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Abstract

A significant limiting factor in training fair classifiers
relates to the presence of dataset bias. In particular, face
datasets are typically biased in terms of attributes such as
gender, age, and race. If not mitigated, bias leads to algo-
rithms that exhibit unfair behaviour towards such groups.
In this work, we address the problem of increasing the diver-
sity of face datasets with respect to age. Concretely, we pro-
pose a novel, generative style-based architecture for data
augmentation that captures fine-grained aging patterns by
conditioning on multi-resolution age-discriminative repre-
sentations. By evaluating on several age-annotated datasets
in both single- and cross-database experiments, we show
that the proposed method outperforms state-of-the-art algo-
rithms for age transfer, especially in the case of age groups
that lie in the tails of the label distribution. We further show
significantly increased diversity in the augmented datasets,
outperforming all compared methods according to estab-
lished metrics.

1. Introduction

Face analysis technology has penetrated in our daily
lives by becoming a core component in human-machine in-
teraction while it plays an increasingly important role in
the decision-making of several processes involving humans.
Hence, it is crucial for facial analytics systems to produce
objective and fair results. However, despite the transforma-
tive capabilities of deep learning models in face analysis,
there are persistent issues. For instance, bias in facial data
occurs when there is unequal representation of protected at-
tributes such as age, gender, skin color or ethnicity. Com-
puter vision algorithms trained on datasets encoding such
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biases can result in biased performance across vulnerable
or underrepresented groups [46].

In this paper, we focus on age bias, which results from
the scarcity of available images that depict very old or
young faces, and is considered one of the most common
biases in face analysis. Indicatively, most widely used age-
annotated datasets (e.g., MORPH [38], CACD [3], IMDB
[40], FG-NET [21], AgeDB [31], AFAD [33] have signif-
icantly imbalanced age distributions; for instance, 87% of
the samples in FG-NET are younger than 30 years old.

Traditional techniques to handle class-imbalance, such
as image transformations and augmentation are of limited
benefit as they are not able to produce realistic approx-
imations to the underlying data distribution across ages.
A more recent alternative is the use of generative models
to augment existing datasets and augment the underrepre-
sented age classes. However, such approaches do not ad-
dress the inherent problem of dealing with small and unbal-
anced training sets. Indeed, early works on age progression
(e.g., [36, 44, 17]) were not able to produce photorealistic
results due to the simplicity of the models and the lack of
available training data. Similarly, more recent GAN-based
frameworks (e.g., [49, 53]) fail to synthesize faces of ex-
treme age (i.e., very young or very old). Moreover, condi-
tioning facial synthesis on a single label ignores the intra-
class diversity of each age class and collapses them to a
single aging pattern. As a result, recent GAN-based meth-
ods produce a single age progression/regression per face,
which in most cases is biased according to the age distri-
bution of the training set. These shortcomings deem such
methods ineffective for diversity-enhancing data augmenta-
tion, since training a model on a biased synthetic dataset
would still result in algorithmic bias.

In this work, rather than generating images by condition-
ing on labels, we propose a style-based age transfer frame-
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Figure 1: Overview of our method for face aging. First, a real image x'504 of the target age group 50+ is fed into the
discriminator (right). The channel-wise mean and standard deviation of the resulting activations at each layer are used to
modulate the statistics of the corresponding feature maps in the generator. Shown here is the aging of image x_3¢ (left) of
age group 0 — 30 into X504+ of age group 50+. In minimizing £,4, the discriminator outputs high probability of the real
image being of the expected age group—thus naturally building age-discriminative representations. A feature-matching loss
L ¢ is used to encourage the generator to match the precise aging patterns of the target image. The identity-preservation
loss L4 is applied to ensure that the identity-specific features of the input image are preserved.

work that is tailored to the task of diversity-enhancing fa-
cial data augmentation. In particular, we introduce a style-
transfer approach that allows the model to synthesize di-
verse aging patterns based on the choice of target image.
Furthermore, by conditioning the generation on extreme tar-
gets, e.g., very old-looking faces, we are able to generate
sufficiently old/young-looking faces despite the lack of sup-
port in the training set. Concretely:

e We introduce a novel GAN that is able to synthesize
an aged/rejuvenated face by conditioning on the age-
related style of a target face at multiple scales.

e We showcase the aging accuracy of our model through
qualitative and quantitative experiments. The proposed
model is compared against strong baselines in Sec-
tions 4.4 and 4.5.

e The ability of our model to diversify the age distribu-
tion of a biased dataset is investigated in Section 4.6.
We propose to quantify this by using the metrics intro-
duced in [29].

e Lastly, we showcase the ability of our model to syn-
thesize diverse aging patterns in Section 4.7. We show
that by conditioning the generation on a target image
rather than a target class, the proposed framework is
able to generate faces of large intra-class diversity.

2. Related work

Generative adversarial networks Generative adversar-
ial networks constitute the state-of-the-art approach for gen-
erative modeling and have been successfully applied to

tasks such as image generation [35, 16], image caption-
ing [7, 4], super-resolution [22, 5], and image translation
[6, 13, 19, 14, 54]. In the setting of image translation, that is
most closely related to this work, the goal is to learn a map-
ping from an image domain X to a domain Y. Successful
approaches have been proposed, both for the paired [14]
and unpaired [54, 6] image-to-image translation settings.
Recent state-of-the-art draws inspiration directly from the
style transfer literature, modulating style content explicitly
at different layers with the Adaptive Instance Normaliza-
tion [12] (AdalN) operation [13, 19]. Our framework draws
inspiration from the GAN-based style transfer literature.

Style Transfer The seminal work of Gatys et al. [9]
showed that the global style of an image is captured in the
gram matrix of vectorised feature maps in a CNN and can be
transferred independently of the image content. Subsequent
works focused on improving the speed [15, 23, 47] or flex-
ibility [11, 24, 42, 12, 26] of style transfer. More recently,
research into the interpretation of its success has been ongo-
ing. In particular, Li et al. showed in [25] that the matching
of gram matrices can be viewed as a form of distribution
alignment, while others treat style transfer formally as the
optimal transport problem [28, 32]. In this work, we focus
on the age-discriminative style of the image and use style-
transfer to perform face aging.

Face aging Face aging has been studied extensively in
the fields of anthropometry and computer graphics, be-
fore transitioning to computer vision. The reader is re-
ferred to [8, 37, 10] for comprehensive surveys on facial



age progression. Early works focused on modeling bi-
ologically inspired mechanical transformations and facial
anatomy [45, 36, 44]. These physical model-based meth-
ods were computationally expensive and could not gener-
alize well due to the constraints of the models. Later data-
driven approaches would learn a mapping between age class
prototypes (e.g., class mean) [2, 17]. These age progres-
sion methods suffered from the loss of identity information
resulting in unrealistic aging results. With the establish-
ment of deep learning techniques recurrent [48] and GAN-
based [49, 53, 51] architectures have been utilized to per-
form face aging. In [53], a conditional adversarial autoen-
coder (CAAE) is proposed and face aging is performed by
traversing a low-dimensional manifold. Wang et al. [49]
utilize pre-trained networks to preserve identity and achieve
aging accuracy. Similarly, Yang et al. [51] use age features
from a pre-trained network in the discriminator. In contrast
to such existing methods, our framework is not only trained
end-to-end without auxiliary classifiers, but is also able to
transfer diverse aging features. By leveraging target faces
of extreme age, the proposed framework is able to synthe-
size the aging patterns of both the very old and young faces.
This allows for the use of our method as a data augmenta-
tion tool for mitigating bias in datasets.

Bias mitigation Different approaches have been pro-
posed to mitigate bias from a model. Inspired by domain
adaptation, Alvi et al. [1] proposed a joint learning and un-
learning framework, while Kim et al. [I8] minimize the
mutual information between the network embedding and
bias information. The use of generative models for fair data
augmentation has been investigated in [43, 50, 34]. In or-
der to generate a complete dataset that can be used to train a
fair classifier, GAN-based methods with fairness constraints
were proposed in [43, 50]. On the other hand, Quadrianto
et al. [34] introduced an autoencoder that removes sensitive
attribute information from the data. Contrary to this work,
these generative methods focus mainly on generating data
that can be used to train a fair classifier, but are not neces-
sarily naturalistic (e.g., gender-less faces in [34]).

3. Methodology

In this section, we describe the proposed methodology
that is focused on enhancing the diversity of a given face
dataset with respect to age. Inspired by recent progress in
style transfer, the proposed architecture is specifically de-
signed to provide fine-grained control over aging patterns.
This is achieved by conditioning the autoencoder-based
generator on multi-resolution age-discriminative represen-
tations. In this way, we further relax the rigid assumption of
dependence on a single class label for an age group, unlike
previous works [49, 53, 51]. We posit that by employing
the proposed approach, we can both capture fine-grained

aging patterns as well as accurately synthesize realistic
samples that lie in the tails of the dataset distribution, thus
significantly increasing dataset diversity. The remainder
of this section is structured as follows. In Section 3.1
we introduce our modeling choices for the generator and
discriminator networks, while in Section 3.2 we describe
the proposed training objective. ~An overview of the
proposed method is visualized in Fig. 1.

3.1. Proposed framework

Style-conditioned Generator: We adopt an
autoencoder-based architecture for the generator G,
that is trained to translate an input face image x4 of age
A to a synthesized image age Xp of age B, using the
aging patterns of a target image x’;. The target age style
is extracted from x’; by the disciminator network D. In
particular, the age information at different scales is obtained
from the first and second order moments of the features
at different layers of D(x/;). The age-discriminative style
is then injected into the decoder of the generator using
AdalN. Following the paradigm of [39], we utilize skip
connections between the layers of the encoder and the
decoder, to mitigate training instability issues.

Discriminator: The discriminator of the proposed
framework is trained to distinguish between real and fake
images of each class. To this end, we adopt the multi-task
discriminator of [27]. The resulting network captures fea-
tures that represent both the “realness” of the faces as well
as their age. The architecture of D is a mirrored decoder of
the generator, in order to maintain correspondence between
the features at different scales (i.e., layers).

3.2. Training objective

The following objective function of the model is com-
prised of three parts, namely: the adversarial loss, the re-
construction loss, and the identity preservation loss.

Adversarial loss: For our framework to be able to syn-
thesize photorealistic images, we train G and D using an
adversarial loss. Given an input image x 4, a target image
x'5, and the age-progressed/regressed output of the gener-
ator Xp = G(x4,xJ), the adversarial loss is calculated as
follows:

Lody =Ex, [logD(xA)]+
Exaxip[l0g(1 —D(G(xa,x'5))], (1)

In the typical GAN setting, the generator tries to minimize
Laqv, While the discriminator tries to maximize it. How-
ever, in order to maintain the diversity in aging patterns
among different target faces, we train the generator using
a feature-matching loss [41]:

Lim = Ex,xs [ I D(x'p) — D(g(xx‘hXIB)) I3 ] 2)



Reconstruction loss: In order to ensure that G preserves
the content of the input image, we minimize a reconstruc-
tion loss. That is, we enforce cycle consistency by trans-
forming an input image x4 using a target x’; and subse-
quently transforming back to the original by using x4 as
the target. Concretely:

ET@C:EXA,X/B[H XA_g(g(XA;X/B);XA) Hl ] (3)

Identity preservation: Besides maintaining the original
content, it is vital for the task of age progression to main-
tain the person-specific high-frequency details of the input.
Therefore, we minimize a pixel-wise L1 loss between the
input the output of G:

Lig=Fx,xp[|xa—GxaxB)1]. @

Full objective: Based on the above, G and D are trained
to minimize the following composite loss functions:

LD - *Eadv (5)
‘CG = £fm + )\TECE’I‘GC + Aid‘cida (6)

where Aec, Aig, and Ay, are the hyper-parameters for re-
spective loss terms. More implementation details can be
found in Section 4.1.

4. Experiments

In this section, we introduce the experimental setup and
showcase the efficacy of our framework in a series of ex-
periments. Our method is evaluated both qualitatively and
quantitatively and compared against two strong baselines
(Section 4.3). The main focus of our quantitative experi-
ments are: a) aging accuracy (Section 4.5) and b) enhance-
ment of diversity (Section 4.6).

4.1. Implementation details

For all the experiments, both the encoder and decoder
of G, as well as D have 6 layers. The exact architectures
are analyzed in the supplementary material. We utilize skip
connections between all layers of the encoder and the de-
coder. To improve the stability of the training we include
the R; gradient penalty objective in addition to the adver-
sarial loss for the discriminator [30], which is defined as:

Lgp = ApEx [|| VD(x) [I°] . (7

Furthermore, instead of using the original image as the tar-
get in the cycle loss (Eq. (6)), we find it beneficial to use the
translated target image X’y = G(x/3,x4). That is, instead
of allowing the input image to drive the reconstruction, we
utilize a different image with the age-specific style of the
input. By doing this, we further enforce the transfer of the
aging features through reconstruction. The model is trained

end-to-end with hyperparameters \.. = 0.01, Ay, = 10.0,
and \;q = 10~%. The networks’ weights are optimised with
Adam [20], with a learning rate of 10~%, and beta values
B1 = 0.5, 82 = 0.99. All images are aligned and resized to
128 x 128.

4.2. Datasets

We benchmark our model using the MORPH [38] and
CACD [3] datasets. The second album of MORPH con-
tains over 55,134 images of 13,618 people. Most images are
near-frontal and the capture conditions (e.g., background
and illumination) are almost uniform. The age of the faces
in MORPH range from 16 to 77 years old. On the other
hand, the CACD dataset consists of over 160,000 images
from 2,000 celebrities. The images are collected from
Google Images and are hence captured in-the-wild. The
age of the subjects ranges from 14 to 62 years old. For
both datasets, we use 20% of the images for testing and
keep 80% for training the models. The generalization of the
models is tested on FG-NET [21], which has 1,002 face
images of 82 subjects. Following the standard approach
([51, 48, 52]) we utilize 4 age groups: under 30, 30-40,
40-50, and over 50 years old.

4.3. Baselines

We compare our method with two recent age progression
methods, namely CAAE [53] and IPCGAN [49]. CAAE
performs age progression and regression by traversing a
low-dimensional manifold. On the other hand, IPCGAN
utilizes two external pre-trained networks that capture the
identity and age of the synthesized face. The baseline mod-
els are compared to the proposed framework in a series of
experiments. Both qualitative and quantitative results are
presented in the sections that follow. Both models were
trained using the authors’ provided source code®.

4.4. Qualitative Results

We present the results for age transfer on the test sets
of MOPRH and CACD in Fig. 2 (additional results are in-
cluded in the supplementary material). Despite the variation
in capturing conditions, gender and facial expression of the
datasets, our model is able to produce realistic aged and re-
juvenated renderings of the input. In particular, each input
face is translated to the 3 remaining age classes (except for
the ground-truth) using the proposed framework, as well as
the baseline methods. We notice that CAAE generates rela-
tively blurry and over-regularized faces, that do not always
maintain the identity of the input. On the other hand, while
IPCGAN is able to produce sharp images of the target age
group, it nevertheless fails to synthesize convincingly old

*CAAE: https://github.com/ZZUTK/Face-Aging-CAAE and
IPCGAN: https://github.com/dawei6875797/Face-Aging-with-Identity-
Preserved-Conditional-Generative-Adversarial-Networks



MOPRH CACD

31-40 41-50 50+ 31-40 41-50 50+
GT 359265 44.77£2.72 54.924+3.72 || 3541 £2.88 45.45+£2.88 55.01+3.02
CAAE  37.08+4.53 39.25+4.54 41.96+4.68 || 38.47£5.46 41.38£5.17 43.30=+£5.49
IPCGAN 41.86+£6.71 47.94£847 50.89+6.35 || 35.37+7.09 42.25+8.13 40.79+£7.43
Ours 39.17£6.46 4598 +6.00 56.62+5.35 || 33.04£7.40 46.78 =7.00 56.05 £ 6.06

Mean absolute age difference between synthetic images and GT (years)

CAAE 1.18 5.52 12.96 3.06 4.07 11.71

IPCGAN 5.96 3.17 4.03 0.04 3.20 14.22

Ours 3.27 1.21 1.69 2.37 1.33 1.04

Table 1: Age accuracy of the proposed method and baseline models on the test sets of MORPH and CACD. We translate
images from the —30 group to all other age groups. ‘GT’ is the mean age and standard deviation of the ground-truth test

images. The estimated ages for all models are obtained using DEX [

] on the generated images.

MOPRH CACD FG-NET
ShH ShE SiD SiE | ShH ShE SiD SiE || ShH ShE SiD  SiE
GT 1.17 085 289 0.72 || 1.34 097 3.69 092 | 1.05 0.75 232 0.8
CAAE 1.1 079 262 0.65 | 1.20 087 295 074 | 1.26 091 329 0.82
IPCGAN 131 095 349 087 | 1.32 095 356 0.89 || 1.33 096 3.59 0.90
Ours 1.36 098 381 095 | 135 097 375 094 || 1.36 097 3.72 0.93

Table 2: Diversity metrics of the augmented test sets. The proposed method outperforms the baselines on all datasets. ‘GT’

denotes the diversity indeces of the original test sets.

(over 50) and young (under 30) faces, which is crucial for
mitigating age bias. The proposed method is able to gen-
erate both young and old-looking faces by transferring ag-
ing patterns such as wrinkles and hair color. Additionally,
the proposed method is able to produce more diverse aging
patterns for faces aged 31-40 and 41-50 years old, whereas
the baseline models synthesize only subtle changes between
these two adjacent groups. Lastly, in order to test the gen-
eralisation of the methods, we test the models on the en-
tire unseen FG-NET dataset, using the models trained on
CACD. The results in Fig. 2c are consistent with the above,
with our model generating more photo-realistic aged faces.

4.5. Aging accuracy

The purpose of age transfer is to translate an input image
so that it presents the age features of a target age group. In
this section we evaluate the accuracy of these age features
by using a pre-trained age estimation network [40]. In par-
ticular, we perform age progression on faces under 30 years
old and use the age estimation model to obtain the mean
and standard deviation of the predicted ages. The estimated
age of the synthetic images should follow the distribution
of the real images, hence we evaluate the models based on
the deviation between the mean age of the synthetic and
the real images for each age group. Aging accuracy re-
sults for all compared methods are presented in Table 1.
We observe that CAAE consistently produces similar age

patterns, while IPCGAN is not able to generate sufficiently
old-looking faces over 50 years old.

4.6. Diversity enhancement

In this section, we quantify the ability of our model to
enhance the diversity of a dataset. In particular, we mea-
sure the Shannon H (ShH) and E (ShE) and the Simpson
D (SiD) and E (SiE) indices, as proposed in [29]. Simp-
son D and Shannon H measure the diversity of the dataset,
while Simpson E and Shannon E quantify the evenness of
the distribution. The indices are calculated as follows:

5
H
Shannon : H = —;pi In(p;), E= n(9)
1 D
Simpson : D:Ty E=—,
21 P; 5

where S denotes the number of classes and p; is the proba-
bility of each class. In general, larger values of Simpson D
and Shannon H indicate a more diverse dataset, while Simp-
son E and Shannon E closer to 1 indicate a more even dis-
tribution. We focus only on the age distribution of a dataset
and measure the diversity indices for MORPH, CACD and
FG-NET. The results on Table 2 indicate the imbalanced
distribution of MORPH (only 7% of the test set are over
50 years old) and FG-NET (87% of the faces are under 30
years old).
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Figure 2: Samples generated by the proposed and baseline methods. Each input image from the test set is translated to the

remaining age groups. The images in the red rectangle are the input faces and are positioned in their corresponding age
group’s column.



In order to benchmark the diversity enhancing capabil-
ities of the proposed framework and the baseline models,
the datasets are augmented using all 3 methods. Each face
in the test sets is translated to the remaining 3 age classes,
resulting in an augmented dataset that is 4 times the size of
the original dataset. We subsequently measure the diversity
indices for the augmented datasets and report the results in
Table 2. The results indicate that only the proposed method
is able to generate a distribution of ages that is almost even.
On the contrary, the inability of CAAE to generate signifi-
cant facial transformations deteriorates the diversity of the
datasets significantly.

4.7. Diversity in aging patterns

In this work, we introduce an approach to age progres-
sion that is different to the standard paradigm. In particular,
the proposed method transfers the age-discriminative style
of a target face onto the input face at multiple scales. This
approach allows for the generation of diverse aging patterns,
based on the choice of target image. This is demonstrated
in Fig. 3, where a young (under 30 years old) input face is
aged using different target faces over 50 years old. It is ev-
ident that different aging patterns (e.g., white hair, beard,
and wrinkles) are transferred according to the target.

Figure 3: Age progression of an input face using different
targets (top row). By conditioning the age transfer on differ-
ent targets, we are able to synthesize different age-specific
facial features.

The ability to transfer diverse aging patterns is vital, es-
pecially for the case of celebrity datasets (e.g., CACD). That
is, celebrity faces do not display the same aging patterns as
non-celebrity ones and tend to look younger. This affects
the performance of age progression as shown in Fig. 2a,
where none of the baselines are able to generate sufficiently
old-looking faces over 50 years old. In Fig. 4 we also
demonstrate how our model is able to mitigate the apparent
age bias of celebrity faces. In particular, we transfer more
crude aging features to faces over 50 years old. The result-
ing faces look significantly older and hence, can be used to
enhance the diversity of the dataset.

5. Conclusion

In this paper, we introduce a novel face aging method
to enhance the diversity with respect to age in facial
datasets. Inspired by the style transfer literature, the pro-
posed method is able to transfer the aging patterns of a
target image. We demonstrate the ability of our model to
generate realistic age progressions in a series of quantita-
tive and qualitative experiments. Furthermore, we propose
to benchmark the efficacy of the evaluated models in en-
hancing dataset diversity using the metrics proposed in [29].
The proposed method outperforms the baselines and is able
to generate even age distributions and mitigate the dataset
bias. As a future direction, we plan to generalize the pro-
posed framework to multiple demographic attributes, e.g.,
gender and race.
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