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Abstract

As Convolutional Neural Networks (CNNs) have ex-

panded into every day use, more rigorous methods of ex-

plaining their inner workings are required. Current popu-

lar techniques, such as saliency maps, show how a network

interprets an input image at a simple level by scoring pix-

els according to their importance. In this paper, we intro-

duce the concept of surprise and expectation as means for

exploring and visualising how a network learns to model

the training data through the understanding of filter activa-

tions. We show that this is a powerful technique for under-

standing how the network reacts to an unseen image com-

pared to the training data. We also show that the insights

provided by our technique allows us to “fix” misclassifica-

tions. Our technique can be used with nearly all types of

CNN. We evaluate our method both qualitatively and quan-

titatively using ImageNet.

1. Introduction

Convolutional Neural Networks (CNNs) have revolu-

tionised image classification and detection tasks. However,

they are often considered as being “black boxes”, with their

inner workings difficult to interpret. There is, therefore, a

need for techniques that can explain and visualise how a net-

work is interpreting an image. These explanations can take

many forms, from high-level saliency maps to visualising

the properties of individual filters.

A number of challenges arise when designing a method

for visualising a network’s explanations. The first is to ac-

curately determine which areas of an image the network

is basing its prediction on. The second is to convey how

or why the network made its prediction based on the in-

put image. Previous work can be classified into image- or

network-centric methods. In image-centric methods, one

attempts to assign a weight to each pixel in the input space

Input Grad-CAM [26] Backprop [27]

(c) RISE [22] Grad-CAM++ [3] LIME [23]
Figure 1. An image from the ‘Goldfish’ class that is misclassified

as a ‘Roundworm’. Existing visualisation techniques fail to give a

clear explanation of the reason for failure. A plausible explanation

for the failure is shown in Figure 7.

to produce a saliency map for a specific input. Examples of

this are occlusion maps [30], backprop [27], guided back

propagation [29], class activated mappings (CAM) [33],

Grad-CAM [33], LIME [23], etc. Network-centric meth-

ods, on the other hand, attempt to explain a filter’s role

within the network, often without regard to a specific in-

put. Examples of this are filter visualisations or neuron la-

belling [2, 16, 29].

These techniques often require the network to predict an

image correctly to offer the most valuable insights. An ex-

ample of this is shown in Figure 1 where the VGG16 net-

work [28] trained on ImageNet [24] fails to classify an im-

age from the validation set correctly. However, the expla-

nations generated for it show the network is focusing on the

object. This begs the question: “How do we visually ex-
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plain why the classification has failed when existing meth-

ods show that the network is using the seemingly relevant

features in the object to inform its prediction?”. Using our

proposed methods we are able to give a plausible explana-

tion as to misclassification of the goldfish (see Figure 7),

and then provide a validation of this (see Figure 10).

In this paper, we propose a method that allows us to un-

derstand why an image has failed to be classified correctly

by bridging the space between image-centric and network-

centric explanation techniques. We do this by studying the

distributions of filter activations for each class in the train-

ing data. Inspired by the idea of surprise in the free-energy

principle [8] we compare the filter response to unseen im-

ages against these known distributions. This allows us to

determine which filters have activated in an unusual way

for that class. We consider two types of unusual activation:

features causing filters to over activate (surprise) and un-

der activate (expectation). These surprise and expectation

values enable us to both visualise filters that are over or un-

der activated, but to also refer back to the images used for

training and pinpoint which features in the training data the

network has used to learn its understanding of a given class.

2. Related Work

A number of techniques have been developed to under-

stand and visually explain why or how a network produced a

classification. In image-centric techniques this is normally

done by producing a score for each pixel to show its im-

portance to the network. Initial work with image-centric

techniques included methods such as DeConvNet [30] and

the work by Simonyan et al. [27] which allowed gradi-

ents to be mapped back to the input image. Following on

from these, work was done to establish how these could be

made more precise through the use of guided backpropaga-

tion [29, 26]. Class Activation Maps [33] (CAMs) were

developed to allow networks with an average pooling layer

to locate regions of interest in an image. These were further

generalised with the Grad-CAM [26] technique to work

with CNNs regardless of whether they had an average pool-

ing layer or not. Grad-CAM works by using the mean of the

gradient to produce a score for each filter in the layer. This

is then used to weight and visualise the activation maps.

These filter scoring techniques are also found in network

pruning literature [12, 17, 19] to identify the importance

of each filter. Techniques also exist that attempt to perturb

the input image multiple times and observe how the net-

work reacts. Examples of these are Occlusion Maps [30],

LIME [23], and Interpretable Explanations [7]. Early ex-

amples of network-centric techniques are filter visualisa-

tion [4, 29] where patterns learnt by the filters are visu-

alised. More recent work has begun looking at how to ap-

ply meaningful labels to each filter to better identify its use

within the network [2, 6, 16, 25]. Or to learn how to con-

struct a semantic hierarchy of features within the CNN [31].

There are a number of works that attempt to tie these

two areas together. Kim et al. [15] aim to produce ex-

amples which are either “prototypes’ (images which fit the

model well) or “criticisms” (images that do not fit the model

well). This technique uses the Maximum Mean Discrep-

ancy (MMD) to find the difference between two distribu-

tions and a witness function to find the largest discrepan-

cies. Kim et al. [15] was followed up by Khanna et al. [14]

who aimed to discover which training examples are most re-

sponsible for a set of predictions. This allows for the discov-

ery of which training sample caused the misclassification of

an unseen sample. Techniques for comparing distributions

of image attributes have also been used to discover underly-

ing biases in datasets [32]. However, this work makes use

of dataset with attribution labels [18, 21] rather than object

classification labels allowing a relationship between explicit

attributes to be discovered. Unlike [14] and [15] who oper-

ate on training examples, we aim to identify the underlying

filters that cause misclassification.

3. Measuring Surprise and Expectation

In this section we describe the methods required for our

surprise and expectation framework. Firstly, a method of

determining a measure of filter salience is presented, fol-

lowed by a statistical understanding of how filters are used

by the training data. We then formally define surprise and

expectation.

3.1. Filter Importance Measure

In order to ascertain how much a filter is contributing

to the final output of the network, a measure of impor-

tance is required. Numerous works have proposed meth-

ods of ranking filters for various purposes. For example,

Grad-CAM [26] and Grad-CAM++ [3] effectively rank the

final convolution layers filters to assign weights prior to vi-

sualising. Alternatively, work from the pruning literature

have used methods ranging from a Taylor Expansion [5, 19]

to simple measures such as the l1-norm of the activation

maps [17]. However, in this work we propose to use the

product of the gradient and activation map from the final

convolution layer of a network. We call this Grad-AMap.

More concretely, let A(n) ∈ R
H×W be the activation of

the nth filter. We can thus measure the importance αn of

the nth filter as the mean of the product of the gradient for a

given class from O (the output of network) and its activation

map:

αn =
1

HW

H∑

i=1

W∑

j=1

∂O(Aij(n))

∂Aij(n)
Aij(n). (1)



Figure 2. Seven typical distributions of filter importance scores (see Equation 1). Each distribution represents a class filter pair (i.e. class

30, filter 100).

3.2. Building Filter Score Distributions

To build an understanding of how training data is repre-

sented by the model, we build a distribution over every filter

in the final convolution layer for each class by applying the

network to the images. For example, for a 10 class dataset

with 512 filters we would gather 5120 distributions. We

observe that the distributions created are typically skewed

unimodal. Figure 2 shows examples of such distributions

generated using VGG16 with ImageNet. From these distri-

butions we can discover the mean activation for every filter

in each class: µcn, where c is the class and n is the filter in-

dex. This allows us to encapsulate the range of activations

a filter may produce for each class. For example, we would

expect a filter that has learnt to activate on dog faces to ac-

tivate highly when a dog is present and weakly if not. We

gather the above statistics using a pre-trained model and all

of the training data.

3.3. Surprise and Expectation

With every distribution precomputed for each class and

filter combination, we can pass unseen data to the network

and observe how αn compares to µcn. If the input image

is modeled well by the learnt distribution, we should expect

αn to fall somewhere close to µcn. However, if αn deviates

either side of µcn we can say that the input data is deviating

from the model’s expectations. If αn has a negative devia-

tion we can say that the model was expecting to see the nth

filter activate higher. Conversely, if αn has a positive devi-

ation we can say the model is surprised to see the nth filter

activate so highly. As our distributions are not normal, we

define surprise and expectation in terms of percentiles. For

example we consider a filter surprising if αn > Pcn(99.9)
and the filter expecting if αn < Pcn(0.1). Where Pcn(x)
is the xth percentile, c is the ground truth class and n is

the filter index. Values that fall within these percentiles are

considered to be within the expected values for that class

and filter combination. When visualising filters that are ex-

pected (“expectation filters”) we ensure that we are only

working with filters that have a µcn value greater than the

mean of the precomputed class values: 1

N

∑N

n=1
µcn. This

prevents filters with a very low µcn from being labelled as

expected if an even lower αn is encountered.

Once a set of surprise or expectation filters have been

identified we can rank them using their deviation from the

training mean (αn−µcn). The more the value deviates from

0, the more the filter is under- or over-performing. We also

propose doing this over the entire set of filters for a given

image to compute a value, β, that measures how a filter’s

importance scores, αn, for an unseen image, deviate from

the mean µcn of the target class training data. For every

unseen image in the ImageNet validation set, we subtract

the mean of the training data from their importance scores

and take the mean of those values:

β =
1

N

N∑

n=1

(αn − µcn). (2)

Large values of β signify that an image is a strongly typical

representative of the training set.

4. Experiments

In this section we begin by justifying the use of Grad-

AMap (our filter measurement technique), before investi-

gating our surprise and expectation measures. We then draw

these together using our β value to investigate the reasons

for failure. Finally we try to understand how we can ‘fix’

images that fail using the insights we have gained. We ap-

ply the proposed method across all images present in Im-

ageNet [24] selecting typical examples for further discus-

sion. We use pretrained models from the PyTorch model

zoo [20]. We experiment using two types of network archi-

tecture, VGG16 [28], and ResNet [10]. This allows us to

compare our proposed methods networks that use Batch-

Norm [13] and those that do not. In particular for the

ResNet architectures, we being by using ResNet18 to test

the filter scoring methods, then scale up to show our pro-

posed surprise and exception method works for ResNet50.

We use ResNet18 for this experiment as the final convo-

lution layer only contains 512 filters, as opposed to 2,048
in ResNet50 allowing us to explore multiple methods in a

timely manner. We take our filter activation score from the

final convolution layer of each network.



4.1. Filter Ranking Method

In this experiment, we rank the filters in the selected con-

volution layer and incrementally zero out the channels of

the activation map produced by a networks final convolu-

tion layer based on the filter rankings. Zeroing out a single

channel of an activation map is the equivalent of pruning

the corresponding convolution filter. We increment in steps

of 16 filters, for a total of 32 increments for a layer con-

sisting of 512 filters. This is similar to a number of metrics

used to evaluate the accuracy of heatmap for CNN expla-

nations, for example, Remove and Retrain (ROAR) [11] or

the deletion game [22]. In these methods, pixels are itera-

tively removed (pixels are set to 0) and the accuracy or soft-

max is recorded and averaged over all validation images in

a dataset. Typically regions are removed from most impor-

tant to least. As the regions are removed, the accuracy or

softmax drops accordingly. We follow this pattern for our

experiment, recording the accuracy of the network (which

we normalise to be between 0% – 100%) as we remove the

most important filters first. We do this for every image in

the ImageNet validation set. The better a technique is at

producing accurate filter scores, the fewer filters we should

be able to remove before the model can no longer accu-

rately predict the correct class and the overall model accu-

racy drops. We measure this using the Area under the Curve

(AUC) value as per the metric used in RISE [22]. An AUC

score approaching 0 suggests that a method is able to bet-

ter rank the importance of filters, as we are able to rapidly

reduce the accuracy of the network. For this experiment

we use VGG16 and ResNet50 and test against a number of

techniques found in both pruning and interpretability liter-

ature. From the pruning literature we test both the Taylor

expansion and the l1-norm of the activation maps. The Tay-

lor expansion is similar to Grad-AMap except for two cru-

cial differences. Firstly, we backpropagate from the desired

class’s softmax score as we only want gradients pertinent

to that class, with the Taylor expansion, we back propagate

from the loss value. Secondly, to make the Taylor expan-

sion valid, the absolute value of the product of the activa-

tion maps and gradients is taken. In the pruning literature

this was found to be beneficial as it effectively ranks the best

and worst filters similarly, which helps to keep the network

stable when retraining [19]. We also test a variant of the

Taylor expansion using the gradients backpropagated from

the class’s softmax which we refer to as ‘Taylor (class)’ in

the results.

The results for filter removal versus model accuracy can

be seen in Figure 3 and Table 1. These results confirm that

Grad-AMap, our proposed method of measuring filter im-

portance works well compared to other common methods.

In particular, note that Grad-AMap is robust to the change

in model, whilst Grad-CAM performs poorly with VGG16.

An interesting property displayed in the ResNet18 results
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Figure 3. Showing the percentage of filters than can be removed

vs the normalised model accuracy. Our proposed method is able

to quickly decrease the accuracy be removing important filters.

VGG16 ResNet18

Random 0.685 0.733

l1-norm [17] 0.057 0.618

Grad-CAM++ [3] 0.147 0.230

Grad-CAM [26] 0.079 0.225

Taylor [5, 19] 0.132 0.629

Taylor (class) 0.052 0.392

Grad-AMap (Ours) 0.042 0.146

Table 1. Filter Removal Results. A lower AUC score suggests we

can identify and remove the most important filters first, resulting

in the network accuracy to drop.

is the small bump in accuracy as the filters are removed.

This is likely happening because we are pruning a single

convolution layers activation, which are then added back to

the activations stored from the previous block. The effect

of taking the absolute value in the Taylor method results in

both the best and worst filters being removed early, which

accounts for the earlier bump in accuracy. Comparing the

Taylor and Taylor (class) results highlights the importance

of back propagating gradients from the target class in the

softmax rather than the networks loss.

4.2. Understanding the Reasons for Failure

Understanding why an input image fails to classify is

an important problem. Does the network fail to predict a

class correctly because there was a feature present that “dis-

tracted” the network? Or is it simply due to lack of relevant

features? By passing unseen validation images into the net-



VGG16

ResNet50

Figure 4. All β values for the validation images within ImageNet.

For each model the top row are prediction scores prior to softmax

being applied, while the bottom row are scores post softmax. Left

columns are images from all classes whilst the right columns are

images from a single class.

work and taking their filter score we are able to compute

the β value from Equation 2. Using this value we perform

Spearman rank correlation between all the β values within a

class, and the prediction scores both pre- and post-softmax

for each image. For VGG16, the mean Spearman score over

all the classes between β values and the pre-softmax predic-

tions is 0.998 whilst the score for post-softmax predictions

is 0.782. For ResNet50, the mean Spearman score over all

the classes between β values and the pre-softmax predic-

tions is 0.999 whilst the score for post-softmax predictions

is 0.801. These results can be seen in Figure 4. For the

images classified incorrectly, we observe that for VGG16

86.60% of them had a negative deviation from the mean,

whilst only 45.88% of correct classifications have a nega-

tive deviation. For ResNet50 we found these values to be

90.20% and 47.67% respectively. This suggests that the

majority of images fail to be classified correctly because

they lack the features the network is expecting, rather than

that something in the image is surprising the network and

overpowering other features.

In order to understand the reasons for failure we examine

the unseen images that generate extreme β values. We find

that they fall into two groups, those with a high β value (a

positive deviation from the mean) fail due to being mistaken

for a class that is similar to its real class. Those with a low

β (a negative deviation from the mean) fail due to being

noticeably different to the distribution of the training data.

Classifications with High β Values. When an image

fails to be classified correctly but maintains a high β value

it suggests that the filters activated by the target class have

activated as expected or at a higher value. It also suggests

that the unseen image, whilst posessing the relevant features

to activate those filters, has also activated another set of fil-

ters that has tipped the network’s decision. Indeed, we find

that for all unseen images with high β values, the failure is

due to the network predicting a class that is visually similar

to the target class. Figure 5 illustrates this: shown are ex-

ample images with high β values alongside their predicted

and ground truth labels. From this it is easy to understand

how the network may have made the wrong prediction due

to the similarity of the predicted and ground truth classes.

Classifications with Low β Values. Unseen images that

have a low β value tend to be those that deviate from the

distribution of the class’s training images. This deviation

could occur due to the actual object itself being different

from those in the training data, or the environment the ob-

ject is in. We show examples of this in Figure 6. Here we

display five misclassified images for each network, along-

side a correctly classified image with a high β value. From

these we can see that misclassified images with low β val-

ues tend to display a number of common characteristics.

For example, scale seems to play a role in misclassification,

with small objects being difficult to classify compared to

those that fill the image. Another characteristic is that the

misclassified image may be of a different medium, for ex-

ample see the panda, tick and oxcart images, which whilst

well-sized, fail to classify because they are atypical of the

rest of the images in the class.

4.3. Visualising Surprise

Understanding which features in an image the network

is using to form a class prediction is an important prob-

lem [22, 23, 33]. An interesting extension to this task is

to identify regions of an image that are unexpectedly ac-

tivating highly given the class of the image. This can be

measured by our surprise score developed in Section 3.3.

To visualise the features accurately we use weighted super-

pixels [9], a method of scoring image regions by backpropa-

gating gradients and pooling them into superpixels. We use

SLIC [1] to generate superpixels and ‘vanilla’ backpropa-
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Bighorn Mortarboard Barber Chair Drum

(Ram) (Academic Gown) (Barbershop) (Drumstick)

Trailer Truck Elec. Locomotive Coffeepot Oboe

(Moving Van) (Passenger Car) (Espresso Maker) (Flute)

Beer Bottle Cuirass Toilet Tissue Typewriter Keyboard

(Pop Bottle) (Breastplate) (Paper Towel) (Space Bar)

Figure 5. Examples of unseen images with high β values. The cap-

tion under each image is the predicted class with the corresponding

ground truth in parentheses.

gated gradients [27] to weight them. To ensure we only

visualise the regions important to a specific filter, we zero

out all gradients produced by filters in the same layer as the

surprised one. This has the effect of only backpropagating

the gradients back to the input pixels that are relevant to the

surprised filter. We use 50 superpixels and take the highest

scored superpixel as the one most important to the specific

filter. Passing an unseen image to the network and visualis-

ing the images from the training data that most activate the

surprised filter gives us a visual insight into how the net-

work is understanding the picture. An example of this is

shown in Figure 7. Here we visualise a misclassified im-

age marked with the boundary of the region most important

to the surprised filter. Next to these we display the images

from the training data that most activates the surprising fil-

ter and the region of the training image that activates the

filter. By visualising these sets of images we are are able to

gain an insight into why an image has been misclassified.

For example, the top image is an image from the goldfish

class misclassified as being from the roundworm class. It

seems that the bottom fish highly activates a surprising filter.

When we view the training images that activate the filter, we

see that they are wheels. This high activation of the ‘wheel’

filter is presumably what causes the image to be misclassi-

fied as a roundworm. Indeed we show in Section 4.5 that

this image could be made to classify correctly by removing

VGG16 ResNet50

Giant Panda Snail

Tick Mortarboard

Jay Bottlecap

Peacock Hourglass

Electric Locomotive Oxcart

Figure 6. Misclassified images with low β values on the left of

each column alongside an image from the same class that both

classifies correctly and has a high β value, suggesting it displays

features the network desires. Captions are the ground truth.

the bottom fish. For other images, such as the velvet mis-

classified as swimming trunks, it is easy to see how a filter

that activates highly for jigsaw may have fired, but not clear

why it contributes to the swimming trunks class.

4.4. Visualising Expectation

Visualising the filters that did not activate highly is prob-

lematic due to a lack of features in the image that activate

the specific filters. By identifying misclassified images that

have an expected filter we are able to find images from the

training set’s target class that maximally activate the ex-

pected filter. Displaying these next to the misclassified im-

age gives us an indication as to why the image may be mis-

classified. The results can be seen in Figure 8. We find that

these images take two forms. The first is where the mis-

classified image simply doesn’t seem to contain the correct
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Roundworm (Goldfish)

Wooden Spoon (Ladle)

Swimming Trunks (Velvet)

Figure 7. A misclassified image shown alongside the images from

the training data that activates the surprising filter, masked to show

the regions that activate the filter. The yellow boundary shows the

region important to the filter. The caption is the predicted class

with the ground truth in parentheses.

features. For example, with the gila monster, the expected

filter is highly activated by white objects around the Gila

Monster rather than the animal itself. This potentiality in-

dicates a bias in the training data that the model has learnt

to represent. A second example of this is the image of the

partridge surrounded by barren branches. In contrast, the

regions of the partridge training images that maximally ac-

tivate the expected filter seem to be leaves or foliage. Again,

this indicates a possible underlying bias within the partridge

class. The second type of misclassified image seems to be

where the target object is present, but small within the im-

age and the expected filter simply wants to see more of the

object. The image of the violin is a good example of this, al-

though the violin and bow are present in the image, they are

small. The filter that expected to be activated more is one

that seems to activate highly on the bow region of the train-

ing data. The peacock image is similar to the violin, where

the target object is present, but the expected filter seem to

activate highly on a peacocks tail, as well as the crest on its

head. Although these features are present in the misclassi-

fied image, they are not there in the scale required.

4.5. “Fixing” Incorrect Classifications

Using our method of generating surprise and expecta-

tion we can take specific misclassified images, and try to

understand what caused their failure. This offers an under-

standing of how the network is representing the failed class.

These corrections fall into two categories, suppressing fea-

tures that are causing surprise to the network and diverting

Input Highest Activations

Gila Monster

Partridge

Peacock

Violin
Figure 8. A misclassified input image is shown alongside the top

two images and the regions that maximally activates the expected

filter from the training data within the same class.

attention from the target class, and correcting expectation.

The latter is a difficult task. It requires additional user input

to interpret what the image is missing and whether it can be

inserted back into the image. The following techniques are

all supervised, they require knowledge of the ground truth

class to “fix” the image.

Suppressing Surprise For all the images that are mis-

classified in the validation set, we identify the most sur-

prised filter as in Section 3.3. Using the weighted su-

perpixel technique discussed in Section 4.3, we obtain a

number of superpixels with corresponding scores that tell

us how important that region is to a specific filter. We are

then able to suppress surprise by setting the superpixels that

highly activate that filter to the mean of each RGB chan-

nel. As the images are normalised prior to inputting, this is

0. We perform this experiment over a range of superpixel

sizes, as well as how many superpixels to blank out. We

also perform the same technique using vanilla backpropa-

gation (i.e. the same as our method without the surprise

filtering) to ascertain that our method is superior at finding

the regions causing misclassification. We show the results

for this experiment in Figure 9. Here we see that the use of

gradients backpropagated only through the surprised filter

allows us to more precisely locate the detrimental regions

of the image compared to backpropagating through all fil-

ters. This results in our method being able to ‘fix’ more

misclassified images. Using VGG16 and sweeping through

all the superpixel sizes and removal amounts, we are ul-
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Figure 9. Results for suppressing the superpixels of both vanilla

backpropagated gradients, and only the gradients backpropagated

through the most surprising filter. These results are for VGG16.

timately able to ‘fix’ 5,116 misclassified images, using our

technique versus 4,554 using vanilla backpropogation with-

out surprise filtering. This is ∼ 36% and ∼ 32% of the mis-

classified images respectively. Examples of fixed images

are in Figure 10, including the goldfish from Figure 7.

Figure 10. Surprise suppression examples from VGG16. All im-

ages initially misclassified, but ‘fixed’ using our method.

Correcting Expectation A more challenging applica-

tion of our method is correcting images that failed due to

an expected filter not activating. This means the image did

not contain enough of a certain feature to activate the filter

enough to ensure a correct classification. This becomes a

difficult task as it is not a case of identifying and removing

pixels as with suppressing surprise, rather we are required

to identify and enhance or insert the required features. An

example of this can be seen as the input in Figure 11. This

shows an image from the ImageNet class Gila Monster that

Figure 11. Top Left: input. Top Right: ‘fixed’ image. Bottom: the

images and masked regions that most activate the expected filter.

fails to be classified correctly. By visualising the training

images that maximally activate the most expected filter, we

gain an insight into which features the network is expect-

ing to see. In Figure 11, we visualise the top 6 images for

the expected filter. The first interesting aspect to notice is

that none of the images seem to be activate the filter with

the gila monster itself. Rather, the region surrounding the

animal seems to activate the expected filter. The second is

that all the images that activate the filter, appear to have a

regions surrounding the animal that is lightly coloured. We

hypothesise that altering the surface found in our misclas-

sified image to a colour more consistent with the training

data will boost this filters activation score and the overall

score from the network. Using a photo editing tool, we se-

lect the red pixels from the surface and make them white.

This image now classifies correctly suggesting that our pro-

posed technique has correctly highlighted the pixels in the

input image that were inconsistent with the training data.

This suggests there is a bias towards gila monsters that are

located on certain surfaces.

5. Conclusion

In this paper we have introduced the concept of surprise

and expectation, a technique for understanding and visu-

alising which filters are under- or over-performing for an

unseen example. To do this we have proposed and quanti-

tatively evaluated a filter ranking method, Grad-AMap. We

have then qualitatively shown that this surprise and expec-

tation allows us to gain insights into how and why images

fail to classify correctly. We quantitatively show that our

method is efficient with regards to locating features that are

over activating and suppressing them to correct a classifica-

tion.
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