
 
Abstract 

Having accurate data about schools is key for          
organizations to provide quality education and      
promote lifelong learning, listed as UN sustainable       
development goal 4 (SDG4), ensure equal access to        
opportunity (SDG10) and eventually, reduce poverty      
(SDG1). However, this is a challenging task since        
educational facilities’ records are often inaccurate,      
incomplete or non-existent. By leveraging machine      
learning and high-resolution imagery, we are able to        
determine school detection at the national scale.  

Despite their varied structure, many schools have        
identifiable overhead signatures that might make      
possible to detect them with modern deep learning        
techniques applied to high-resolution satellite     
imagery. This paper presents the results of a        
Convolution Neural Networks school classifier for      
high-resolution satellite imagery. This classifier is      
based on the pre-trained models, Xception and       
MobileNetV2, from ImageNet, with a new cleaned       
school dataset in Colombia.  

We selected the best-performed model with 0.94        
area under the ROC curve and 9% of the false          
positive rate from our nearly 200 training iterations.        
A large scale model inference across Colombia and        
the Eastern Caribbean islands was implemented over       
52 million DigitalGlobe Vivid imagery tiles. A group        
of five expert mappers was able to validate 73,000         
predicted school tiles from our machine learning       
inference within eight working days. We added about        
11,000 schools to the map in Colombia and the         
Caribbean islands, and around 7,000 of them were        
unmapped schools.  

Our study showed that current deep learning and         
inexpensive cloud computing can assist humans to       
detect schools at scale in a rapid, rigorous manner.         
This provides the first object-based detection model       
for schools. A complete and accurate school facility        
map can further reduce the digital divide in        
education and improve children’s access to      
information, digital goods, and opportunities, and      
make the best use of limited educational resources.  

 
 

1. Introduction 
Equal access to quality education is one of the          

Sustainable Development Goals[1] (SDGs). An     
accurate, comprehensive map of schools - where no        
school is left behind - is critical to measuring and          
improving the quality of learning. The map,       
combined with connectivity data collected by      
UNICEF’s Project Connect initiative, can be used to        
reduce the digital divide in education and improve        
access to information, digital goods and opportunities       
for entire communities. In addition, understanding the       
location schools, can help governments and      
international organizations gain critical insights     
around the needs of vulnerable populations, and       
better prepare and respond to exogenous shocks such        
as disease outbreaks or natural disasters. 

However, accurate information on school locations,       
especially in developing countries, is often      
unavailable. Traditionally, school gelocations are     
gathered and mapped by local governments -       
sometimes at the regional level, other times at        
national level[2]. Unfortunately, some national     
governments still don’t know where all the schools in         
their country are. Crowdsourcing can be used as an         
alternative for these cases: e.g. through      
OpenStreetMap[3], volunteers can map schools at      
their crowdsourcing platform. This kind of maps is        
hard to verify and keep up-to-date, leading into        
inaccurate, outdated information. 

Underlying patterns of the school building(s) can be         
spotted from space. Even in developing countries,       
schools normally have a distinguishable shape: bigger       
size building(s) and bigger bare ground(s)      
surrounding compared to other residential buildings      
in rural areas. Moreover, schools in wealthier urban        
areas have additional facilities such as basketball       
courts, swimming pools, playfields, parking lots and       
large building complexes(Figure 3). Hence, all these       
attributes form a matrix that makes a school        

60



observable from fine spatial resolution, submeter,      
satellite images.  

The aim of this paper is to explore the use of            
contemporary deep learning methods for assisted      
automated mapping of schools to locate accurate       
school geo-locations in a timely manner. This       
methodology will allow us to rapidly, frequently and        
rigorously detect schools in different terrains and       
regions. This work forms the foundations towards an        
approach that could be used to allow point-to-point        
mapping of schools - and eventually other facilities        
like health centers - at national scale on a repeatable          
basis. 

Recent advances in the fields of earth observation         
and computer science offer tremendous potential for       
mapping schools with machine learning at scale.       
First, fine spatial and temporal resolution satellite       
sensor data is widely available. In this study, we used          
DigitalGlobe Vivid Imagery [4] (DG Vivid) at zoom        
level 18 [5], which is 0.596m spatial resolution.  

DigitalGlobe has supported this research by       
providing access to its 31cm resolution Vivid       
Basemap. This project was initially selected as a        
recipient of a GBDX Research Award [6], and        
continued to be supported by DigitalGlobe after the        
life of the award. DG Vivid is a snapshot of the earth,            
mosaiced, sharpened and color-enhanced. This     
high-resolution imagery product has a 50cm spatial       
resolution and global coverage. At this submeter       
spatial resolution imagery, objects like buildings,      
cars, and trees can be observed clearly from space.  

The second key technological advance that enables        
this work is a GPU-powered image classification       
based on Convolutional Neural Networks (CNN). At       
the emerging spotlight of machine learning, CNNs       
allow partial remote sensing applications, especially      
object-based and pixel-based remote-sensed image     
analysis, moving towards high performing     
GPU-powered parallel computed machine learning.     
In fact, multiple studies indicate that CNN based        
machine learning methods can yield into more       
accurate classifications[7, 8] than conventional     
statistical classifiers.  

Last but not least, deploying the school detection         
model at a large spatial scale was only possible         
because of the advances in cloud computing. Cloud        
computing allows for on-demand, cheap access to       
computing power, data storage, applications, and      
other IT resources [9].  

The above three technological developments offer       
the possibility to train a school classification to        
national or continent level in days that would have         
not been possible five years ago. To our knowledge,         
this study is the first case of using deep learning to           

detect schools from satellite imagery at the national        
scale. We hope that in the near future it will inspire           
further research that contributes to SDGs. We hope        
our work can shape a methodology for routine,        
inexpensive detection of schools globally, and      
accelerating the work towards the 2030 SDGs. 

2. Methodology 
Our workflow of school detection with DG Vivid        
imagery and machine learning can be simplified as a         
diagram as follows (Figure 1). 

2.1. Preparation of training dataset 

  A high-quality training dataset is essential for the 
machine learning models to learn the right object 
features. Our first step is to validate and clean the 
schools provided by UNICEF. Development Seed’s 
Data Team, a group of five expert mappers, validated 
the dataset that was used for training. The goal of the 
validation exercise is to split the original data into 1) 
a set of image tiles that contain schools, 2) a set of 
image tiles that clearly do not contain a school, 3) a 
set of image tiles that it’s uncertain if it contains a 
school or not.  The first two sets of clear school tiles 
and clear non-school tiles were used by the neural 
network to learn how to distinguish between the two. 
We use red, blue and green (RGB) spectral bands 
from DG Vivid to create the training image tiles. 

 

Figure 1. The diagram of our school detection system with          
high-resolution satellite imagery and machine learning. The       
Core Machine Learning Model and model inference sit at         
the center of the diagram. To its left is the pipeline for            
cleaning, validating and generating the training dataset, and        
to its right is the machine learning prediction and         
validation.  

2.2. School data cleaning and training data 
creation 

A team of expert mappers tagged the school         
geolocations within the original dataset of 44,665       
schools with the attributes of “confirmed”,      
“unrecognized” and “not-school”. Confirmed    
schools are these observed from the high-resolution       
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satellite imagery and have very clear school features,        
e.g. building size, shape, and facilities. For instance,        
below are some of the school features that were used          
as criteria for schools and that can be used to label           
the tiles as “confirmed” schools.  
  

 

Figure 2. School feature examples that our expert mappers         
use to clean and validate schools across Colombia.  

 

 

Figure 3. A few examples of “not-school” covers various 
look of buildings and not buildings in Colombia.  
The unrecognized school referred to geolocations      
that were part of the original 44,665 school dataset         
but that had no clear school features, especially in         
urban areas with high building density or, in rural         
areas that can’t be distinguished from residential       
buildings. Another case of unrecognized schools is       
school building(s) that can not be seen on DG Vivid          
because of cloud/tree cover.  

The not-school refers to locations from the original         
44,665 school dataset where the expert mappers       
could not find any school looking buildings at the         

provided school geolocations. As an example, some       
of the schools were mislocated in the middle of the          
ocean. This can be caused the school geolocation was         
recorded incorrectly or because the DG Vivid       
imagery has been updated in particular areas of        
Colombia after schools were built.  

Two categories of datasets, ‘school’ and       
‘not-school’, were generated as the training dataset       
for the machine learning model. We randomly       
sampled half of the school geolocations from the        
validated “confirmed schools”, and generated 5,904      
tiles as “school” training dataset (Table 1.). The        
not-school category is not as trivial. This category        
can contain forest, grassland or agricultural fields       
without any buildings, among others. It can also be a          
building complex or facility that looks very similar to         
“school” from space, e.g. hospitals, market places,       
courthouses etc. 

To enrich the “not-school” category, and allow our         
machine learning algorithm to detect real schools       
more accurately, we queried available hospital,      
farmlands, parks, courthouses and marketplaces from      
OpenStreetMap and added them to the “not-schools”       
category. We ended up with 9,092 ‘not-school’ tiles        
(Table 1.). Through the machine learning model       
training iterations, we learned that the model was        
over-confident in certain areas, and therefore we       
adjusted the training dataset accordingly. For      
instance, we randomly included more schools as well        
as purposely added more regular building tiles that        
are not schools. See the detailed information(Table       
1.) for the training dataset for the different sessions.  
 

 
Table 1. School data cleaning and training dataset creation         
for machine learning. 

2.3. Sat-Xception and the school classifier 

To quickly train the school classifier, we create a          
deep learning python package called Sat-Xception. It       
is a deep learning package that utilizes pre-trained        
models from ImageNet [10]. It is currently private        
but will soon be open sourced. The package is         
designed to quickly install, transfer-learn and      
fine-tune image classifiers with the built-in      
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pre-trained models, which can be used to train other         
classifiers rather than the school classifier. Xception       
[11] and MobileNetV2 [12] were two pre-trained       
models built-in in the package. They were written by         
Keras [13], a high-level python package that can        
allow users to quickly reconstruct neural networks       
Google's Tensorflow  [14] was used as backend.  

Xception is one of current state-of-the-art CNN        
architectures and pre-trained models on top of       
ImageNet [15]. It’s a high performing and efficient        
network compared to other pre-trained networks [16].       
MobileNetV2 [17] on the other hand, is a model that          
is slightly less accurate compared to Xception.       
However, it's a very light-weight, fast, and easy to         
tune when limited resources available (appropriate      
for scenarios with resource vs. accuracy tradeoff).       
Both Xception and MobileNetV2 have fewer      
hyper-parameter available to tune compared to other       
pre-trained models, e.g. VGG and Inception, but both        
are high-performed models.  

We broke the training sessions into two sessions.         
The first session was designed to test the feasibility         
of using Sat-Xception to train a well-performed       
school classifier in Colombia. The model was       
over-confident in rural Colombia in the first session,        
leading into too many false predictions in the area. To          
overcome the issue, we created a new training dataset         
that was slightly different from the training dataset in         
the first session. In the second training session, 2,048         
‘not-school’ buildings were added. In addition, for       
the “school” category, we only kept rural schools that         
have very clear school features (Figure 2.). We also         
randomly selected another 2500 confirmed school      
tiles to add to the category (Table1.).  

 
Figure 4. The validation accuracy and loss from model         
training iterations. Model training iteration with Xception       
at the first row and MobileNetV2 at the second row. The           
two models were trained on the same dataset, and the          

following graph only reflected the training with the 2nd         
session of the training dataset (Table 1).  

We trained about 200 model iterations on two         
separate AWS EC2 [18] P3.2xlarge [19]. They are        
AWS’s deep learning AMI [20] machines that have        
deep learning virtual environment setup, e.g. python3       
with Tensorflow GPU version pre-installed in our       
case, and ready-to-use. We found the      
best-performing model from MobileNetV2 with a      
validation accuracy of 0.88. However, Xception      
reached a validation accuracy of 0.89, and therefore,        
we picked the model trained with Xception (see        
Figure 4.). We packaged the best-trained Xception       
model with Tensorflow Serving [21]. Tensorflow      
Serving helps to package the Keras and Tensorflow        
model as a Docker image [22]. The image can serve          
as an endpoint for large spatial scale model inference,         
which allows us to run model inference on tens of          
millions of image tiles per hour without manually        
watching the inference.  

2.4. Large scale model inference 
To run the inference at a country-wide scale on          

high-resolution imagery, we developed a library      
called “chip-n-scale-queue-arranger”. It is currently     
private but will soon be open sourced. It is composed          
of a configuration code for Amazon Web Services        
(AWS CloudFormation) as well as small scripts for        
automating the necessary tasks associated with the       
satellite imagery and machine learning predictions. A       
high-level overview of the process looks like this: 

A. A user sends `x/y/z` tile indices to an AWS         
SQS queue in the form of `'{ "x": 1, "y": 2,           
"z": 3}'`. These indicate which geographic      
region to run our model over. 

B. Each SQS message triggers the Lambda      
function `DownloadAndPredict` which   
downloads images, posts to a prediction      
cluster (via a Load Balancer endpoint), and       
saves the result to an RDS database. 

C. The prediction cluster on ECS runs the       
TensorFlow Serving image to predict each      
tile. All instances are behind an Application       
Load Balancer which will dynamically     
register new instances that appear on the       
cluster and allocate jobs to them evenly. 

D. A user manually downloads predictions     
from RDS after the full inference process is        
complete. 

The prediction from RDS was converted to a         
shapefile so that our expert mappers can upload a         
map editor for validation. In the editor, the mappers         
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can overlay the predicted school tiles only and focus         
their attention on confident predictions, avoiding the       
tedious task of reviewing the entire area for Colombia         
and the eastern Caribbean islands.  
 

3. Results and discussion 

Searching for Points of Interest (POIs) (e.g. schools         
and hospitals) manually is time-consuming,     
especially at the national level. Our approach       
provided a way where humans are assisted by        
machine learning to narrow down the search space of         
the POIs from high-resolution satellite imagery.      
However, schools can look very different in different        
regions, for instance, schools in rural and urban areas         
often don’t have the same characteristics.      
Furthermore, the looks will vary a lot from country to          
country. To overcome this challenge, the      
parameterization of the school classifier can be       
further explored for optimal classification to specific       
geo-locations.  

3.1. The overall model performance 
The machine learning model took individual tiles as         

input and provided output in the form of a probability          
between zero and one for each. By running the model          
prediction over the test set (about 2000 tiles) we         
plotted a ROC curve. The ROC curve gives us an          
overall model performance and guidance on threshold       
cutoff. 

The ROC curve indicates the area under the curve is           
up to 0.94 from the test set with the given threshed of            
0.44 (Figure 5) - we got a false positive rate of 9%.            
The ROC curve (Figure 5, A) shows that the model          
we selected was a high-performed model, where only        
9% of schools have ring false alarms.  

 
Figure 5. The ROC curve and false positive rate for the 
school classifier in Colombia. 

We found that the Xception model was more         
accurate but that MobileNetV2 was much faster for        

each model training iteration. Specifically,     
MobileNetV2 only used a quarter of time per training         
iteration on exactly the same training set. In the case          
of our study, we had the AWS infrastructure set up          
and available and we were able to take more         
computing resources for increasing the accuracy.      
However, for whom does not have access to rich         
cloud computing resources, we recommend using      
MobileNetV2 to train the model instead.  

During the validation process, the expert mappers        
validate each predicted school tile and tag it as “yes”,          
“unrecognized” and “no” based on the school       
features part of the selection criteria defined during        
the initial data cleaning process (Figure 2). With the         
increase of the threshold (e.g. from 0.44 to 0.99) we          
would limit the false predictions but in the process,         
we will also lose an increasing proportion of correct         
predictions (Figure 5).  

3.2. AI/ML-assisted school detection 
A threshold score of 0.92 is, and the model          

inference is run on Colombia and the eastern        
Caribbean islands. 73,717 tiles were predicted as       
school tiles and passed to the team of expert mappers          
to validate. It’s almost impossible to search for        
schools at the national level, however, the machine        
learning model was able to narrow down the        
searching space to less than 0.15% of 52 million tiles          
for our expert mappers to validate. With a validation         
speed of 10,000 tiles per day, the mappers identified         
10,998 school geolocations, where 6,954 of them are        
unmapped schools (schools that were not part of the         
initial dataset of 44,665 schools) (Figure 7). 60,568        
predicted school tiles were tagged as “unrecognized”       
by our expert mappers, which turned into a heatmap         
(Figure 6). These tiles don’t have clear school        
features (Figure 2). During the machine learning       
prediction validation, we found that schools in rural        
areas are hard to verify as schools because a “school”          
can’t be distinguished from residential houses.  

The machine learning model generalizability is an        
active research area [23, 24], and in our study, the          
school classifier we trained in Colombia generalized       
well in the Eastern Caribbean islands. We added 262         
schools to the islands that had not been mapped         
before. If users are looking at different countries or         
regions that have different terrains than Colombia, we        
recommend adding few but representative schools to       
fine-tune our current trained school classifier. Our       
school classifier, the Tensorflow Serving image(GPU      
version), lives on DockerHub now. It’s open-source       
and free to run as an end-points to users who want to            
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send DG Vivid zoom 18 images tiles to classify         
schools in their area of interest.  

 

Table 2. The final stats from our machine learning school 
detection in Colombia and the eastern Caribbean island.  

The contemporary machine learning shed light on        
narrowing down the search space for POIs. The        
trained model can be run anytime to update the         
predictions frequently. An accurate school map,      
produced by a human-in-the-loop type of approach       
(combining machine learning and the expert mappers       
together), will still need field agents on the ground to          
further validate and confirm ‘unrecognized’ schools      
with local authorities.  
 

 

Figure 6. Schools are represented as black dots from A to C            
in the figure. We had 44,655 schools provided by         
UNICEF(A.) and among them, 10,951 schools (B.) have        
been confirmed as schools by their clear school features         
shown in Figure 2. We use 70% of schools (10,951) in (B.)            
to train the machine learning model, and after the validation          
of predictions, 10,988 schools were added to the map (C.),          
around 7000 of them are unmapped schools that we newly          
added after the ML validation. The school heatmap was         
created from the machine learning predicted and validated        
as “unrecognized” by our expert mappers (D). The heatmap         
is an interactive map that the field agents/validators on the          
ground can room in and see much more detail of the           
possible geolocation of the school within a 152 by 152 m           
searching space.  

Another AI-assisted high-voltage grid mapping      
model developed by Development Seed has been       
proved working. In this case, a similar model and         
workflow were used to detect high-voltage towers in        

Pakistan, Nigeria, and Zambia that the expert       
mappers afterward used to map the high-voltage grid        
at the country-wide scale [25]. The grid map now         
lives in OpenStreetMap that the platform users who        
have local knowledge about the electric grid can        
update and correct the grid. Machine learning has        
provided a means to study the SDGs related issues         
[26] the school mapping case we present in this paper          
address it’s another example of machine learning or        
AI assisted infrastructure mapping from satellite      
imagery. 

 

Figure 7. A few snapshots of newly discovered schools by          
the machine learning model that were validated by the         
expert mappers and they were not part of the initial dataset           
of 44,665 schools. 

4. Conclusion 

Satellite imagery enables the generation of unique        
insights into population dynamics, urbanization, and      
economic development at a scale that cannot be        
achieved using conventional survey techniques in      
isolation. Machine learning is capable of detecting       
many types of objects in satellite imagery. By        
leveraging machine learning and high-resolution     
imagery, we are able to determine school locations at         
a national scale, proofing that machine learning can        
assist humans to narrow down the search space for         
points of interests. This can speed up the process of          
mapping schools or other POIs considerably.  

For this study, we fine-tuned pre-trained models        
(Xception and MobileNetV2), with cleaned school      
data in Colombia. Our school classifier model       
achieved 0.89 validation accuracy with Xception, and       

65



0.88 with MobileNetV2 on high-resolution satellite      
imagery. Specifically, the satellite image tiles with       
59.6cm spatial resolution were queried from DG       
Vivid Maps API. The school classifier is a        
high-performed model on current training dataset,      
with 0.94 AUC and 9% of false positive rate. A large           
scale model inference across Colombia and the       
Eastern Caribbean islands was implemented over 52       
million tiles with our best-performed trained model.       
The model inference returned more than 73,000       
predicted school tiles that were further validated by        
our expert mappers. As a result, about 11,000 schools         
were added to school maps for Colombia and the         
Caribbean islands, among which around 7,000 of       
schools are new (Figure 6, 7), previously unmapped        
schools.  

Our school classifier, including model training and        
model inference, can be fully automated and scaled        
up to much larger geospatial areas in the future.         
These results suggest considerable potential for      
mapping schools at a scale, quickly with human        
mappers’ in the loop for validation. This will support         
the improvement of education information     
management systems, reduce gaps in access to       
information and opportunity, improve the quality of       
education, and further disaster response to vulnerable       
populations. Thereby aid the achievement of the       
relevant UN Sustainable Development Goals of equal       
access to quality education. 
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