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Abstract

The presence of decision-making algorithms in society

is rapidly increasing nowadays, while concerns about their

transparency and the possibility of these algorithms becom-

ing new sources of discrimination are arising. In fact, many

relevant automated systems have been shown to make de-

cisions based on sensitive information or discriminate cer-

tain social groups (e.g. certain biometric systems for per-

son recognition). With the aim of studying how current

multimodal algorithms based on heterogeneous sources of

information are affected by sensitive elements and inner

biases in the data, we propose a fictitious automated re-

cruitment testbed: FairCVtest. We train automatic recruit-

ment algorithms using a set of multimodal synthetic profiles

consciously scored with gender and racial biases. Fair-

CVtest shows the capacity of the Artificial Intelligence (AI)

behind such recruitment tool to extract sensitive informa-

tion from unstructured data, and exploit it in combination

to data biases in undesirable (unfair) ways. Finally, we

present a list of recent works developing techniques capa-

ble of removing sensitive information from the decision-

making process of deep learning architectures. We have

used one of these algorithms (SensitiveNets) to experiment

discrimination-aware learning for the elimination of sen-

sitive information in our multimodal AI framework. Our

methodology and results show how to generate fairer AI-

based tools in general, and in particular fairer automated

recruitment systems.

1. Introduction

Over the last decades we have witnessed great advances

in fields such as data mining, Internet of Things, or Artificial

Intelligence, among others, with data taking on special rel-

evance. Paying particular attention to the field of machine

learning, the large amounts of data currently available have

led to a paradigm shift, with handcrafted algorithms being

replaced in recent years by deep learning technologies.

Machine learning algorithms rely on data collected from

society, and therefore may reflect current and historical bi-

ases [6] if appropriate measures are not taken. In this sce-

nario, machine learning models have the capacity to repli-

cate, or even amplify human biases present in the data

[1, 13, 26, 35]. There are relevant models based on machine

learning that have been shown to make decisions largely

influenced by gender or ethnicity. Google’s [33] or Face-

book’s [2] ad delivery systems generated undesirable dis-

crimination with disparate performance across population

groups [9]. New York’s insurance regulator probed United-

Health Group over its use of an algorithm that researchers

found to be racially biased, the algorithm prioritized health-

ier white patients over sicker black ones [14]. More re-

cently, Apple Credit service granted higher credit limits to

men than women1 even though it was programmed to be

blind to that variable (the biased results in this case were

originated from other variables [24]).

The usage of AI is also growing in human resources de-

partments, with video- and text-based screening software

becoming increasingly common in the hiring pipeline [10].

But automatic tools in this area have exhibited worrying bi-

ased behaviors in the past. For example, Amazon’s recruit-

ing tool was preferring male candidates over female candi-

dates [11]. The access to better job opportunities is crucial

to overcome differences of minority groups. However, in

cases such as automatic recruitment, both the models and

their training data are usually private for corporate or legal

reasons. This lack of transparency, along with the long his-

tory of bias in the hiring domain, hinder the technical evalu-

ation of these systems in search of possible biases targeting

protected groups [27].

This deployment of automatic systems has led govern-

ments to adopt regulations in this matter, placing special

emphasis on personal data processing and preventing al-

gorithmic discrimination. Among these regulations, the

new European Union’s General Data Protection Regulation

(GDPR)2, adopted in May 2018, is specially relevant for its

impact on the use of machine learning algorithms [19]. The

GDPR aims to protect EU citizens’ rights concerning data

1https://edition.cnn.com/2019/11/10/business/

goldman-sachs-apple-card-discrimination/
2https://gdpr.eu/



Figure 1: Information blocks in a resume and personal attributes that can be derived from each one. The number of crosses

represent the level of sensitive information (+++ = high, ++ = medium, + = low).

protection and privacy by regulating how to collect, store,

and process personal data (e.g. Articles 17 and 44). This

normative also regulates the “right to explanation” (e.g. Ar-

ticles 13-15), by which citizens can ask for explanations

about algorithmic decisions made about them, and requires

measures to prevent discriminatory effects while process-

ing sensitive data (according to Article 9, sensitive data in-

cludes “personal data revealing racial or ethnic origin, po-

litical opinions, religious or philosophical beliefs”).

On the other hand, one of the most active areas in ma-

chine learning is around the development of new multi-

modal models capable of understanding and processing in-

formation from multiple heterogeneous sources of informa-

tion [5]. Among such sources of information we can include

structured data (e.g. in tables), and unstructured data from

images, audio, and text. The implementation of these mod-

els in society must be accompanied by effective measures to

prevent algorithms from becoming a source of discrimina-

tion. In this scenario, where multiple sources of both struc-

tured and unstructured data play a key role in algorithms’

decisions, the task of detecting and preventing biases be-

comes even more relevant and difficult.

In this environment of desirable fair and trustworthy AI,

the main contributions of this work are:

• We present a new public experimental framework

around automated recruitment aimed to study how

multimodal machine learning is influenced by biases

present in the training datasets: FairCVtest3.
• We have evaluated the capacity of popular neural net-

3https://github.com/BiDAlab/FairCVtest

work to learn biased target functions from multimodal

sources of information including images and struc-

tured data from resumes.
• We develop a discrimination-aware learning method

based on the elimination of sensitive information such

as gender or ethnicity from the learning process of

multimodal approaches, and apply it to our automatic

recruitment testbed for improving fairness.

Our results demonstrate the high capacity of commonly

used learning methods to expose sensitive information (e.g.

gender and ethnicity) and the necessity to implement appro-

priate techniques to guarantee discrimination-free decision-

making processes.

The rest of the paper is structured as follows: Section 2

analyzes the information available in a typical resume and

the sensitive data associated to it. Section 3 presents the

general framework for our work including problem formu-

lation and the dataset created in this work: FairCVdb. Sec-

tion 4 reports the experiments in our testbed FairCVtest af-

ter describing the experimental methodology and the differ-

ent scenarios evaluated. Finally, Section 5 summarizes the

main conclusions.

2. What else does your resume data reveal?

Studying multimodal biases in AI

For the purpose of studying discrimination in Artificial

Intelligence at large, in this work we propose a new experi-

mental framework inspired in a fictitious automated recruit-

ing system: FairCVtest.

There are many companies that have adopted predictive



Figure 2: Block diagram of the automatic learning process and 6 (A to E) stages where bias can appear.

tools in their recruitment processes to help hiring managers

find successful employees. Employers often adopt these

tools in an attempt to reduce the time and cost of hiring, or

to maximize the quality of the hiring process, among other

reasons [8]. We chose this application because it comprises

personal information from different nature [15].

The resume is traditionally composed by structured data

including name, position, age, gender, experience, or edu-

cation, among others (see Figure 1), and also includes un-

structured data such as a face photo or a short biography.

A face image is rich in unstructured information such as

identity, gender, ethnicity, or age [17, 28]. That information

can be recognized in the image, but it requires a cognitive

or automatic process trained previously for that task. The

text is also rich in unstructured information. The language

and the way we use that language, determine attributes re-

lated to your nationality, age, or gender. Both, image and

text, represent two of the domains that have attracted major

interest from the AI research community during last years.

The Computer Vision and the Natural Language Process-

ing communities have boosted the algorithmic capabilities

in image and text analysis through the usage of massive

amounts of data, large computational capabilities (GPUs),

and deep learning techniques.

The resumes used in the proposed FairCVtest framework

include merits of the candidate (e.g. experience, education

level, languages, etc...), two demographic attributes (gender

and ethnicity), and a face photograph (see Section 3.1 for

all the details).

3. Problem formulation and dataset

The model represented by its parameters vector w is

trained according to multimodal input data defined by n

features x = [x1, ..., xn] ∈ R
n, a Target function T , and a

learning strategy that minimizes the error between the out-

put O and the Target function T . In our framework where

x is data obtained from the resume, T is a score within the

interval [0, 1] ranking the candidates according to their mer-

its. A score close to 0 corresponds to the worst candidate,

while the best candidate would get 1. Biases can be intro-

duced in different stages of the learning process (see Figure

2): in the Data used to train the models (A), the Preprocess-

ing or feature selection (B), the Target function (C), and the

Learning strategy (E). As a result, a biased Model (F) will

produce biased Results (D). In this work we focus on the

Target function (C) and the Learning strategy (E). The Tar-

get function is critical as it could introduce cognitive biases

from biased processes. The Learning strategy is tradition-

ally based on the minimization of a loss function defined to

obtain the best performance. The most popular approach for

supervised learning is to train the model w by minimizing a

loss function L over a set of training samples S:

min
w

∑

xj∈S

L(O(xj |w), T j) (1)

3.1. FairCVdb: research dataset for multimodal AI

We have generated 24,000 synthetic resume profiles in-

cluding 12 features obtained from 5 information blocks, 2
demographic attributes (gender and ethnicity), and a face

photograph. The 5 blocks are: 1) education attainment

(generated from US Census Bureau 2018 Education At-

tainment data4, without gender or ethnicity distinction), 2)

availability, 3) previous experience, 4) the existence of a

recommendation letter, and 5) language proficiency in a set

of 8 different and common languages (chosen from US Cen-

sus Bureau Language Spoken at Home data5). Each lan-

guage is encoded with an individual feature (8 features in to-

tal) that represents the level of knowledge in that language.

Each profile has been associated according to the gen-

der and ethnicity attributes with an identity of the DiveFace

database [25]. DiveFace contains face images (120 × 120
pixels) and annotations equitably distributed among 6 de-

mographic classes related to gender and 3 ethnic groups

(Black, Asian, and Caucasian), including 24K different

identities (see Figure 3).

4https://www.census.gov/data/tables/2018/demo/

education-attainment/cps-detailed-tables.html
5https://www.census.gov/data/tables/2013/demo/

2009-2013-lang-tables.html



Figure 3: Examples of the six demographic groups included

in DiveFace: male/female for 3 ethnic groups.

Therefore, each profile in FairCVdb includes informa-

tion on gender and ethnicity, a face image (correlated with

the gender and ethnicity attributes), and the 12 resume fea-

tures described above, to which we will refer to candidate

competencies xi.

The score T j for a profile j is generated by linear com-

bination of the candidate competencies xj = [xj
1
, ..., xj

n] as:

T j = βj +

n∑

i=1

αix
j
i (2)

where n = 12 is the number of features (competencies),

αi are the weighting factors for each competency x
j
i (fixed

manually based on consultation with a human recruitment

expert), and βj is a small Gaussian noise to introduce a

small degree of variability (i.e. two profiles with the same

competencies do not necessarily have to obtain the same re-

sult in all cases). Those scores T j will serve as groundtruth

in our experiments.

Note that, by not taking into account gender or eth-

nicity information during the score generation in Equa-

tion (2), these scores become agnostic to this information,

and should be equally distributed among different demo-

graphic groups. Thus, we will refer to this target function

as Unbiased scores TU , from which we define two target

functions that include two types of bias: Gender bias TG

and Ethnicity bias TE . Biased scores are generated by ap-

plying a penalty factor Tδ to certain individuals belonging

to a particular demographic group. This leads to a set of

scores where, with the same competencies, certain groups

have lower scores than others, simulating the case where the

process is influenced by certain cognitive biases introduced

by humans, protocols, or automatic systems.

4. FairCVtest: Description and experiments

4.1. FairCVtest: Scenarios and protocols

In order to evaluate how and to what extent an algorithm

is influenced by biases that are present in the FairCVdb tar-

get function, we use the FairCVdb dataset previously in-

troduced in Section 3 to train various recruitment systems

under different scenarios. The proposed FairCVtest testbed

consist of FairCVdb, the trained recruitment systems, and

the related experimental protocols.

First, we present 4 different versions of the recruitment

tool, with slight differences in the input data and target func-

tion aimed at studying different scenarios concerning gen-

der bias. After that, we will show how those scenarios can

be easily extrapolated to ethnicity bias.

The 4 Scenarios included in FairCVtest were all trained

using the competencies presented on Section 3, with the fol-

lowing particular configurations:

• Scenario 1: Training with Unbiased scores TU , and

the gender attribute as additional input.
• Scenario 2: Training with Gender-biased scores TG,

and the gender attribute as additional input.
• Scenario 3: Training with Gender-biased scores TG,

but the gender attribute wasn’t given as input.
• Scenario 4: Training with Gender-biased scores TG,

and a feature embedding from the face photograph as

additional input.

In all 4 cases, we designed the candidate score predic-

tor as a feedforward neural network with two hidden layers,

both of them composed by 10 neurons with ReLU activa-

tion, and only one neuron with sigmoid activation in the

output layer, treating this task as a regression problem.

In Scenario 4, where the system takes also as input an

embedding from the applicant’s face image, we use the pre-

trained model ResNet-50 [20] as feature extractor to ob-

tain these embeddings. ResNet-50 is a popular Convolu-

tional Neural Network, originally proposed to perform face

and image recognition, composed with 50 layers includ-

ing residual or “shortcuts” connections to improve accu-

racy as the net depth increases. ResNet-50’s last convo-

lutional layer outputs embeddings with 2048 features, and

we added a fully connected layer to perform a bottleneck

that compresses these embeddings to just 20 features (main-

taining competitive face recognition performances). Note

that this face model was trained exclusively for the task of

face recognition. Gender and ethnicity information were

not intentionally employed during the training process. Of

course, this information is part of the face attributes.

Figure 4 summarizes the general learning architecture of

FairCVtest. The experiments performed in next section will

try to evaluate the capacity of the recruitment AI to detect

protected attributes (e.g. gender, ethnicity) without being

explicitly trained for this task.



Figure 4: Multimodal learning architecture composed by a Convolutional Neural Network (ResNet-50) and a fully connected

network used to fuse the features from different domains (image and structured data). Note that some features are included

or removed from the learning architecture depending of the scenario under evaluation.

Figure 5: Validation loss during the training process ob-

tained for the different scenarios.

4.2. FairCVtest: Predicting the candidate score

The recruitment tool was trained with the 80% of the

synthetic profiles (19,200 CVs) described in Section 3.1,

and retaining 20% as validation set (4,800 CVs), each

set equally distributed among gender and ethnicity, using

Adam optimizer, 10 epochs, batch size of 128, and mean

absolute error as loss metric.

In Figure 5 we can observe the validation loss during the

training process for each Scenario (see Section 4.1), which

gives us an idea about the performance of each network in

the main task (i.e. scoring applicants’ resumes). In the first

two scenarios the network is able to model the target func-

tion more precisely, because in both cases it has all the fea-

tures that influenced in the score generation. Note that, by

adding a small Gaussian noise to include some degree of

variability, see Equation (2), this loss will never converge

to 0. Scenario 3 shows the worst performance, what makes

sense since there’s no correlation between the bias in the

scores and the inputs of the network. Finally, Scenario 4
shows a validation loss between the other Scenarios. As we

will see later, the network is able to find gender features

in the face embeddings, even if the network and the em-

beddings were not trained for gender recognition. As we

can see in Figure 5, the validation loss obtained with biased

scores and sensitive features (Scenario 2) is lower than the

validation losses obtained for biased scores and blind fea-

tures (Scenarios 3 and 4).

In Figure 6 we can see the distributions of the scores pre-

dicted in each scenario by gender, where the presence of the

bias is clearly visible in some plots. For each scenario, we

compute the Kullback-Leibler divergence KL(P ||Q) from

the female score distribution Q to the male P as a measure

of the bias’ impact on the classifier output. In Scenarios 1
and 3, Figure 6.a and 6.c respectively, there is no gender

difference in the scores, a fact that we can corroborate with

the KL divergence tending to zero (see top label in each

plot). In the first case (Scenario 1) we obtain those results

because we used the unbiased scores TU during the train-

ing, so that the gender information in the input becomes

irrelevant for the model, but in the second one (Scenario 3)

because we made sure that there was no gender informa-

tion in the training data, and both classes were balanced.

Despite using a target function biased, the absence of this

information makes the network blind to this bias, paying

this effect with a drop of performance with respect to the

gender-biased scores TG, but obtaining a fairer model.

The Scenario 2 (Figure 6.b) leads us to the model with

the most notorious difference between male-female classes



Figure 6: Hiring score distributions by gender for each Scenario. The results show how multimodal learning is capable to

reproduce the biases present in the training data even if the gender attribute is not explicitly available.

Figure 7: Hiring score distributions by ethnicity group

trained according to the setup of the Scenario 4.

(note the KL divergence rising to 0.452), which makes

sense because we’re explicitly providing it with gender in-

formation. In Scenario 4 the network is able to detect

the gender information from the face embeddings, as men-

tioned before, and find the correlation between them and

the bias injected to the target function. Note that these em-

beddings were generated by a network originally trained to

perform face recognition, not gender recognition. Similarly,

gender information could be present in the feature embed-

dings generated by networks oriented to other tasks (e.g.

sentiment analysis, action recognition, etc.). Therefore, de-

spite not having explicit access to the gender attribute, the

classifier is able to reproduce the gender bias, even though

the attribute gender was not explicitly available during the

training (i.e. the gender was inferred from the latent features

present in the face image). In this case, the KL divergence

is around 0.171, a lower value than the 0.452 of Scenario 2,

but anyway ten times higher than Unbiased Scenarios.

Moreover, gender information is not the only sensitive

information that algorithms like face recognition models

can extract from unstructured data. In Figure 7 we present

the distributions of the scores by ethnicity predicted by a

network trained with Ethnicity-biased scores TE in an anal-

ogous way to Scenario 4 in the gender experiment. The

network is also capable to extract the ethnicity informa-

tion from the same facial feature embeddings, leading to an

ethnicity-biased network when trained with skewed data. In

this case, we compute the KL divergence by making 1-to-1
combinations (i.e. G1 vs G2, G1 vs G3, and G2 vs G3) and

reporting the average of the three divergences.



Figure 8: Hiring score distributions by gender (Up) and eth-

nicity (Down) after removing sensitive information from the

face feature embeddings.

4.3. FairCVtest: Training fair models

As we have seen, using data with biased labels is not

a big concern if we can assure that there’s no information

correlated with such bias in the algorithm’s input, but we

can’t always assure that. Unstructured data are a rich source

of sensitive information for complex deep learning models,

which can exploit the correlations in the dataset, and end up

generating undesired discrimination.

Removing all sensitive information from the input in a

general AI setup is almost infeasible, e.g. [12] demon-

strates how removing explicit gender indicators from per-

sonal biographies is not enough to remove the gender bias

from an occupation classifier, as other words may serve as

“proxy”. On the other hand, collecting large datasets that

represent broad social diversity in a balanced manner can be

extremely costly. Therefore, researchers in AI and machine

learning have devised various ways to prevent algorithmic

discrimination when working with unbalanced datasets in-

cluding sensitive data. Some works in this line of fair AI

propose methods that act on the decision rules (i.e. algo-

rithm’s output) to combat discrimination [7, 22].In [30] the

authors develop a method to generate synthetic datasets that

approximate a given original one, but more fair with respect

to certain protected attributes. Other works focus on the

learning process as the key point to prevent biased mod-

els. The authors of [21] propose an adaptation of DANN

[16], originally proposed to perform domain adaptation, to

generate agnostic feature representations, unbiased related

to some protected concept. In [29] the authors propose a

method to mitigate bias in occupation classification without

having access to protected attributes, by reducing the cor-

relation between the classifier’s output for each individual

and the word embeddings of their names. A joint learning

and unlearning method is proposed in [3] to simultaneously

learn the main classification task while unlearning biases by

applying confusion loss, based on computing the cross en-

tropy between the output of the best bias classifier and an

uniform distribution. The authors of [23] propose a new

regularization loss based on mutual information between

feature embeddings and bias, training the networks using

adversarial [18] and gradient reversal [16] techniques. Fi-

nally, in [25] an extension of triplet loss [31] is applied to

remove sensitive information in feature embeddings, with-

out losing performance in the main task.

In this work we have used the method proposed in [25] to

generate agnostic representations with regard to gender and

ethnicity information. This method was proposed to im-

prove privacy in face biometrics by incorporating an adver-

sarial regularizer capable of removing the sensitive infor-

mation from the learned representations, see [25] for more

details. The learning strategy is defined in this case as:

min
w

∑

xj∈S

(L(O(xj |w), T j) + ∆j) (3)

where ∆j is generated with a sensitiveness detector and

measures the amount of sensitive information in the learned

model represented by w. We have trained the face repre-

sentation used in the Scenario 4 according to this method

(named as Agnostic scenario in next experiments).

In Figure 8 we present the distributions of the hiring

scores predicted using the new agnostic embeddings for the

face photographs instead of the previous ResNet-50 embed-

dings (Scenario 4, compare with Figure 6.d). As we can see,

after the sensitive information removal the network can’t

extract gender information from the embeddings. As a re-

sult, the two distributions are balanced despite using the

gender-biased labels and facial information. In Figure 8

we can see the results of the same experiment using the

ethnicity-biased labels (compare with Figure 7). Just like

the gender case, the three distributions are also balanced af-

ter removing the sensitive information from the face feature

embeddings, obtaining an ethnicity agnostic representation.

In both cases the KL divergence shows values similar to

those obtained for unbiased Scenarios.



Table 1: Distribution of the top 100 candidates for each scenario in FairCVtest, by gender and ethnicity group. ∆ = maximum

difference across groups. Dem = Demographic attributes (gender and ethnicity).

Scenario Bias
Input Features Gender

∆
Ethnicity

∆
Merits Dem Face Male Female Group 1 Group 2 Group 3

1 no yes yes no 51% 49% 2% 33% 34% 33% 1%
2 yes yes yes no 87% 13% 74% 90% 9% 1% 89%
3 yes yes no no 50% 50% 0% 32% 34% 34% 2%
4 yes yes no yes 77% 23% 54% 53% 31% 16% 37%

Agnostic yes yes no yes 50% 50% 0% 35% 30% 35% 5%

Previous results suggest the potential of sensitive in-

formation removal techniques to guarantee fair represen-

tations. In order to evaluate further these agnostic repre-

sentations, we conducted another experiment simulating the

outcomes of a recruitment tool. We assume that the final

decision in a recruitment process will be managed by hu-

mans, and the recruitment tool will be used to realize a

first screening among a large list of candidates including

the 4,800 resumes used as validation set in our previous ex-

periments. For each scenario, we simulate the candidates

screening by choosing the top 100 scores among them (i.e.

scores with highest values). We present the distribution of

these selections by gender and ethnicity in Table 1, as well

as the maximum difference across groups (∆). As we can

observe, in Scenarios 1 and 3, where the classifier shows no

demographic bias, we have almost no difference ∆ in the

percentage of candidates selected from each demographic

group. On the other hand, in Scenarios 2 and 4 the impact

of the bias is notorious, being larger in the first one with a

difference of 74% in the gender case and 89% in the eth-

nicity case. The results show differences of 54% for the

gender attribute in the Scenario 4, and 37% for the ethnic-

ity attribute. However, when the sensitive features removal

technique is applied [25], the demographic difference drops

from 54% to 0% in the gender case, and from 37% to 5%
in the ethnicity one, effectively correcting the bias in the

dataset. These results demonstrate the potential hazards of

these recruitment tools in terms of fairness, and also serve

to show possible ways to solve them.

5. Conclusions

We present FairCVtest, a new experimental framework

(publicly available6) on AI-based automated recruitment to

study how multimodal machine learning is affected by bi-

ases present in the training data. Using FairCVtest, we have

studied the capacity of common deep learning algorithms

to expose and exploit sensitive information from commonly

used structured and unstructured data.

The contributed experimental framework includes Fair-

6https://github.com/BiDAlab/FairCVtest

CVdb, a large set of 24,000 synthetic profiles with infor-

mation typically found in job applicants’ resumes. These

profiles were scored introducing gender and ethnicity bi-

ases, which resulted in gender and ethnicity discrimination

in the learned models targeted to generate candidate scores

for hiring purposes. Discrimination was observed not only

when those gender and ethnicity attributes were explicitly

given to the system, but also when a face image was given

instead. In this scenario, the system was able to expose sen-

sitive information from these images (gender and ethnicity),

and model its relation to the biases in the problem at hand.

This behavior is not limited to the case studied, where bias

lies in the target function. Feature selection or unbalanced

data can also become sources of biases. This last case is

common when datasets are collected from historical sources

that fail to represent the diversity of our society.

Finally, we discussed recent methods to prevent unde-

sired effects of these biases, and then experimented with

one of these methods (SensitiveNets) to improve fairness in

this AI-based recruitment framework. Instead of removing

the sensitive information at the input level, which may not

be possible or practical, SensitiveNets removes sensitive in-

formation during the learning process.

The most common approach to analyze algorithmic dis-

crimination is through group-based bias [32]. However, re-

cent works are now starting to investigate biased effects in

AI with user-specific methods, e.g. [4, 34]. Future work

will update FairCVtest with such user-specific biases in ad-

dition to the considered group-based bias.
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