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Abstract

The paper analyzes the accuracy of publicly avail-

able object-recognition systems on a geographically diverse

dataset. This dataset contains household items and was de-

signed to have a more representative geographical coverage

than commonly used image datasets in object recognition.

We find that the systems perform relatively poorly on house-

hold items that commonly occur in countries with a low

household income. Qualitative analyses suggest the drop

in performance is primarily due to appearance differences

within an object class (e.g., dish soap) and due to items ap-

pearing in a different context (e.g., toothbrushes appearing

outside of bathrooms). The results of our study suggest that

further work is needed to make object-recognition systems

work equally well for people across different countries and

income levels.

1. Introduction

Recent advances in the accuracy of object-recognition
systems [19, 20, 42] have spurred a large variety of real-
world deployments of such systems, for instance, in aids
for the visually impaired [17], in photo album organiza-
tion software [45], in image search, and in popular cloud
services [2, 8, 16, 21, 32]. With the great success of such
deployments also comes great responsibility: in particular,
the responsibility to ensure that object-recognition systems
work equally well for users around the world, irrespective
of their cultural background or socio-economic status.

This paper investigates whether current object-

recognition systems work well for people across countries

and income levels. Our study suggests these systems
are relatively bad at recognizing household items that
are common in non-Western countries or in low-income
communities. When used to recognize such items, the error
rate of object-recognition systems for households with an
income of less than US$50 per month is approximately
10% lower compared to households making more than
US$3, 500 per month; for some models, the difference is

∗Equal contribution.

Nepal, 288 $/monthGround truth: Soap

Azure: toilet, design, art, sink

Clarifai: people, faucet, healthcare, lavatory, wash closet

Google: product, liquid, water, fluid, bathroom accessory

Amazon: sink, indoors, bottle, sink faucet

Watson: gas tank, storage tank, toiletry, dispenser, soap dispenser

Tencent: lotion, toiletry, soap dispenser, dispenser, after shave

Ground truth: Soap

Azure: food, cheese, bread, cake, sandwich

Clarifai: food, wood, cooking, delicious, healthy

Google: food, dish, cuisine, comfort food, spam

Amazon: food, confectionary, sweets, burger

Watson: food, food product, turmeric, seasoning

Tencent: food, dish, matter, fast food, nutriment

UK, 1890 $/month

Azure: bottle, wall, counter, food

Clarifai: container, food, can, medicine, stock

Google: seasoning, seasoned salt, ingredient, spice, spice rack

Amazon: shelf, tin, pantry, furniture, aluminium

Watson: tin, food, pantry, paint, can

Tencent: spice rack, chili sauce, condiment, canned food, rack

Ground truth: Spices USA, 4559 $/month

Azure: bottle, beer, counter, drink, open

Clarifai: container, food, bottle, drink, stock

Google: product, yellow, drink, bottle, plastic bottle

Amazon: beverage, beer, alcohol, drink, bottle

Watson: food, larder food supply, pantry, condiment, food seasoning

Tencent: condiment, sauce, flavorer, catsup, hot sauce

Ground truth: Spices Phillipines, 262 $/month

Figure 1: Images of household items across the world, and classes rec-
ognized in these images by five publicly available image-recognition sys-
tems. Image-recognition systems tend to perform worse in non-Western
countries and for households with lower incomes. See supplemental mate-
rial for license information.

even larger. Similarly, the absolute difference in accuracy
of recognizing items in the United States compared to
recognizing them in Somalia or Burkina Faso is around
15−20%. These findings are consistent across a range of
commercial cloud services for image recognition.

Figure 1 shows two pairs of examples of household items
across the world and the classifications made by five pub-
licly available image-recognition systems. The results of
our study suggest additional work is needed to achieve the
desired goal of developing object-recognition systems that
work for people across countries and income levels.
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Figure 2: Choropleth map displaying the number of images per country in
the Dollar Street test set.

2. Measuring Recognition Performance of

Household Items Across the World

Dataset. We perform object-classification experiments on
the Dollar Street image dataset of common household items.
The Dollar Street dataset was collected by a team of photog-
raphers with the goal of making “everyday life on different
income levels understandable” [11]. The dataset contains
photos of 135 different classes taken in 264 homes across
54 countries. Examples of images in the dataset are shown
in Figure 1. The choropleth map in Figure 2 shows the geo-
graphic distribution of the photos in the dataset.

Some of the classes in the Dollar Street dataset are ab-
stract (for instance, “most loved item”); we remove those
classes from the dataset and perform experiments on the re-
maining 117 classes. The list of all classes for which we an-
alyzed object-recognition accuracy is presented in Table 1.

In addition to class annotations, the Dollar Street dataset
contains information on: (1) the country in which the pho-
tograph was collected; and (2) the monthly consumption in-
come of the photographed family in dollars adjusted for pur-
chasing power parity (PPP). A detailed description on how
this normalized monthly consumption income was com-
puted is presented in [11]. We use both the location and
the income metadata in our analysis.

Experimental setup. We measure the accuracy of
five object-recognition systems that are publicly avail-
able through cloud services, namely, the systems provided
by Microsoft Azure [32], Clarifai [8], Google Cloud Vi-
sion [16], Amazon Rekognition [2], and IBM Watson [21].
We tested the versions of these systems that were pub-
licly available in February 2019. In addition to the cloud-
based systems, we also analyzed a state-of-the-art object
recognition system that was trained exclusively on publicly
available data: namely, a ResNet-101 model [19] that was
trained on the Tencent ML Images dataset [46] and achieves
an ImageNet validation accuracy of 78.8% (top-1 accuracy
on a single 224× 224 center crop).

We evaluate the quality of the predictions produced by
all six systems in terms of accuracy@5 per assessment by
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Figure 3: Average accuracy (and standard deviation) of six object-
recognition systems as a function of the normalized consumption income
of the household in which the image was collected (in US$ per month).

human annotators1. Specifically, in order to determine if a
prediction was correct, we asked human annotators to as-
sess whether or not any of the five front-ranked predictions
matched the ground-truth class annotation provided in the
Dollar Street dataset. Figure 7 shows the annotation inter-
face used; note that we did show the annotators the relevant
photo as additional context on the annotation task. We re-
port accuracies averaged over all six systems.
Results. The average accuracy of the six object-
classification systems on the Dollar Street dataset is shown
in Figure 3 as a function of the normalized monthly con-
sumption income (PPP) of the household in which the photo
was collected. We ensured that the number of images in
each ‘income bin’ are roughly the same (2372 ± 50 im-
ages each) so that the accuracies per income bin are easily
comparable. Whilst the exact accuracies vary somewhat per
model, the results show the same pattern for all six systems:
the object-classification accuracy in recognizing household
items is substantially higher for high-income households
than it is for low-income households. For all systems, the
difference in accuracy for household items appearing the
in the lowest income bracket (less than US$50 per month)
is approximately 10% lower than that for household items
appearing the in the highest income bracket (more than
US$3, 500 per month). Figure 1 sheds some light on the
source of this discrepancy in accuracies: it suggest the dis-
crepancy stems from household items being very different
across countries and income levels (e.g., dish soap) and
from household items appearing in different contexts (e.g.,
toothbrushes appearing in households without bathroom).

1Due to external constraints, all annotators that participated in our study
were based in the United States. Whilst this may bias the annotations,
qualitative evaluations suggest that the impact of these biases is very small.
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Figure 4: Choropleth map displaying the average accuracy of six object-
classification systems per country. The color red indicates an accuracy of
∼60%, yellow an accuracy of ∼75%, and green an accuracy of ∼90%.

Figure 4 displays the average accuracy of the six object-
classification systems as a function of geographical location
in a choropleth map. The results highlight the differences
in accuracies across countries. In particular, the accuracy
of the Amazon Rekognition system is approximately 15%

(absolute) higher on household items photographed in the
United States than it is on household items photographed in
Somalia or Burkina Faso.

3. Sources of Accuracy Discrepancies

There are at least two causes for the observed discrep-
ancies in object-classification accuracies: (1) the geograph-
ical sampling of image datasets is unrepresentative of the
world population distribution and (2) most image datasets
were gathered using English as the “base language”. We
also note that the Dollar Street dataset has a few classes
where the images are labeled according to the affordance of
the label, e.g., “refrigerators” for images from lower income
groups may refer to pots and pans used to cool things.

1. Geographical distribution. We analyze the geo-
graphical distribution of three popular computer-vision
datasets: ImageNet [37], COCO [29], and OpenIm-
ages [28]. These datasets do not contain geographical
information, but we can obtain the geographical infor-
mation for the subset of the dataset images that origi-
nate from Flickr via the Flickr API. Figure 6 displays
world maps with the resulting approximate geographical
distribution of the ImageNet, COCO, and OpenImages
datasets. For reference, the figure also displays a world
population density map based on publicly available data
from the European Commission JRC & DGRD [13]. In
line with prior analyses [38], the density maps demon-
strate that the computer-vision dataset severely under-
sample visual scenes in a range of geographical regions
with large populations, in particular, in Africa, India,
China, and South-East Asia. Whilst income distribution
correlates with geographical distribution, results in the
supplementary material suggest income distribution is a
driver for our results in itself, too (see Figure 9).

Top results for “Wedding”

Top results for “शादी” (Wedding in Hindi)

Top results for “Spices”

Top results for “मसाल”े (Spices in Hindi)

Figure 5: Top Flickr results for the same queries in Hindi and English. The
results returned across languages are visually different. See supplemental
material for license information.

2. Using English as a “base language” for data col-

lection. Most publicly available image-classification
datasets were gathered by starting from a list of English
words (e.g., all nouns in WordNet [33]), and performing
web searches for images that are tagged with these words
on, for example, Flickr. This uni-lingual approach intro-
duces issues because it does not include images that are
likely to be tagged in other languages to be included. The
aforementioned geographical distribution is one such is-
sue, but more subtle issues can arise.
For example, certain classes may simply not have an En-
glish word associated with them, for instance, particular
clothing styles, cultural events, or household items. Al-
ternatively, some languages may be more fine-grained
than English in terms of how they define classes (or vice
versa). For example, Inuit languages have over a dozen
words for “snow” to distinguish between different types
of snow [31, 39]. Even if a word exists and means ex-
actly the same thing in English and in some other lan-
guage, the visual appearance of images associated with
that word may be very different between English and
the other language; for instance, an Indian “wedding”
looks very different than an American wedding and In-
donesian “spices” are very different from English spices.
To demonstrate these effects, we performed a series of
image searches on Flickr using English nouns and their
translations in Hindi. We show representative samples
for some of these searches in Figure 5, and suggest there
are clear visual differences between search results for the
same query in two different languages.
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Figure 6: Density maps showing the geographical distribution of images in the ImageNet (top-left), COCO (top-right), and OpenImages (bottom-left)
datasets. A world population density map is shown for reference (bottom-right).

4. Related Work

This work is related to a larger body of work on fairness
and on building representative computer-vision systems.

Fairness in machine learning. A range of recent papers
have studied how to develop machine-learning systems that
behave according to some definition of fairness. Several for-
mulations of fairness exist. For instance, statistical parity

[5, 6, 14, 23–25, 30, 49] states that in binary-classification
settings, members of different groups should have the same
chance of receiving a positive prediction. Because statisti-
cal parity may be inappropriate when base rates differ be-
tween groups, disparate impact [15, 47] poses that positive-
classification rates between any two groups should not vary
by more than 80%. The equalized odds [18] fairness prin-
ciple (also referred to as disparate mistreatment [48]) re-
quires classification algorithms to make predictions such
that no group receives a disproportionately higher number
of false-positive or false-negative errors. The demographic

parity formulation of fairness does not focus on group mem-
bership, but are based on the idea that similar individuals
should receive similar predictions [12]. Selecting and main-
taining the “correct” fairness requirement for a real-world
is no easy task [3], in particular, in situations in which the
group membership of the system’s users is unknown. More-
over, several impossibility results exist: for instance, equal-
ized odds is incompatible with other formulations of fair-
ness [7, 10, 27], and it is impossible to achieve equalized

odds using a calibrated classifier without withholding a ran-
domly selected subset of the classifier’s predictions [35].

The empirical study presented here does not neatly fit
into many of the existing fairness as it focuses on multi-
class (and potentially multi-label) prediction rather than bi-
nary prediction. Moreover, the input provided to image-
recognition systems does not contain information on the
user or its group membership, which makes it difficult to
apply fairness formulations based on group membership of
similarities between individuals. Having said that, com-
monly used techniques to increase fairness, such as instance
re-weighting [22], analyzing features [1] may help in train-
ing image-recognition systems that work for everyone.

Building representative computer-vision systems. Sev-
eral recent papers have identified and analyzed biases in
other types of computer-vision systems. For instance,
commercial gender classification systems were found to
have substantially higher error rates for darker-skinned fe-
males than for light-skinned males [4, 34, 36]. A study of
Google Image Search revealed exaggeration of stereotypes
and systematic underrepresentation of women in search re-
sults [26], and a study of ImageNet revealed correlations
between classes and race [40]. Other studies have revealed
biases in computer-vision datasets that allow models to rec-
ognize from which dataset an image originated [43, 44].
Most related to our study is a prior analysis suggesting that
for certain classes, the confidence of image classifiers may
vary depending on where the image was collected [38].
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5. Discussion

The analysis presented in this paper highlights biases in
modern object-recognition systems, but it hardly tells the
full story. In particular, our study only addresses two of the
five main sources of bias in machine learning systems [41]:
it addresses representation bias and elements of measure-

ment bias. It does not address historical bias in the data, or
evaluation and aggregation biases that may have implicitly
influenced the development of our models.

More importantly, our study has identified geographi-
cal and income-related accuracy disparities but it has not
solved them. Our analysis in Section 3 does suggest some
approaches that may help mitigate these accuracy dispari-
ties such as geography-based resampling of image datasets
and multi-lingual training of image-recognition models, for
instance, via multi-lingual word embeddings [9]. Such ap-
proaches may, however, still prove to be insufficient to solve
the problem entirely: ultimately, the development of object-
recognition models that work for everyone will likely re-
quire the development of training algorithms that can learn
new visual classes from few examples and that are less sus-
ceptible to statistical variations in training data. We hope
this study will help to foster research in all these directions.
Solving the issues outlined in this study will allow the de-
velopment of aids for the visually impaired, photo album
organization software, image-search services, etc., that pro-
vide the same value for users around the world, irrespective
of their socio-economic status.
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Supplemental Material

Figure 7: Interface presented to human annotators tasked with assessing
the correctness of predictions made by the image-recognition models.

Alcoholic drinks Armchairs Backyards

Bathroom doors Bathrooms Bedrooms

Beds Bikes Books

Bowls Car keys Cars

Ceilings Chickens Child rooms

Cleaning equipment Computers Cooking pots

Cooking utensils Cups Cutlery

Diapers Dish brushes Dish racks

Dish washing soaps Dishwashers Drying clothes

Earrings Everyday shoes Families

Family snapshots Favorite home decoration Floors

Freezers Front door keys Front doors

Fruit trees Fruits Glasses

Goats Grains Guest beds

Hair brushes Hallways Hands

Homes Instruments Jackets

Jewelry Kids bed Kitchen sinks

Kitchens Latest furniture bought Light sources

Light sources (living room) Light sources (kitchen) Light sources (bed room)

Living rooms Lock on front doors Make up

Meat Medication Menstruation pads

Mosquito protection Most loved toys Motorcycles

Music equipment Necklaces Nicest shoes

Ovens Palms Papers

Parking lots Pens Pet foods

Pets Phones Plates

Plates of food Power outlets Power switches

Radios Refrigerators Roofs

Rugs Salt Shampoo

Shaving Showers Soaps

Social drinks Sofas Spices

Storage rooms Stoves Street view

TVs Tables with food Teeth

Toilet paper Toilets Tools

Tooth paste Toothbrushes Toys

Trash Vegetable plots Vegetables

Wall clocks Wall decorations Walls

Walls inside Wardrobes Washing detergent

Waste dumps Wheel barrows Wrist watches

Table 1: List of all 117 classes (20, 455 total images) in the Dollar Street
dataset that we used in our analysis of object-recognition systems.

License Information for Photos in the Paper

License information for the Dollar Street photos shown in
Figure 1:

• ”Soap” UK - Photo: Chris Dade; Dollar Street (CC BY 4.0).

• “Soap” Nepal - Photo: Luc Forsyth; Dollar Street (CC BY 4.0).

• “Spices” Philippines - Photo: Victrixia Montes; Dollar Street

(CC BY 4.0).

• “Spices” United States - Photo: Sarah Diamond; Dollar Street

(CC BY 4.0).

The photos shown in Figure 5 (in order from left to right, top
to bottom) are from Flickr, and have the following licenses:

• “Wedding”: Photo by Elliot Harmon (CC BY-SA 2.0 SA).

• “Wedding”: Photo by Ed Bierman (CC BY 2.0).

• “Wedding”: Photo by Cameron Nordholm (CC BY 2.0).

• “Wedding”: Photo by Victoria Goldveber (CC BY-SA 2.0).

• “Wedding in Hindi”: Photo by Arian Zwegers (CC BY 2.0).

• “Wedding in Hindi”: Photo by Rabia (CC BY 2.0).

• “Wedding in Hindi”: Photo by Abhishek Shirali (CC BY 2.0).

• “Wedding in Hindi”: Photo by Arman Thanvir (CC BY 2.0).

• “Wedding in Hindi”: Photo by Agence Tophos (CC BY 2.0).

• “Spices”: Photo by Collin Anderson (CC BY 2.0).

• “Spices”: Photo by Andrew Malone (CC BY 2.0).

• “Spices”: Photo by Stefan Pettersson (CC BY-SA 2.0).

• “Spices”: Photo by Mike Mozart (CC BY 2.0).

• “Spices in Hindi”: Photo by University of Michigan School for

Environment and Sustainability (CC BY 2.0).

• “Spices in Hindi”: Photo by John Haslam (CC BY 2.0).

• “Spices in Hindi”: Photo by Honza Soukup (CC BY 2.0).

• “Spices in Hindi”: Photo by Edward Morgan (CC BY-SA 2.0).

Classes with Largest Accuracy Discrepancy

In Figure 8, we show the 10 classes with the largest dis-
crepancy in average accuracy between the highest income
group and the lowest income group. We note that for cer-
tain classes, the Dollar Street dataset tends to label images
based on their affordance rather than the object. As an ex-
ample, “refrigerator” images contain objects such as pots
and pans used to cool things for the lower income group
images.

Decoupling Geographical Location and Income

Figure 3 measured object-recognition accuracy as a
function of income on the Dollar Street dataset, which spans
a large number of countries. Because geographical location
and income are correlated, this raises the question whether
location is the sole driver for the observed differences in
recognition accuracy. To isolate the effect of income on the
accuracy of the recognition systems, we repeat the analysis
on Dollar Street images from India – the country for which
most images are available. Figure 9 shows the average ac-
curacy of the six object-recognition systems on the 2, 221

Dollar Street images from India. The income bins in the
figure comprise approximately the same number of images
(200± 50 per bin) as before. Figure 9 reveals a correlation
between income and recognition performance, suggesting
both geographical location and income partly drive our ob-
servations.
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Figure 8: Classes for which the difference in accuracy is largest between
the highest income bracket and the lowest income bracket.
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Figure 9: Average accuracy of six object-classification systems as a func-
tion of the normalized consumption income of the household in which the
image was collected (in US$ per month), measured on all Dollar Street
photos taken in India.
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