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Abstract

A significant limiting factor in training fair classifiers

relates to the presence of dataset bias. In particular, face

datasets are typically biased in terms of attributes such as

gender, age, and race. If not mitigated, bias leads to algo-

rithms that exhibit unfair behaviour towards such groups.

In this work, we address the problem of increasing the diver-

sity of face datasets with respect to age. Concretely, we pro-

pose a novel, generative style-based architecture for data

augmentation that captures fine-grained aging patterns by

conditioning on multi-resolution age-discriminative repre-

sentations. By evaluating on several age-annotated datasets

in both single- and cross-database experiments, we show

that the proposed method outperforms state-of-the-art algo-

rithms for age transfer, especially in the case of age groups

that lie in the tails of the label distribution. We further show

significantly increased diversity in the augmented datasets,

outperforming all compared methods according to estab-

lished metrics.

1. Introduction

Face analysis technology has penetrated in our daily

lives by becoming a core component in human-machine in-

teraction while it plays an increasingly important role in

the decision-making of several processes involving humans.

Hence, it is crucial for facial analytics systems to produce

objective and fair results. However, despite the transforma-

tive capabilities of deep learning models in face analysis,

there are persistent issues. For instance, bias in facial data

occurs when there is unequal representation of protected at-

tributes such as age, gender, skin color or ethnicity. Com-

puter vision algorithms trained on datasets encoding such

∗co-first authorship.

biases can result in biased performance across vulnerable

or underrepresented groups [46].

In this paper, we focus on age bias, which results from

the scarcity of available images that depict very old or

young faces, and is considered one of the most common

biases in face analysis. Indicatively, most widely used age-

annotated datasets (e.g., MORPH [38], CACD [3], IMDB

[40], FG-NET [21], AgeDB [31], AFAD [33] have signif-

icantly imbalanced age distributions; for instance, 87% of

the samples in FG-NET are younger than 30 years old.

Traditional techniques to handle class-imbalance, such

as image transformations and augmentation are of limited

benefit as they are not able to produce realistic approx-

imations to the underlying data distribution across ages.

A more recent alternative is the use of generative models

to augment existing datasets and augment the underrepre-

sented age classes. However, such approaches do not ad-

dress the inherent problem of dealing with small and unbal-

anced training sets. Indeed, early works on age progression

(e.g., [36, 44, 17]) were not able to produce photorealistic

results due to the simplicity of the models and the lack of

available training data. Similarly, more recent GAN-based

frameworks (e.g., [49, 53]) fail to synthesize faces of ex-

treme age (i.e., very young or very old). Moreover, condi-

tioning facial synthesis on a single label ignores the intra-

class diversity of each age class and collapses them to a

single aging pattern. As a result, recent GAN-based meth-

ods produce a single age progression/regression per face,

which in most cases is biased according to the age distri-

bution of the training set. These shortcomings deem such

methods ineffective for diversity-enhancing data augmenta-

tion, since training a model on a biased synthetic dataset

would still result in algorithmic bias.

In this work, rather than generating images by condition-

ing on labels, we propose a style-based age transfer frame-
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Figure 1: Overview of our method for face aging. First, a real image x
′

50+ of the target age group 50+ is fed into the

discriminator (right). The channel-wise mean and standard deviation of the resulting activations at each layer are used to

modulate the statistics of the corresponding feature maps in the generator. Shown here is the aging of image x−30 (left) of

age group 0 − 30 into x̃50+ of age group 50+. In minimizing Ladv the discriminator outputs high probability of the real

image being of the expected age group–thus naturally building age-discriminative representations. A feature-matching loss

Lfm is used to encourage the generator to match the precise aging patterns of the target image. The identity-preservation

loss Lid is applied to ensure that the identity-specific features of the input image are preserved.

work that is tailored to the task of diversity-enhancing fa-

cial data augmentation. In particular, we introduce a style-

transfer approach that allows the model to synthesize di-

verse aging patterns based on the choice of target image.

Furthermore, by conditioning the generation on extreme tar-

gets, e.g., very old-looking faces, we are able to generate

sufficiently old/young-looking faces despite the lack of sup-

port in the training set. Concretely:

• We introduce a novel GAN that is able to synthesize

an aged/rejuvenated face by conditioning on the age-

related style of a target face at multiple scales.

• We showcase the aging accuracy of our model through

qualitative and quantitative experiments. The proposed

model is compared against strong baselines in Sec-

tions 4.4 and 4.5.

• The ability of our model to diversify the age distribu-

tion of a biased dataset is investigated in Section 4.6.

We propose to quantify this by using the metrics intro-

duced in [29].

• Lastly, we showcase the ability of our model to syn-

thesize diverse aging patterns in Section 4.7. We show

that by conditioning the generation on a target image

rather than a target class, the proposed framework is

able to generate faces of large intra-class diversity.

2. Related work

Generative adversarial networks Generative adversar-

ial networks constitute the state-of-the-art approach for gen-

erative modeling and have been successfully applied to

tasks such as image generation [35, 16], image caption-

ing [7, 4], super-resolution [22, 5], and image translation

[6, 13, 19, 14, 54]. In the setting of image translation, that is

most closely related to this work, the goal is to learn a map-

ping from an image domain X to a domain Y . Successful

approaches have been proposed, both for the paired [14]

and unpaired [54, 6] image-to-image translation settings.

Recent state-of-the-art draws inspiration directly from the

style transfer literature, modulating style content explicitly

at different layers with the Adaptive Instance Normaliza-

tion [12] (AdaIN) operation [13, 19]. Our framework draws

inspiration from the GAN-based style transfer literature.

Style Transfer The seminal work of Gatys et al. [9]

showed that the global style of an image is captured in the

gram matrix of vectorised feature maps in a CNN and can be

transferred independently of the image content. Subsequent

works focused on improving the speed [15, 23, 47] or flex-

ibility [11, 24, 42, 12, 26] of style transfer. More recently,

research into the interpretation of its success has been ongo-

ing. In particular, Li et al. showed in [25] that the matching

of gram matrices can be viewed as a form of distribution

alignment, while others treat style transfer formally as the

optimal transport problem [28, 32]. In this work, we focus

on the age-discriminative style of the image and use style-

transfer to perform face aging.

Face aging Face aging has been studied extensively in

the fields of anthropometry and computer graphics, be-

fore transitioning to computer vision. The reader is re-

ferred to [8, 37, 10] for comprehensive surveys on facial



age progression. Early works focused on modeling bi-

ologically inspired mechanical transformations and facial

anatomy [45, 36, 44]. These physical model-based meth-

ods were computationally expensive and could not gener-

alize well due to the constraints of the models. Later data-

driven approaches would learn a mapping between age class

prototypes (e.g., class mean) [2, 17]. These age progres-

sion methods suffered from the loss of identity information

resulting in unrealistic aging results. With the establish-

ment of deep learning techniques recurrent [48] and GAN-

based [49, 53, 51] architectures have been utilized to per-

form face aging. In [53], a conditional adversarial autoen-

coder (CAAE) is proposed and face aging is performed by

traversing a low-dimensional manifold. Wang et al. [49]

utilize pre-trained networks to preserve identity and achieve

aging accuracy. Similarly, Yang et al. [51] use age features

from a pre-trained network in the discriminator. In contrast

to such existing methods, our framework is not only trained

end-to-end without auxiliary classifiers, but is also able to

transfer diverse aging features. By leveraging target faces

of extreme age, the proposed framework is able to synthe-

size the aging patterns of both the very old and young faces.

This allows for the use of our method as a data augmenta-

tion tool for mitigating bias in datasets.

Bias mitigation Different approaches have been pro-

posed to mitigate bias from a model. Inspired by domain

adaptation, Alvi et al. [1] proposed a joint learning and un-

learning framework, while Kim et al. [18] minimize the

mutual information between the network embedding and

bias information. The use of generative models for fair data

augmentation has been investigated in [43, 50, 34]. In or-

der to generate a complete dataset that can be used to train a

fair classifier, GAN-based methods with fairness constraints

were proposed in [43, 50]. On the other hand, Quadrianto

et al. [34] introduced an autoencoder that removes sensitive

attribute information from the data. Contrary to this work,

these generative methods focus mainly on generating data

that can be used to train a fair classifier, but are not neces-

sarily naturalistic (e.g., gender-less faces in [34]).

3. Methodology

In this section, we describe the proposed methodology

that is focused on enhancing the diversity of a given face

dataset with respect to age. Inspired by recent progress in

style transfer, the proposed architecture is specifically de-

signed to provide fine-grained control over aging patterns.

This is achieved by conditioning the autoencoder-based

generator on multi-resolution age-discriminative represen-

tations. In this way, we further relax the rigid assumption of

dependence on a single class label for an age group, unlike

previous works [49, 53, 51]. We posit that by employing

the proposed approach, we can both capture fine-grained

aging patterns as well as accurately synthesize realistic

samples that lie in the tails of the dataset distribution, thus

significantly increasing dataset diversity. The remainder

of this section is structured as follows. In Section 3.1

we introduce our modeling choices for the generator and

discriminator networks, while in Section 3.2 we describe

the proposed training objective. An overview of the

proposed method is visualized in Fig. 1.

3.1. Proposed framework

Style-conditioned Generator: We adopt an

autoencoder-based architecture for the generator G,

that is trained to translate an input face image xA of age

A to a synthesized image age x̃B of age B, using the

aging patterns of a target image x
′

B . The target age style

is extracted from x
′

B by the disciminator network D. In

particular, the age information at different scales is obtained

from the first and second order moments of the features

at different layers of D(x′

B). The age-discriminative style

is then injected into the decoder of the generator using

AdaIN. Following the paradigm of [39], we utilize skip

connections between the layers of the encoder and the

decoder, to mitigate training instability issues.

Discriminator: The discriminator of the proposed

framework is trained to distinguish between real and fake

images of each class. To this end, we adopt the multi-task

discriminator of [27]. The resulting network captures fea-

tures that represent both the “realness” of the faces as well

as their age. The architecture of D is a mirrored decoder of

the generator, in order to maintain correspondence between

the features at different scales (i.e., layers).

3.2. Training objective

The following objective function of the model is com-

prised of three parts, namely: the adversarial loss, the re-

construction loss, and the identity preservation loss.

Adversarial loss: For our framework to be able to syn-

thesize photorealistic images, we train G and D using an

adversarial loss. Given an input image xA, a target image

x
′

B , and the age-progressed/regressed output of the gener-

ator x̃B = G(xA,x
′

B), the adversarial loss is calculated as

follows:

Ladv =ExA

[

logD(xA)
]

+

ExA,x′
B

[

log(1−D
(

G(xA,x
′

B)
)]

, (1)

In the typical GAN setting, the generator tries to minimize

Ladv , while the discriminator tries to maximize it. How-

ever, in order to maintain the diversity in aging patterns

among different target faces, we train the generator using

a feature-matching loss [41]:

Lfm = ExA,x′
B

[

‖ D(x′

B)−D
(

G(xA,x
′

B)
)

‖22
]

. (2)



Reconstruction loss: In order to ensure that G preserves

the content of the input image, we minimize a reconstruc-

tion loss. That is, we enforce cycle consistency by trans-

forming an input image xA using a target x′

B and subse-

quently transforming back to the original by using xA as

the target. Concretely:

Lrec = ExA,x′
B

[

‖ xA − G
(

G(xA,x
′

B),xA

)

‖1
]

. (3)

Identity preservation: Besides maintaining the original

content, it is vital for the task of age progression to main-

tain the person-specific high-frequency details of the input.

Therefore, we minimize a pixel-wise L1 loss between the

input the output of G:

Lid = ExA,x′
B

[

‖ xA − G(xA,x
′

B) ‖1
]

. (4)

Full objective: Based on the above, G and D are trained

to minimize the following composite loss functions:

LD = −Ladv (5)

LG = Lfm + λrecLrec + λidLid, (6)

where λrec, λid, and λgp are the hyper-parameters for re-

spective loss terms. More implementation details can be

found in Section 4.1.

4. Experiments

In this section, we introduce the experimental setup and

showcase the efficacy of our framework in a series of ex-

periments. Our method is evaluated both qualitatively and

quantitatively and compared against two strong baselines

(Section 4.3). The main focus of our quantitative experi-

ments are: a) aging accuracy (Section 4.5) and b) enhance-

ment of diversity (Section 4.6).

4.1. Implementation details

For all the experiments, both the encoder and decoder

of G, as well as D have 6 layers. The exact architectures

are analyzed in the supplementary material. We utilize skip

connections between all layers of the encoder and the de-

coder. To improve the stability of the training we include

the R1 gradient penalty objective in addition to the adver-

sarial loss for the discriminator [30], which is defined as:

Lgp = λgpEx

[

‖ ∇D(x) ‖2
]

. (7)

Furthermore, instead of using the original image as the tar-

get in the cycle loss (Eq. (6)), we find it beneficial to use the

translated target image x̃
′

A = G(x′

B ,xA). That is, instead

of allowing the input image to drive the reconstruction, we

utilize a different image with the age-specific style of the

input. By doing this, we further enforce the transfer of the

aging features through reconstruction. The model is trained

end-to-end with hyperparameters λrec = 0.01, λgp = 10.0,

and λid = 10−4. The networks’ weights are optimised with

Adam [20], with a learning rate of 10−4, and beta values

β1 = 0.5, β2 = 0.99. All images are aligned and resized to

128× 128.

4.2. Datasets

We benchmark our model using the MORPH [38] and

CACD [3] datasets. The second album of MORPH con-

tains over 55,134 images of 13,618 people. Most images are

near-frontal and the capture conditions (e.g., background

and illumination) are almost uniform. The age of the faces

in MORPH range from 16 to 77 years old. On the other

hand, the CACD dataset consists of over 160,000 images

from 2,000 celebrities. The images are collected from

Google Images and are hence captured in-the-wild. The

age of the subjects ranges from 14 to 62 years old. For

both datasets, we use 20% of the images for testing and

keep 80% for training the models. The generalization of the

models is tested on FG-NET [21], which has 1,002 face

images of 82 subjects. Following the standard approach

([51, 48, 52]) we utilize 4 age groups: under 30, 30-40,

40-50, and over 50 years old.

4.3. Baselines

We compare our method with two recent age progression

methods, namely CAAE [53] and IPCGAN [49]. CAAE

performs age progression and regression by traversing a

low-dimensional manifold. On the other hand, IPCGAN

utilizes two external pre-trained networks that capture the

identity and age of the synthesized face. The baseline mod-

els are compared to the proposed framework in a series of

experiments. Both qualitative and quantitative results are

presented in the sections that follow. Both models were

trained using the authors’ provided source code∗.

4.4. Qualitative Results

We present the results for age transfer on the test sets

of MOPRH and CACD in Fig. 2 (additional results are in-

cluded in the supplementary material). Despite the variation

in capturing conditions, gender and facial expression of the

datasets, our model is able to produce realistic aged and re-

juvenated renderings of the input. In particular, each input

face is translated to the 3 remaining age classes (except for

the ground-truth) using the proposed framework, as well as

the baseline methods. We notice that CAAE generates rela-

tively blurry and over-regularized faces, that do not always

maintain the identity of the input. On the other hand, while

IPCGAN is able to produce sharp images of the target age

group, it nevertheless fails to synthesize convincingly old

∗CAAE: https://github.com/ZZUTK/Face-Aging-CAAE and

IPCGAN: https://github.com/dawei6875797/Face-Aging-with-Identity-

Preserved-Conditional-Generative-Adversarial-Networks



MOPRH CACD

31-40 41-50 50+ 31-40 41-50 50+

GT 35.9± 2.65 44.77± 2.72 54.92± 3.72 35.41± 2.88 45.45± 2.88 55.01± 3.02
CAAE 37.08± 4.53 39.25± 4.54 41.96± 4.68 38.47± 5.46 41.38± 5.17 43.30± 5.49

IPCGAN 41.86± 6.71 47.94± 8.47 50.89± 6.35 35.37± 7.09 42.25± 8.13 40.79± 7.43
Ours 39.17± 6.46 45.98± 6.00 56.62± 5.35 33.04± 7.40 46.78± 7.00 56.05± 6.06

Mean absolute age difference between synthetic images and GT (years)

CAAE 1.18 5.52 12.96 3.06 4.07 11.71

IPCGAN 5.96 3.17 4.03 0.04 3.20 14.22

Ours 3.27 1.21 1.69 2.37 1.33 1.04

Table 1: Age accuracy of the proposed method and baseline models on the test sets of MORPH and CACD. We translate

images from the −30 group to all other age groups. ‘GT’ is the mean age and standard deviation of the ground-truth test

images. The estimated ages for all models are obtained using DEX [40] on the generated images.

MOPRH CACD FG-NET

ShH ShE SiD SiE ShH ShE SiD SiE ShH ShE SiD SiE

GT 1.17 0.85 2.89 0.72 1.34 0.97 3.69 0.92 1.05 0.75 2.32 0.58

CAAE 1.1 0.79 2.62 0.65 1.20 0.87 2.95 0.74 1.26 0.91 3.29 0.82

IPCGAN 1.31 0.95 3.49 0.87 1.32 0.95 3.56 0.89 1.33 0.96 3.59 0.90

Ours 1.36 0.98 3.81 0.95 1.35 0.97 3.75 0.94 1.36 0.97 3.72 0.93

Table 2: Diversity metrics of the augmented test sets. The proposed method outperforms the baselines on all datasets. ‘GT’

denotes the diversity indeces of the original test sets.

(over 50) and young (under 30) faces, which is crucial for

mitigating age bias. The proposed method is able to gen-

erate both young and old-looking faces by transferring ag-

ing patterns such as wrinkles and hair color. Additionally,

the proposed method is able to produce more diverse aging

patterns for faces aged 31-40 and 41-50 years old, whereas

the baseline models synthesize only subtle changes between

these two adjacent groups. Lastly, in order to test the gen-

eralisation of the methods, we test the models on the en-

tire unseen FG-NET dataset, using the models trained on

CACD. The results in Fig. 2c are consistent with the above,

with our model generating more photo-realistic aged faces.

4.5. Aging accuracy

The purpose of age transfer is to translate an input image

so that it presents the age features of a target age group. In

this section we evaluate the accuracy of these age features

by using a pre-trained age estimation network [40]. In par-

ticular, we perform age progression on faces under 30 years

old and use the age estimation model to obtain the mean

and standard deviation of the predicted ages. The estimated

age of the synthetic images should follow the distribution

of the real images, hence we evaluate the models based on

the deviation between the mean age of the synthetic and

the real images for each age group. Aging accuracy re-

sults for all compared methods are presented in Table 1.

We observe that CAAE consistently produces similar age

patterns, while IPCGAN is not able to generate sufficiently

old-looking faces over 50 years old.

4.6. Diversity enhancement

In this section, we quantify the ability of our model to

enhance the diversity of a dataset. In particular, we mea-

sure the Shannon H (ShH) and E (ShE) and the Simpson

D (SiD) and E (SiE) indices, as proposed in [29]. Simp-

son D and Shannon H measure the diversity of the dataset,

while Simpson E and Shannon E quantify the evenness of

the distribution. The indices are calculated as follows:

Shannon : H = −

S
∑

1

pi ln(pi), E =
H

ln(S)

Simpson : D =
1

∑S

1
p2i

, E =
D

S
,

where S denotes the number of classes and pi is the proba-

bility of each class. In general, larger values of Simpson D

and Shannon H indicate a more diverse dataset, while Simp-

son E and Shannon E closer to 1 indicate a more even dis-

tribution. We focus only on the age distribution of a dataset

and measure the diversity indices for MORPH, CACD and

FG-NET. The results on Table 2 indicate the imbalanced

distribution of MORPH (only 7% of the test set are over

50 years old) and FG-NET (87% of the faces are under 30

years old).



Figure 2: Samples generated by the proposed and baseline methods. Each input image from the test set is translated to the

remaining age groups. The images in the red rectangle are the input faces and are positioned in their corresponding age

group’s column.



In order to benchmark the diversity enhancing capabil-

ities of the proposed framework and the baseline models,

the datasets are augmented using all 3 methods. Each face

in the test sets is translated to the remaining 3 age classes,

resulting in an augmented dataset that is 4 times the size of

the original dataset. We subsequently measure the diversity

indices for the augmented datasets and report the results in

Table 2. The results indicate that only the proposed method

is able to generate a distribution of ages that is almost even.

On the contrary, the inability of CAAE to generate signifi-

cant facial transformations deteriorates the diversity of the

datasets significantly.

4.7. Diversity in aging patterns

In this work, we introduce an approach to age progres-

sion that is different to the standard paradigm. In particular,

the proposed method transfers the age-discriminative style

of a target face onto the input face at multiple scales. This

approach allows for the generation of diverse aging patterns,

based on the choice of target image. This is demonstrated

in Fig. 3, where a young (under 30 years old) input face is

aged using different target faces over 50 years old. It is ev-

ident that different aging patterns (e.g., white hair, beard,

and wrinkles) are transferred according to the target.

Figure 3: Age progression of an input face using different

targets (top row). By conditioning the age transfer on differ-

ent targets, we are able to synthesize different age-specific

facial features.

The ability to transfer diverse aging patterns is vital, es-

pecially for the case of celebrity datasets (e.g., CACD). That

is, celebrity faces do not display the same aging patterns as

non-celebrity ones and tend to look younger. This affects

the performance of age progression as shown in Fig. 2a,

where none of the baselines are able to generate sufficiently

old-looking faces over 50 years old. In Fig. 4 we also

demonstrate how our model is able to mitigate the apparent

age bias of celebrity faces. In particular, we transfer more

crude aging features to faces over 50 years old. The result-

ing faces look significantly older and hence, can be used to

enhance the diversity of the dataset.

5. Conclusion

In this paper, we introduce a novel face aging method

to enhance the diversity with respect to age in facial

datasets. Inspired by the style transfer literature, the pro-

posed method is able to transfer the aging patterns of a

target image. We demonstrate the ability of our model to

generate realistic age progressions in a series of quantita-

tive and qualitative experiments. Furthermore, we propose

to benchmark the efficacy of the evaluated models in en-

hancing dataset diversity using the metrics proposed in [29].

The proposed method outperforms the baselines and is able

to generate even age distributions and mitigate the dataset

bias. As a future direction, we plan to generalize the pro-

posed framework to multiple demographic attributes, e.g.,

gender and race.
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