6. Supplementary Section

In this section we present our early approach for the
ISIC-2018 data set that rely on methods proposed in the
main text. Section 6.1 describes deep-learning-based ap-
proach for data purification, Section 6.2 and Section 6.3
address the problem of data imbalancedness for ISIC-2018
and propose a solution that rely on coupled DCGAN model
proposed in the main text, Section 6.4 incorporates both al-
gorithms into a classification network.

6.1. Data Purification

Hair removal algorithm described in main section is not
scalable to massive datasets as it requires manual tuning
of parameters. These parameters vary with type of images
(dermoscopic or clinical), size of the image, color of the
hair (black or blonde) and the amount of hair present in the
image. Thus, a deep learning solution was desired to fully
incorporate it into our classification pipeline for ISIC 2018
task. We utilized a Unet based encoder-decoder model ar-
chitecture with convolution operations replaced by partial
convolutions [22] to improve the performance of the model
(Partial convolution is often referred as segmentation-aware
convolution. The intuition behind using partial convolutions
arises from the fact that given an input image and the corre-
sponding binary mask, the output of the convolution opera-
tion should only depend on the regions of the image that are
not zeroed-out by the mask and should not take into account
regions where pixels values are zero.). We refer to this net-
work as data purification network. The input of the network
is the original image and the output is the same image after
occlusion removal. Since the training data set for this model
requires coupled pairs of images before and after occlusion
removal and those, to the best of our knowledge, are not
available in any public data sets, we created such training
data using the algorithm described in the main text. The ob-
tained training data-set consisted of 16, 270 images and was
augmented through random masking. The data purification
network was trained using the loss proposed for training
networks with partial convolutions [22] and that targets both
per-pixel reconstruction accuracy ans well as composition
i.e how smoothly the predicted hole values transition into
their surrounding context. The data purification network
was trained using an Adam optimizer with beta values set
to (0.5,0.99) and constant learning rate set to 2e~* in the
beginning of training and SGD optimizer with momentum
0.9 and learning rate le=* in the later stages of learning.
The model was trained over a week on 4 GTX 1080 12Gb
GPU cards. Figure 10 show the results of data purification
obtained by our model. Figure 10 show the results of data
purification obtained by our model. We processed all the
images in ISIC-2018 data-set to remove occluded objects.
The preprocessed images were then added to the training
data set of the lesion classification model to make it more
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Figure 10. (Top): Original images. (Bottom): Images after re-

moving occlusions, i.e. hairs and rulers, using Data Purification
Network.
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robust to the presence of occlusions and prevent overfitting.

6.2. Data Imbalancedness

Figure 11 highlights the class imbalancedness problem
for ISIC-2018 challenge dataset. The dataset contains 452
cases of acitinic keratosis (AK), 825 cases of basal cell car-
cinoma (BCC), 1833 samples of benign keratosis (BK), 187
cases of dermatofibroma (DF), 2285 cases of melanoma
(M), 9786 cases of nevus (N), and 142 cases of vascular
lesion (VL)). It is clearly observed Dermatofibroma consti-
tute less than 2% of the entire dataset.
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Figure 11. Sizes of the training data sets for the ISIC 2018 task.
Data set is heavily imbalanced.

6.3. Data Generation with coupled DCGANs

As the number of classes in the ISIC 2018 task is larger
than in case of ISIC 2017, using multiple separate DCGANs
for the former becomes inefficient. Instead, for the ISIC
2018 we coupled seven DCGAN architectures. They share
parametrization of their initial 4 layers with each other and
the final 3 layers are class-specific. Figure 12 and Table 5
shows the idea behind the coupled DCGAN models. The
same figure shows exemplary images generated using this
approach. The coupled DCGAN models were trained using
Adam optimizer with learning rate of 2¢~* and beta values



Layer Output Size Kernel | Stride | Padding
TransConv 256 x4 x4 4x4 1 0
Generator - TransConv | 128x8x8 4x4 |2 1
Weight sharing
block TransConv 64x16x16 4x4 2 1
TransConv 32%x32%x32 4x4 2 1
G a1 TransConv 16 x64 x 64 4x4 2 1
enerator- LIass | ponsConv | 8x128x128 | 4x4 | 2 1
specific block
TransConv 3x256x%256 4x4 2 1
Discriminator - Conv 16x128x128 | 4x4 2 1
Class specific Conv 32x64x64 4x4 2 1
bloc Conv 64x32x32 4x4 |2 1
o Conv 128x16x16 4x4 2 1
Discriminator - ¢, 256x8x8 4x4 |2 1
Weight sharing
block Conv 512x4 x4 4x4 1 1
Conv I1x1x1 4x4 1 0

Table 5. Details of the architecture of the generative model. Let n be the number of features maps, h be the height and w be the width. Size
of the output feature maps is represented as n x h x w. Each convolution layer in the generator, except for the last one, is followed by a
batch normalization and a ReLU nonlinearity. The last convolution layer is followed by a hyperbolic tangent. Similarly, each layer in the
discriminator, except for the last convolution layer, is followed by a batch normalization and a leaky ReLU nonlinearity with the leakage

coefficient of 0.2. The last convolution layer is followed by a sigmoid. The class specific blocks are repeated for 7 different classes.

Method Accuracy|Sensitivity|Specificity
Our Classification Model | 0.675 0.561 0.954
but without performing
data purification at testing
Our Classification Model| 0.717 0.754 0.837

Table 6. The effect of inducing data purification at testing on the
performance of Classification Network.

of 0.5 and 0.999. The latent vector of length 100 that inputs
the generator is obtained from standard Gaussian distribu-
tion with mean O and standard deviation 1. Binary cross
entropy loss was used to train both discriminator and gener-
ator. This time we balanced the data online i.e the data was
augmented at each mini-batch. Thus the model processes
a balanced mini-batch before updating the model parame-
ters. We additionally used standard online data augmenta-
tion techniques.

6.4. Classification

In Table 6 we demonstrate the advantage of using data
purification using ISIC 2018. We report the results when at
testing we either perform or not perform data purification.
Note that ISIC 2018 does not publish labels for the test data
and utilizes black box system to output relevant metrics.
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Flgure 12 (A) Coupled DCGAN architecture. BN refers to batch

normalization, Conv and TConv refer to convolution and trans-
posed convolution, respectively. (B) First three rows: Generated
image of size 256 x 256 (we show 3 exemplary images per class;
images in the same row are generated from the same random latent
vector) for (P): Actinic Keratosis (Q) Basal Cell Carcinoma (R)
Benign Keratosis (S) Melanoma (T) Nevus (U) Dermatofibroma
(V) Vascular Lesion. Fourth row: Images of real lesion similar
(in terms of the MSE) to the generated ones from the third row.




