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Abstract

Recently, increasing attention has been drawn to the in-

ternal mechanisms of convolutional neural networks, and

the reason why the network makes specific decisions. In

this paper, we develop a novel post-hoc visual explanation

method called Score-CAM based on class activation map-

ping. Unlike previous class activation mapping based ap-

proaches, Score-CAM gets rid of the dependence on gradi-

ents by obtaining the weight of each activation map through

its forward passing score on target class, the final result

is obtained by a linear combination of weights and activa-

tion maps. We demonstrate that Score-CAM achieves better

visual performance and fairness for interpreting the deci-

sion making process. Our approach outperforms previous

methods on both recognition and localization tasks, it also

passes the sanity check. We also indicate its application as

debugging tools. The implementation is available1.

1. Introduction

Explanations of Deep Neural Networks (DNNs) aid

transparency by exposing some aspect of inference to be

interpreted by a human. Among explanations, visualizing a

certain quantity of interest, e.g. importance of input features

or learned weights, has become the most straight-forward

approach. As spatial convolution is a frequent component

of state-of-the-art models for both image and language pro-

cessing, many methods focus on building better explana-

tions of convolutions and Convolutional Neural Network

(CNNs) specifically: Gradient visualization [15], Perturba-

tion [10], Class Activation Map (CAM) [21] are three of the

widely adopted methods.

Gradient-based methods backpropagate the gradient of a

target class to the input to highlight image region that in-

fluences the prediction. Saliency Map [15] uses the deriva-

1https://github.com/haofanwang/Score-CAM

Figure 1. Visualization of our proposed method, Score-CAM,

along with Grad-CAM and GrdCAM++. Score-CAM shows

higher concentration at the relevant object.

tive of target class score with respect to the input image as

the explanation. Other works [1, 8, 17, 18, 20] build upon

and manipulate this gradient to visually sharpen the re-

sult. These maps are generally of low quality and noisy [8].

Perturbation-based approaches [3, 5, 6, 9, 10, 19] perturb the

original input to observe the change of the prediction of

model. To find minimumal regions, these approaches usu-

ally need additional regularization [6] and are computation-

ally intensive.

CAM-based explanations [4, 12, 21] provide visual ex-

planation for a single input with a linear weighted com-

bination of activation maps from convolutional layers.

CAM [21] creates localized visual explanations but is

architecture-sensitive; a global pooling layer [7] is required.

Grad-CAM [12] and its variations, e.g. Grad-CAM++ [4],

generalize CAM to models without global pooling layers.

In this work, we revisit the use of gradient information in

GradCAM and discuss why gradients may not be an ideal

approach to generalize CAM. Further, to address the lim-

itations of gradient-based variations of CAM, we present

a new post-hoc visual explanation method, named Score-

CAM, where the importance of activation maps is derived



from the contribution of their highlighted input features to

the model output instead of the local sensitivity measure-

ment, a.k.a gradient information. Our contributions are:

(1) We introduce a novel gradient-free visual explana-

tion method, Score-CAM, which bridges the gap between

perturbation-based and CAM-based methods, and derives

the weight of activation maps in an intuitively understand-

able way.

(2) We quantitatively evaluate the generated saliency

maps of Score-CAM on recognition tasks using Average

Drop / Average Increase and Deletion curve / Insertion

curve metrics and show that Score-CAM better discovers

important features.

(3) We qualitatively evaluate the visualization and lo-

calization performance, and achieve better results on both

tasks. Finally, we describe the effective of Score-CAM as a

debugging tool to analyze model problems.

2. Background

Class Activation Mapping (CAM) [21] is a technique

for identifying discriminative regions by linearly weighted

combination of activation maps of the last convolutional

layer before the global pooling layer2. To aggregate

over multiple channels, CAM identifies the importance

of each channel with the corresponding weight at the

following fully connected layer. A restriction of CAM

is that not every model is designed with a global pool-

ing layer and even if a global pooling layer is present,

occasionally fully connected layers follow before soft-

max activation, e.g. VGG [15]. As a generalization of

CAM, Grad-CAM [12] is applicable to a broader range of

CNN architectures without requiring a specific architecture.

Notation A CNN is a function Y = f(X) that takes an

input X ∈ R
d and outputs a probability distribution Y . We

denote Y c as the probability of class c. For a given layer

l, Al denote its activations; if l is a convolutional layer, Ak
l

denotes the activation map for the k-th channel. The weight

of the k-th neuron at layer l connecting two layer l and l+1
is denoted as wl,l+1[k].

Definition 1 (Class Activation Map) Let f be a model

containing a global pooling layer l after the last convolution

layer l − 1 and immediately before the last fully connected

layer l + 1. For a class of interest c, the CAM explanation,

written Lc
CAM is defined as:

Lc
CAM = ReLU

(

∑

k

αc
kA

k
l−1

)

(1)

2Global Maximum Pooling and Global Average Pooling are two possi-

ble implementations but in the original CAM paper it is shown that average

pooling yields better visual explanations.

where

αc
k = wc

l,l+1[k] (2)

wc
l,l+1[k] is the weight of the k-th neuron after the pooling.

The motivation behind CAM is that each activation map

Ak
l contains different spatial information about the input X

and the importance of each channel is the weight of the lin-

ear combination of the fully connected layer following the

global pooling. However, if there is no global pooling layer

or there is no (or more than one) fully connected layer(s),

CAM will not apply due to no definition of αc
k. To resolve

the problem, Grad-CAM extends the definition of αc
k as the

gradient of class confidence Y c w.r.t. the activation map Al.

Formally, we have the following definition for Grad-CAM:

Definition 2 (Grad-CAM) Consider a convolution layer l

in a model f . Given a class of interest c, Grad-CAM,

Lc
Grad−CAM , is defined as:

Lc
Grad−CAM = ReLU

(

∑

k

αc
kA

k
l

)

(3)

where

αc
k = GP

(

∂Y c

∂Ak
l

)

(4)

GP(·) denoted the global pooling operation 3.

Variations of GradCAM, like GradCAM++ [4], differ in

combinations of gradients to represent αc
k. We do not ex-

plicitly discuss the definitions but will include GradCAM++

for comparison.

Using gradient to incorporate the importance of each

channel towards the class confidence is a natural choice and

it guarantees that Grad-CAM reduces to CAM when there is

only one fully connected layer following the chosen layer.

Rethinking the concept of “importance” of each channel in

the activation map, we show that Increase of Confidence

(definition to follow in Sec 3) is a better way to quantify

the channel importance compared to gradient information.

We first discuss some issues regarding the use of gradient to

measure importance then we propose our new measurement

of channel importance in Sec 3.

2.1. Gradient Issue

Saturation Gradient for a deep neural network can be noisy

and also tends to vanish due to saturation in sigmoid or the

flat zero-gradient region in ReLU. One of the consequences

is that gradient of the output w.r.t input or the internal layer

activation may be noisy visually which causes problems in

the plain Saliency Map method [14]. An example of a noisy

gradient is shown in Fig 4.

3In the original Grad-CAM paper, the authors use Global Average Pool-

ing and normalize the α
c

k
to ensure

∑
k
α
c

k
= 1.



Figure 2. (1) – input image, (2)-(4) are generated by masking input

with upsampled activation maps. The weights for activation maps

(2)-(4) are 0.035, 0.027, 0.021 respectively. The values above are

the increase on target score given (1)-(4) as input. As shown in

this example, (2) has the highest weight but causes lower increase

on target score.

False Confidence Lc
Grad−CAM is a linear combination of

each activation map. Therefore, given two activation map

Ai
l and A

j
l , if the corresponding weight αc

i ≥ αc
j , we are

supposed to claim that the input region which generates Ai
l

is at least as important as another region that generates A
j
l

towards target class ‘c’. However, it is easy to find coun-

terexamples with false confidence in Grad-CAM: activation

maps with higher weights show lower contribution to the

network’s output compared to a zero baseline. We randomly

select activation maps and upsample them into the input

size, then record how much the target score will be if we

only keep highlighted region in the activation maps. An ex-

ample is shown in Fig 2. The activation map corresponding

to the ‘head’ part receives the highest weight but cause the

lowest increase on the target score. This phenomenon may

be caused by the global pooling operation on the top of the

gradients and the gradient vanishing issue in the network.

3. Score-CAM: Proposed Approach

In this section, we first introduce the mechanism of pro-

posed Score-CAM for interpreting CNN-based predictions.

The pipeline of the proposed framework is illustrated in Fig

3. We first introduce our methodology is then introduced in

Sec 3.1. Implementation details are followed in Sec 3.2.

3.1. Methodology

In contrast to previous methods [4, 12], which use the

gradient information flowing into the last convolutional

layer to represent the importance of each activation map, we

incorporate the importance as the Increase of Confidence.

Definition 3 (Increase of Confidence) Given a general

function Y = f(X) that takes an input vector X =
[x0, x1, ..., xn]

⊤ and outputs a scalar Y . For a known base-

line input Xb, the contribution ci of xi, (i ∈ [0, n − 1]) to-

wards Y is the change of the output by replacing the i-th

entry in Xb with xi. Formally,

ci = f(Xb ◦Hi)− f(Xb) (5)

where Hi is a vector with the same shape of Xb but for each

entry hj in Hi, hj = I[i = j] and ◦ denotes Hadamard

Product.

Some related work has built similar concepts to Def 3.

DeepLIFT [13] uses the difference of the output given an

input compared to the baseline to quantify the importance

signals propagating through layers. Two similar concepts

Average Drop % and Increase in Confidence are proposed

by GradCAM++ [4] to evaluate the performance of localiza-

tion. We generate Def.3 to Channel-wise Increase of Confi-

dence in order to measure the importance of each activation

map.

Definition 4 (Channel-wise Increase of Confidence (CIC))

Given a CNN model Y = f(X) that takes an input X and

outputs a scalar Y . We pick an internal convolutional layer

l in f and the corresponding activation as A. Denote the

k-th channel of Al by Ak
l . For a known baseline input Xb,

the contribution Ak
l towards Y is defined as

C(Ak
l ) = f(X ◦Hk

l )− f(Xb) (6)

where

Hk
l = s(Up(Ak

l )) (7)

Up(·) denotes the operation that upsamples Ak
l into the in-

put size 4 and s(·) is a normalization function that maps

each element in the input matrix into [0, 1].

Use of Upsampling CIC first upsamples an activation map

that corresponds to a specific region in the original input

space, and then perturbs the input with the upsampled ac-

tivation map. The importance of that activation map is

obtained by the target score of masked input. Different

from [9], where N masks with a size smaller than image

size are generated through Monte Carlo sampling and then

upsampled each mask into input size, CIC does not require

a process to generate masks. On the contrary, each upsam-

pled activation map not only presents the spatial locations

most relevant to an internal activation map, but also can di-

rectly work as a mask to perturb the input image.

Smoothing with Normalization Increase of Confidence es-

sentially creates a binary mask Hi on the top of the input

with only the feature of interest retained in the input. How-

ever, the binary mask may not be a reasonable choice when

we are not interested in one pixel but a specific region in the

input image. Instead of setting all elements to binary values,

in order to a generate smoother mask Hk
L for an activation

map, we normalize the raw activation values in each acti-

vation map into [0, 1]. We use the following normalization

function in the Algorithm 1 of Score-CAM:

s(Ak
l ) =

Ak
l −minAk

l

maxAk
l −minAk

l

(8)

4We assume that the deep convolutional layer outputs have smaller spa-

tial size compared to the input.



Figure 3. Pipeline of our proposed Score-CAM. Activation maps are first extracted in Phase 1. Each activation then works as a mask on

original image, and obtain its forward-passing score on the target class. Phase 2 repeats for N times where N is the number of activation

maps. Finally, the result can be generated by linear combination of score-based weights and activation maps. Phase 1 and Phase 2 shares a

same CNN module as feature extractor.

Finally, we describe our proposed visual explanation

method Score-CAM in Def.5. The complete detail of the

implementation is described in Algorithm 1.

Definition 5 (Score-CAM) Using the notation in Sec 2,

consider a convolutional layer l in a model f , given a class

of interest c, Score-CAM Lc
Score−CAM can be defined as

Lc
Score−CAM = ReLU(

∑

k

αc
kA

k
l ) (9)

where

αc
k = C(Ak

l ) (10)

where C(·) denotes the CIC score for activation map Ak
l .

Similar to [4, 12], we also apply a ReLU to the linear

combination of maps because we are only interested in the

features that have a positive influence on the class of inter-

est. Since the weights come from the CIC score correspond-

ing to the activation maps on target class, Score-CAM gets

rid of the dependence on gradient. Although the last con-

volution layer is a more preferable choice because it is end

point of feature extraction [12], any intermediate convolu-

tional layer can be chosen in our framework.

3.2. Normalization on Score

Each forward passing in neural network is independent,

the score amplitude of each forward propagation is unpre-

dictable and not fixed. The relative output value (post-

softmax) after normalization is more reasonable to mea-

sure the relevance than absolute output value (pre-softmax).

Algorithm 1: Score-CAM algorithm

Input: Image X0, Baseline Image Xb, Model

f(X), class c, layer l

Output: Lc
Score−CAM

initialization;

// get activation of layer l;

M ← [], Al ← fl(X)
C ← the number of channels in Al

for k in [0, ..., C − 1] do

Mk
l ← Upsample(Ak

l )
// normalize the activation map;

Mk
l ← s(Mk

l )
// Hadamard product;

M .append(Mk
l ◦X0)

end

M ← Batchify(M )

//f c(·) as the logit of class c;

Sc ← f c(M)− f c(Xb)
// ensure

∑

k α
c
k = 1 in the implementation;

αc
k ←

exp(Sc
k)∑

k exp(Sc
k)

Lc
Score−CAM ← ReLU(

∑

k α
c
kA

k
l )

Thus, in Score-CAM, we represent weight as post-softmax

value, so that the score can be rescaled into a fixed range.

Because of the varied range in each prediction, whether

or not using softmax makes a difference. An interesting

discovery is shown in Fig 5. The model predicts the input



Figure 4. Visualization results of Vanilla Backpropagation [14], Guided Backpropagation [17], SmoothGrad [16], IntegrateGrad [18],

Mask [6], RISE [9], Grad-CAM [12], Grad-CAM++ [4] and our proposed Score-CAM. More results are provided in Appendix.

Figure 5. Effect of normalization. (2) and (4) are w.r.t ‘boxer

dog’, (3) and (5) are w.r.t ‘tiger cat’. As shown, pre-softmax and

post-softmax show a difference on class discrimination ability. We

adopt post-softmax value in all other section in this paper.

image as ‘dog’ which can be correctly highlighted no matter

which type of score is adopted. But for target class ‘cat’,

Score-CAM highlight both region of ‘dog’ and ‘cat’ if using

pre-softmax logit as weight. On the contrary, Score-CAM

with softmax can well distinguish two different categories,

even though the prediction probability of ‘cat’ is lower than

the probability of ‘dog’. Normalization operation equips

Score-CAM with good class discrimination ability.

4. Experiments

In this section, we conduct experiments to evaluate the

effectiveness of the proposed explanation method. First,

we qualitatively evaluate our approach via visualization on

ImageNet in Sec 4.1, visualization results under noise are

provided in Appendix. Second, we evaluate the fairness of

explanation (how importance the highlighted region is for

model decision) on image recognition in Sec 4.2. In Sec 4.3

we show the effectiveness for class-conditional localization

of objects in a given image. The sanity check is followed

in Sec 4.4. Finally, we employ Score-CAM as a debugging

tool to analyze model misbehaviors in Sec 4.5.

In the following experiments, unless stated otherwise,

we use pre-trained VGG16 network from the Pytorch

model zoo5 as a base model, more visualization results

5https://github.com/pytorch/vision

on other network architectures are provided in Appendix.

Publicly available object classification dataset, namely,

ILSVRC2012 val [11] is used in our experiment. For the

input images, we resize them to (224 × 224 × 3), trans-

form them to the range [0, 1], and then normalize them us-

ing mean vector [0.485, 0.456, 0.406] and standard devia-

tion vector [0.229, 0.224, 0.225]. No further pre-processing

is performed. For simplicity, baseline input Xb is set to 0.

4.1. Qualitative Evaluation via Visualization

We start with qualitative evaluations.

4.1.1 Class Discriminative Visualization

We qualitatively compare the saliency maps produced

by 8 state-of-the-art methods, namely gradient-based,

perturbation-based and CAM-based methods. Our method

generates more visually interpretable saliency maps with

less random noises. Results are shown in Fig 4, more exam-

ples are provided in Appendix. As shown, in Score-CAM,

random noises are much less than Mask [6], RISE [9], Grad-

CAM [12] and Grad-CAM++ [4]. Our approach can also

generate smoother saliency maps comparing with gradient-

based methods.

Figure 6. Class discriminative result. The middle plot is generated

w.r.t ‘bull mastiff’, and the right plot is generated w.r.t ‘tiger cat’.

We demonstrate that Score-CAM can distinguish differ-

ent classes as shown in Fig 6. The VGG-16 model classi-

fies the input as ‘bull mastiff’ with 49.6% confidence and



Table 1. Evaluation results on Recognition (lower is better in Average Drop, higher is better in Average Increase).

Method Mask RISE GradCAM GradCAM++ ScoreCAM

Average Drop(%) 63.5 47.0 47.8 45.5 31.5

Average Increase(%) 5.29 14.0 19.6 18.9 30.6

‘tiger cat’ with 0.2% confidence, our model correctly gives

the explanation locations for both of two categories, even

though the prediction probability of the latter is much lower

than the probability of the former. It is reasonable to expect

Score-CAM to distinguish different categories, because the

weight of each activation map is correlated with the re-

sponse on target class, and this equips Score-CAM with

good class discriminative ability.

Figure 7. Results on multiple objects. As shown in this example,

Grad-CAM only tends to focus on one object, while Grad-CAM++

can highlight all objects. Score-CAM further improves the quality

of finding all evidences.

4.1.2 Multi-Target Visualization

Score-CAM can not only locate single object accurately,

but also show better performance on locating multiple same

class objects than previous works. The result is shown in

Fig 7, Grad-CAM [12] tends to only capture one object in

the image, Grad-CAM++ [4] and Score-CAM both show

ability to locate multiple objects, but the saliency maps of

Score-CAM are more focused than Grad-CAM++.

As the weight of each activation map is represented by its

score on the target class, each target object with a high con-

fidence score predicted by the model can be highlighted in-

dependently. Therefore, all evidences related to target class

can get responses and are assembled through linear combi-

nation.

4.2. Faithfulness Evaluation via Image Recognition

We first evaluate the faithfulness of the explanations gen-

erated by Score-CAM on the object recognition task as

adopted in [4]. The original input is masked by point-

wise multiplication with the saliency maps to observe the

score change on the target class. In this experiment, rather

than do point-wise multiplication with the original gener-

ated saliency map, we slightly modify by limiting the num-

ber of positive pixels in the saliency map (50% of pixels

of the image are muted in our experiment). We follow the

metrics used in [4] to measure the quality, the Average Drop

is expressed as
∑N

i=1
max(0,Y c

i −Oc
i )

Y c
i

× 100, the Increase In

Confidence (also denote as Average Increase) is expressed

as
∑N

i=1
Sign(Y c

i <Oc
i )

N
, where Y c

i is the predicated score for

class c on image i and Oc
i is the predicated score for class

c with the explanation map region as input. Sign presents

an indicator function that returns 1 if input is True. Exper-

iment conducts on the ImageNet (ILSVRC2012) validation

set, 2000 images are randomly selected. Result is reported

in Table 1.

As shown in Table 1, Score-CAM achieves 31.5% aver-

age drop and 30.6% average increase respectively, and out-

performs other perturbation-based and CAM-based meth-

ods by large scale. A good performance on recognition task

reveals that Score-CAM can successfully find out the most

distinguishable region of the target object, rather than just

finding what human think is important. Here we do not

compare with gradient-based methods, because of their dif-

ferent visual properties. Results on recognition task demon-

strates that Score-CAM could more faithfully reveal the de-

cision making process of the original CNN model than pre-

vious approaches.

Furthermore, for a more comprehensive comparison, we

also evaluate our method on deletion and insertion met-

rics which are proposed in [9]. As supplementary to Av-

erage Drop and Average Increase metrics, the deletion met-

ric measures a decrease in the probability of the predicted

class as more and more important pixels are removed, where

the importance of each pixel is obtained from the generated

saliency map. A sharp drop and thus a low area under the

probability curve (as a function of the fraction of removed

pixels) means a good explanation. The insertion metric, on

the other hand, measures the increase in probability as more

and more pixels are introduced, with higher AUC indicative

of a better explanation.

There are several ways of removing pixels from an im-

age [5], all of these approaches have different pros and cons.

Thus, in this experiment, we simply remove or introduce

pixels from an image by setting the pixel values to zero

or one with step 0.01 (remove or introduce 1% pixels of

the whole image each step). Example are shown in Fig 8.

The average result over 2000 images is reported in Table



Table 2. Comparative evaluation on Energy-Based Pointing Game (higher is better).

Grad Smooth Integrated Mask RISE GradCAM GradCAM++ ScoreCAM

Proportion(%) 41.3 42.4 44.7 56.1 36.3 48.1 49.3 63.7

Figure 8. Grad-CAM, Grad-CAM++ and Score-CAM generated saliency maps for representative images with deletion and insertion curves.

In deletion curve, a better explanation is expected to drop faster, the AUC should be small, while in increase curve, it is expected to increase

faster, the AUC should be large.

Table 3. Comparative evaluation in terms of deletion (lower is bet-

ter) and insertion (higher is better) scores.

Grad-CAM Grad-CAM++ Score-CAM

Insertion 0.357 0.346 0.386

Deletion 0.089 0.082 0.077

3, where our approach achieves better performance on both

metrics compared with gradient-based CAM methods.

4.3. Localization Evaluation

In this section, we measure the quality of the generated

saliency map through localization ability. Extending from

pointing game which extracts maximum point in saliency

map to see whether the maximum falls into object bound-

ing box, we treat this problem in an energy-based perspec-

tive. Instead of using only the maximum point, we care

about how much energy of the saliency map falls into the

target object bounding box. Specifically, we first binarize

the input image with the bounding box of the target cat-

egory, the inside region is assigned to 1 and the outside

region is assigned to 0. Then, we point-wise multiply it

with generated saliency map, and sum over to gain how

much energy in target bounding box. We denote this metric

as Proportion =
∑

Lc
(i,j)∈bbox∑

Lc
(i,j)∈bbox

+
∑

Lc
(i,j)/∈bbox

, and call this

metric an energy-based pointing game.

As we observe, it is common in the ILSVRC validation

set that the object occupies most of the image region, which

makes these images not suitable for measure the localiza-

tion ability of the generated saliency maps. Therefore, we

randomly select images from the validation set by remov-

ing images where object occupies more than 50% of the

whole image, for convenience, we only consider these im-

ages with only one bounding box for target class. We ex-

periment on 500 random selected images from the ILSVRC

2012 validation set. Evaluation result is reported in Table 2,

which shows that our method outperforms previous works

by a large scale, more than 60% energy of saliency map

falls into the ground truth bounding box of the target object.

This is also a corroboration that the saliency map generated

by Score-CAM comes with less noises. We don’t compare

with Guided BackProp [17] because it works similar to an

edge detector rather than saliency map (heatmap). In addi-

tion, it should be more accurate to evaluate on segmentation

label rather than object bounding box, we will add it in our

future work.

4.4. Sanity Check

[2] finds that reliance, solely, on visual assessment can

be misleading. Some saliency methods [17] are indepen-

dent both of the model and of the data generating process.



Figure 9. Sanity check results by randomization. The first column

is the original generated saliency maps. The following columns

are results after randomizing from top the layers respectively.

The results show sensitivity to model parameters, the quality of

saliency maps can reflect the quality of the model. All three types

of CAM pass the sanity check.

We adopt model parameter randomization test proposed

in [2], to compare the output of Score-CAM on a trained

model with the output of a randomly initialized untrained

network of the same architecture. As shown in Fig 9, as the

same as Grad-CAM and Grad-CAM++, Score-CAM also

passes the sanity check. The Score-CAM result is sensitive

to model parameter and can reflect the quality of model.

4.5. Applications

A good post-hoc visual explanation should not only tell

where does the model look at, but also help researchers an-

alyze their models. We claim that much previous work treat

visual explanation as a way to do localization, but ignore the

usefulness in helping to analyze the original model. In this

part, we suggest how to harness the explanations generated

by Score-CAM for model analysis, and provide insights for

future exploration.

Figure 10. The left is generated by no-finetuning VGG16 with

22.0% classification accuracy , the right is generated by finetun-

ing VGG16 with 90.1% classification accuracy. It shows that the

saliency map becomes more focused as the increasing of classifi-

cation accuracy.

We observe that Score-CAM can work well on localiza-

tion task even the classification performance of the model

is bad, but as the classification performance improves, the

noise in saliency map decreases and focuses more on im-

portant region. The noise suggests the classification perfor-

mance. This also can work as a hint to determine whether

a model has converged, if the generated saliency map does

not change anymore, the model may have converged.

Figure 11. The left column is input example, middle is saliency

map w.r.t predicted class (person), right is saliency map w.r.t target

class(bicycle).

Besides, Score-CAM can help diagnose why the model

makes a wrong prediction and identify dataset bias. The im-

age with label ‘bicycle’ is classified as ‘person’ in Fig 11.

Saliency maps for both classes are generated. By comparing

the difference, we know that ‘person’ is correlated with ‘bi-

cycle’ because ‘person’ appears in most of ‘bicycle’ images

in training set, and ‘person’ region is the most distractive

part that leads to mis-classification.

5. Conclusion

We proposed Score-Cam, a novel CAM variant, for vi-

sual explanations. Score-CAM uses Increase in Confidence

for the weight of each activation map, removes the depen-

dence on gradients, and has a more reasonable weight rep-

resentation. We provide an in-depth analysis of motiva-

tion, implementation, qualitative and quantitative evalua-

tions. Our method outperforms all previous CAM-based

methods and other state-of-the-art methods in recognition

and localization evaluation metrics. In the future we plan

to explore the connections between weighting methods in

CAM variants.

Acknowledgements Part of the work was done while the

main author visited Texas A&M University. The authors

thank the anonymous reviewers for their helpful comments.

This work was developed in part with the support of NSF

grant CNS-1704845 as well as by DARPA and the Air Force

Research Laboratory under agreement number FA8750-15-

2-0277. The U.S. Government is authorized to reproduce

and distribute reprints for Governmental purposes not with-

standing any copyright notation thereon. The views, opin-

ions, and/or findings expressed are those of the author(s)

and should not be interpreted as representing the official

views or policies of DARPA, the Air Force Research Lab-

oratory, the National Science Foundation, or the U.S. Gov-

ernment.



References

[1] J. Adebayo, J. Gilmer, I. Goodfellow, and B. Kim. Local ex-

planation methods for deep neural networks lack sensitivity

to parameter values. arXiv preprint arXiv:1810.03307, 2018.

[2] J. Adebayo, J. Gilmer, M. Muelly, I. Goodfellow, M. Hardt,

and B. Kim. Sanity checks for saliency maps. In Advances in

Neural Information Processing Systems, pages 9505–9515,

2018.

[3] C.-H. Chang, E. Creager, A. Goldenberg, and D. Duvenaud.

Explaining image classifiers by counterfactual generation.

2018.

[4] A. Chattopadhay, A. Sarkar, P. Howlader, and V. N. Bala-

subramanian. Grad-cam++: Generalized gradient-based vi-

sual explanations for deep convolutional networks. In 2018

IEEE Winter Conference on Applications of Computer Vision

(WACV), pages 839–847. IEEE, 2018.

[5] P. Dabkowski and Y. Gal. Real time image saliency for black

box classifiers. In Advances in Neural Information Process-

ing Systems, pages 6967–6976, 2017.

[6] R. C. Fong and A. Vedaldi. Interpretable explanations of

black boxes by meaningful perturbation. In Proceedings

of the IEEE International Conference on Computer Vision,

pages 3429–3437, 2017.

[7] M. Lin, Q. Chen, and S. Yan. Network in network. arXiv

preprint arXiv:1312.4400, 2013.

[8] D. Omeiza, S. Speakman, C. Cintas, and K. Weldermariam.

Smooth grad-cam++: An enhanced inference level visualiza-

tion technique for deep convolutional neural network mod-

els. arXiv preprint arXiv:1908.01224, 2019.

[9] V. Petsiuk, A. Das, and K. Saenko. Rise: Randomized in-

put sampling for explanation of black-box models. arXiv

preprint arXiv:1806.07421, 2018.

[10] M. T. Ribeiro, S. Singh, and C. Guestrin. Why should i trust

you?: Explaining the predictions of any classifier. In Pro-

ceedings of the 22nd ACM SIGKDD international confer-

ence on knowledge discovery and data mining, pages 1135–

1144. ACM, 2016.

[11] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh,

S. Ma, Z. Huang, A. Karpathy, A. Khosla, M. Bernstein,

et al. Imagenet large scale visual recognition challenge.

International journal of computer vision, 115(3):211–252,

2015.

[12] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam,

D. Parikh, and D. Batra. Grad-cam: Visual explanations

from deep networks via gradient-based localization. In Pro-

ceedings of the IEEE International Conference on Computer

Vision, pages 618–626, 2017.

[13] A. Shrikumar, P. Greenside, and A. Kundaje. Learning im-

portant features through propagating activation differences.

In Proceedings of the 34th International Conference on Ma-

chine Learning-Volume 70, pages 3145–3153. JMLR. org,

2017.

[14] K. Simonyan, A. Vedaldi, and A. Zisserman. Deep inside

convolutional networks: Visualising image classification

models and saliency maps. arXiv preprint arXiv:1312.6034,

2013.

[15] K. Simonyan and A. Zisserman. Very deep convolutional

networks for large-scale image recognition. arXiv preprint

arXiv:1409.1556, 2014.

[16] D. Smilkov, N. Thorat, B. Kim, F. Viégas, and M. Watten-

berg. Smoothgrad: removing noise by adding noise. arXiv

preprint arXiv:1706.03825, 2017.

[17] J. T. Springenberg, A. Dosovitskiy, T. Brox, and M. Ried-

miller. Striving for simplicity: The all convolutional net.

arXiv preprint arXiv:1412.6806, 2014.

[18] M. Sundararajan, A. Taly, and Q. Yan. Axiomatic attribution

for deep networks. In Proceedings of the 34th International

Conference on Machine Learning-Volume 70, pages 3319–

3328. JMLR. org, 2017.

[19] J. Wagner, J. M. Kohler, T. Gindele, L. Hetzel, J. T. Wiede-

mer, and S. Behnke. Interpretable and fine-grained visual

explanations for convolutional neural networks. In Proceed-

ings of the IEEE Conference on Computer Vision and Pattern

Recognition, pages 9097–9107, 2019.

[20] M. D. Zeiler and R. Fergus. Visualizing and understanding

convolutional networks. In European conference on com-

puter vision, pages 818–833. Springer, 2014.

[21] B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, and A. Tor-

ralba. Learning deep features for discriminative localization.

In Proceedings of the IEEE conference on computer vision

and pattern recognition, pages 2921–2929, 2016.


