F1 62.4 91.4 90.0 83.1

Overall Accuracy 86.2 95.8 95.2 89.7

Kappa Coefficient .821 .947 .940 .870

Ghana

Groundnut 8.5 51.2 36.3 –

Maize 73.1 59.5 67.8 –

Rice 60.6 78.0 70.0 –

Soy bean 19.6 48.1 46.1 –

Macro Avg F1 40.5 57.3 55.1 –

Overall Accuracy 61.1 59.9 60.9 –

Kappa Coefficient .234 .396 .373 –

South Sudan

Sorghum 93.5 89.4 91.2 –

Maize 71.0 59.6 53.0 –

Rice 100 100 100 –

Groundnut 2.1 24.4 34.4 –

Macro Avg F1 66.6 68.4 69.7 –

Overall Accuracy 88.7 82.6 85.3 –

Kappa Coefficient .572 .454 .493 –

Table 2. Comparison of test results from the models which per-

formed the best from our ablation studies, given by the bold “Val

F1” scores in Tables 4 and 5. We show per class F1 score and

overall metrics for all regions.

on the same task and dataset [27, 3]. As a baseline, we com-

pare with Random Forest (RF), which is commonly used

within the land cover classification community.

4.1. 2D U­Net + CLSTM

In previous work, [27] used temporal satellite observa-

tions as input to a C-LSTM [29] to predict crop type. We ex-

tend this work by incorporating an encoder network before

the C-LSTM and use these extracted features as input rather

than the satellite observations themselves. Figure 2 shows

our model architecture. Both the encoder and decoder net-

works are trained to share weights between all input tempo-

ral observations per satellite source thus serving as a general

image feature extractor. Each satellite source uses its own

encoder-CLSTM-decoder network, and predictions are ag-

gregated at the output with a final linear layer. All convo-

lutional layers use 3x3 kernels. The model is trained end-

to-end with a weighted cross entropy loss function, where

weights are chosen as a function of class balance. To handle

sparse labels, we only calculate loss on image regions that

have valid labels. We mask all unknown pixels and set the

loss at these locations to zero.

4.2. 3D U­Net

The 3D U-Net used in this study is relatively simple in

design to provide a fair comparison against the 2D U-Net +

CLSTM model. We define a 3D convolutional block as a 3D

convolution with 3x3 kernel followed by batch norm and a

leaky ReLU activation. We have five of these blocks form

the first half of the U-Net architecture with spatial down-

sampling occurring after the 2nd and 4th block. To form the

upsampling portion of the U-Net, we also use five convolu-

tional blocks. However, instead of downsampling spatially

every two blocks, we upsample using a transpose convolu-

tion. Following the traditional U-Net architecture, we con-

catenate the features from the encoder branch. The model

framework is nearly identical to one of the low resolution

modules in Figure 2, except that the input is processed as

a sequence, all layers are the 3D analogs, and there is no

CLSTM or averaging in the encoder, since the temporal in-

puts are processed as a whole rather than in parallel.

5. Experiments

5.1. Experimental Details

We do a hyperparameter search across optimization

method (Adam vs. SGD), learning rate, weight decay, num-

ber of timestamps, and using loss weight per class. For the

2D U-Net + CLSTM model, we use Adam with a learning

rate of 0.003, weight decay of 0, and weighted cross entropy

loss. In addition, due to GPU memory constraints, we take

at most 40 samples from all the observations over a given

grid in a year. We find these settings produce reasonable

results across all countries.

For the 3D U-Net, we use a learning rate of 0.0003,

weight decay of 0, and weighted loss. For the baseline Ran-

dom Forest model, we group observations from a satellite

into bi-weekly buckets and take the average of each bucket

for S1 imagery, the median for cloud-filtered planet im-

agery, and the minimum for unfiltered S2 imagery. These

aggregated observations, as well as a day of year band, are

then used as input.
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South Sudan Ghana Germany

Inputs

Targets

2D Model

3D Model

RF

Labels
Table 3. Qualitative test results for all models and regions, selected to show a diverse range of crops. Grids in South Sudan and Ghana are

32x32 pixels, while grids in Germany are 48x48 but scaled to the same size here. Interestingly, we see the random forest model predicts

less homogeneous results within each field, indicative of the fact that it does not consider contextual information.

2D U-Net + CLSTM Experiments 3D U-Net Experiments

C-LSTM x

2D CNN + CLSTM x x x x x x x x

3D U-Net x x x x x x

Aggregate x

Veg Indices x x x x x x x x x x x

Day of Year x x x x x

Cloud Band x x x

Sample w/ Clouds x x

Use S1 x x x x

Low Res Planet x x

High Res Planet x

Best Epoch 24 106 61 63 56 24 72 52 104 90 18 73 102 127 124

Val F1 56.7 57.9 58.4 57.0 53.3 57.7 54.4 50.2 55.8 57.1 50.3 57.3 57.4 58.9 57.5

Val Accuracy 58.4 60.6 60.7 59.6 53.3 62.3 57.4 61.2 65.7 61.9 54.4 62.9 61.0 62.8 63.5

Table 4. Ablation Experiments in Ghana

5.2. Evaluation Metrics

Since our datasets have a strong class imbalance, re-

ported accuracy results may be biased toward dominating

crops. To account for this and to give an equal treatment

to classification importance across all relevant classes, we

compute the F1 score for each class, and then average across

all classes to give the reported macro average F1 score. To

compare against previous works, we report per class accu-

racy as well as overall accuracy.

5.3. Results

Table 2 gives a quantitative overview of our model re-

sults in Ghana, South Sudan, and Germany.

5.3.1 Germany

Notably, we achieve state-of-the-art results on the Germany

dataset [27], outperforming the previous work by 8.3 F1

points and 6.7 accuracy points. We note, however, our Ger-

many results are reported on a custom dataset split that pre-

serves class balance, and was based on available 2016 data

provided from [27]. Reported results for [27] were taken

directly from their paper.

5.3.2 Small Holder Farms in Africa

Unsurprisingly, models trained on the data-rich Germany

dataset outperformed models in South Sudan and Ghana.

These smallholder datasets have smaller training sets, high

cloud cover, and complex landscapes in the smallholder set-

ting. Yet as shown in the second half of Table 2, our models

performed reasonably well in both Ghana and South Sudan,

with the following notable trends:

• The 2D CNN + CLSTM model generally outperforms

the 3D U-Net model.

• In Ghana the 2D CNN + CLSTM and 3D U-Net signif-

icantly outperform random forest in terms of F1 score

and achieve comparable accuracy.
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2D U-Net + CLSTM Experiments 3D U-Net Experiments

Use S2 x x x x x x x x x x x x x

C-LSTM x

2D CNN + CLSTM x x x x x x x x

3D U-Net x x x x x x

Aggregate

Veg Indices x x x x x x x x x x x x

Day of Year x x x x x x x x x x

Cloud Band x x x

Sample w/ Cloud x x

Use S1 x x

Low Res Planet x x x x

High Res Planet x

Best Epoch 43 116 100 83 57 138 127 123 83 126 121 88 102 118 61

Val F1 81.2 74.7 76.8 74.9 59.8 75.4 76.2 75.6 76.7 75.4 72.3 77.4 75.5 77.1 79.8

Val Accuracy 88.7 82.7 86.4 86.3 69.8 85.0 88.5 86.8 88.5 85.1 89.3 89.5 86.9 90.0 88.3

Table 5. Ablation Experiments in South Sudan

• We are able to achieve significantly higher perfor-

mance in South Sudan than in Ghana, likely because

Ghana is a much cloudier region.

• Aside from the most prevalent crop, rice tends to be

the easiest to distinguish and groundnut the hardest.

We attribute this to the temporal spectral features of

these crops. Upon visual inspection, rice appears to

differentiate itself the most, while groundnut the least.

• Random Forest performs quite well in South Su-

dan, achieving high performance on all crops except

groundnut. We refer back to Figure 1 and note

that crops are rather localized within the South Sudan

dataset, especially rice and maize. We hypothesize that

the limited number of fields gives similar spectral and

temporal characteristics within crop type, making clas-

sification significantly easier.

5.4. Ablation Studies

In addition, we provide ablation studies in Tables 4 and

5. The following results are most worth emphasizing:

• Contrary to related work, we find that including S1

does not always improve performance. S1 features are

indicative of surface scattering, and it may be that crop

types within small fields do not have enough differen-

tiating signal in these bands.

• Our proposed model changes to the CLSTM structure

do improve performance in Ghana though not in South

Sudan. This is likely because South Sudan has much

less data, and the proposed changes introduce many

more parameters, causing the model to overfit.

• We find that including high resolution, high frequency

Planet data improves accuracy for the 2D CNN +

CLSTM model and generally improves the perfor-

mance of the 3D U-Net model.

• We find including additional indices such as NDVI and

GCVI marginally improve performance. However, in-

cluding the day of the year the observation was taken

inconsistently improves performance across countries.

• We find explicitly including information about clouds

does not improve maximum model performance,

though in some cases, such as in Ghana, including this

information does seem to improve convergence speed.

6. Conclusion

Motivated to better understand cropping systems for ap-

plications in food security and other sustainable develop-

ment goals, we set out to map crop type from space. A

recent surge in satellite data collection, as well as computa-

tional advances in storage and compute allow us to explore

the intersection of remote sensing datasets with deep learn-

ing methods for semantic segmentation of crop type.

We compare performance between a 3D U-Net and a

model that incorporates both CNNs and RNNs for seman-

tic segmentation of multi-temporal, multi-spatial satellite

images. To gain further insight into the sequence models

and contributing attributes, we explore ablation studies and

compare with a random forest baseline. We predict crop

type with reasonable performance in Ghana and South Su-

dan where data is limited and of poor quality due to high

cloud cover, class imbalance, and lack of labels. When ap-

plied on a large dataset in Germany, we surpass state-of-

the-art performance on this task. We release the full datasets

and code repository and hope to encourage the development

of crop type segmentation systems for small holder farms.
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