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Abstract

Monitoring a large active region in the farside of the Sun

is important for space weather forecasting. However, direct

imaging of the farside is currently not available and usually

physicists rely on seismic holography to infer farside mag-

netograms. On other hand, mapping between holography

and magnetic images is non-trivial. In this work, Genera-

tive Adversarial Network (GAN) is used; which consists of

a pyramid of modified pixel2pixel architectures to capture

internal distributions at different scales with higher quality.

Generative model is trained and evaluated using frontside

of Solar Dynamic Observatory (SDO): Atmospheric Imag-

ing Assembly (AIA) and Helioseismic and Magnetic Im-

ager (HMI) magnetograms. Farside solar magnetograms

from Extreme UltraViolet Imager (EUVI) farside data is

also generated. The generative model successfully gener-

ates frontside solar magnetograms and outperforms state-

of-the art method. It also help to monitor the magnetic

changes from farside to frontside using generated solar

magnetograms.

1. Introduction

Active regions in the Sun are areas with strong magnetic

field. They are centers of energetic phenomena (e.g., so-

lar flares and coronal mass ejections); which result electro-

magnetic and particle radiation interfere with telecommuni-

cations and power transmission on the Earth and can cause

significant hazards to astronauts and spacecrafts. This im-

pact on the Earth is predominately due to active regions in

the Sun near hemisphere. However, the Sun rotates and

active regions in the far hemisphere cross into near hemi-

sphere. Therefore, NASA’s twin Solar TErrestrial RElation-

ship Observatory (STEREO) [9] spacecraft had been used

to monitor the entirely of far hemisphere from the farside

of Earth’s orbit. This spacecraft was gradually drifting back

to Earth’s side of its orbit losing its coverage. As a result,

Figure 1. Composite maps of the Sun’s far hemisphere hologra-

phy map (yellow) and near hemisphere (blue gray) show a certain

active region, from http://jsoc.stanford.edu/data/

farside/Phase_Maps/

electromagnetic coverage of the Sun’s far hemisphere is un-

available or incomplete. Therefore, astrophysicists develop

algorithms based on seismic holography to continued moni-

tor the sun far hemisphere. The holography imaging of non-

visible side of the Sun will allow anticipation of the appear-

ance of large active regions more than a week ages ahead

before they rotate to face the Earth [13, 14]. Consequently,

monitoring active regions on the farside of the Sun would

greatly improve long-time forecasting of space weather on

the Earth. However, the quality of both STEREO and

holography images are lower that typical frontside images.

Figure 1 shows farside seismic maps (yellow); which has

lower quality compared to frontside map (blue gray). In

this work, Generative Adversarial Networks (GAN) [5] is

used to predict frontside (blue gray) and then farside solar

image (yellow) with higher quality.

Generative Adversarial Networks (GAN) [5] show re-

markable success in modeling high dimensional distribu-

tion, capturing internal distribution of data with higher qual-

ity. They are used in different tasks such as image-to-image

translation [8, 20], super-resolution [11, 19]. However, cap-

turing distribution of highly diverse data with wide range in

each data sample is still a major challenge and may need

preprocssing/post-processing steps.

In this work, multi-layer conditional generative model
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is used to predict the true distribution of solar image of

frontside and then for farside using PatchGAN [8]. Solar

Dynamic Observatory (SDO) [16] data is used; which con-

sists of a pair of Atmospheric Imaging Assembly (AIA) [12]

and Helioseismic and Magnetic Imager (HMI) [1, 18], to

train generative networks. AIA provides high-resolution

full-disk images of the corona and transition region (chro-

moshpere) of Sun to study the characteristics of the Sun’s

dynamic magnetic field and how the corona respond to

it. HMI provides high-resolution full-disk images of

solar photosphere to study solar oscillations and under-

stand the interior structure of Sun (HMI magnetogram

called line-of-sight magnetic field image); see Section 4.1

for data description. The network is evaluated using

SDO/AIA and SDO/HMI. The model is utilized to predict

HMI magnetic field image of Extreme UltraViolet Imager

(EUVI) [7] data of Solar TErrestrial RElationship Obser-

vatory (STEREO) [9]. STEREO/EUVI image is similar to

SDO/AIA image, but with lower quality. The generator net-

work is a series of generators, which are used to generate so-

lar magnetogram (line-of-sight magnetic field image) from

AIA and then from EUVI data of multi-resolutions. The

discriminator network is also a multi-layer discriminator,

used to distinguish between real pair (e.g, AIA and HMI

magnetogram) and generated pair (AIA and generated HMI

magnetogram).

This work is organized as follow. The related work will

be described in Section 2 and the method in Section 3. Ex-

perimental analysis and results are presented in Section 4.

Summary and future works are highlighted in Section 5.

2. Related Work

Many recent works use multi-scale generative architec-

tures. T. Shaham et. al introduced SinGAN [19]. It is an un-

conditional generative network that can learn from only one

single RGB natural image using a pyramid of fully convo-

lution generative networks, each learns data distribution at

different scale from coarse to fine. It used in various image

manipulation tasks such as super-resolution, paint to image,

harmonization, editing an animation. This method is based

on learning internal structure of one image and can not be

used to have high quality images, but can not be applicable

with complex, diverse and high dimensional data related to

other data (e.g, in geophysical and astrophysical applica-

tions). Emily et. al [4] also used a cascade of convolution

network with a Laplacian pyramid of conditional generative

networks to generate images with higher quality. It is used

in different datasets for fidelity propose.

In astrophysics, Taeyoung at el. [10] used image-to-

image translation conditional generative model [8] to gener-

ate frontside solar magnetograms from SDO [16]/AIA [12]

and then from STEREO [9]/EUVI [7] data. It uses Image-

GAN as a discriminator architecture, that only focuses on

global structure in input image ignoring high-frequencies

structure.

In this paper, the goal is to improve the previous work

using multi-layer conditional generative adversarial model

to capture internal distribution from global to local polarity

structure which is not well generated in previous method.

The generative model consists of hierarchical generators

and discriminators that use PatchGAN classifier to capture

coarse and fine details. Therefore, discriminators classify

overlapping patches and average all outputs.

3. Method

The goal of this work is to capture global and local bipo-

lar structure behind both AIA [12] and EUVI [7] images.

The training step is based on learning internal structure be-

hind AIA [12] image (X) to generate frontside HMI [18]

magnetogram (Ỹ ) based on true frontside HMI magne-

togram (Y ). The generative framework consists of multi-

scale layers, each consists of one generator and discrimina-

tor starting from low-resolution image to higher-resolution

image. All discriminators in all layers use PatchGAN

(Markovian discriminator) [8]; starting from coarsest to

finest patch-size to differentiate hierarchical structure in the

input image (Y ) and predicted image (Ỹ ). The hierarchy of

PatchGAN is applied to capture global structures (e.g., large

polarity structure) in addition to small details (e.g, ting po-

larity structure); each is responsible of capturing the patch

distribution at a different scale. The training samples are

patches, rather than whole images. Figure 2 shows the ar-

chitecture of generative adversarial model.

3.1. Multilayer Architecture

The generative adversarial network consists of a hierar-

chy of generators (G) and discriminators (D):

G = {G0, G1, ..., GM} , (1)

D = {D0, D1, ..., DM} , (2)

Where M is the number of hierarchical layers in the net-

work’s architecture. Each generators Gm at finer scales add

more details, which is not generated by the previous coarser

scale Gm−1. The input data (X,Y ) is a sequence of input

images and their ground-truth images (e.g., AIA and HMI)

in all layers.

(X,Y ) =

m=M−1
∑

m=0

n=N−1
∑

n=0

, (xn
m, ynm), (3)

Where xn
m and ynm are up-sampled version of xn

m−1 and

ynm−1 of sample index n by factor fm = 1/2. Both xm and

ym are up-sampled. To simplify, xn
m, ynm will be referred as

xm, ym.
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Figure 2. Multi-layer architecture. The generative model consists of 3 layers of generators and discriminators. In each layer, generator (G)

learns to generate image sample and discriminator (D) learns to differentiate between true image sample and generated sample. Each x, y

and ỹ present input image, ground-truth and generated images from each layer.

The input of the first generator G0 is input data x0. The

input of other generator Gm are input data xm and gener-

ated image from previous layer ỹm−1 ↑ after up-sampled to

the size of xm:

ỹ0 = G0(x0), (4)

ỹm = Gm(xm, ỹm−1 ↑), (5)

The input of all discriminators Dm is a pair of (xm, ym) and

a pair of (xm, ỹm). The discriminators start with largest

patch size (in D0) to smallest patch size (in DM ) as they

pass though all layers to capture hierarchical structure from

corset to finest details. The patch size of the first discrimi-

nator (D0) equal to fp = 1/2 of the image’s width.

All generators Gm in hierarchical layers have same ar-

chitecture. It use modified version of uNet architecture. It

consists of 6 convolution blocks, which consists of convo-

lution, batch normalization and LeaklyReLU activation. It

also consists of 6 dconvolution blocks, which consists of

dconvolution, batch normalization and ReLU activation in

addition to skip-connection. It starts with 64 filter kernels

of size (4 × 4). All discriminator networks Dm also have

same architectures in all layers. It consisting of 6 convo-

lution blocks, which consists of convolution, batch normal-

ization and LeaklyReLU activation; starting with 64 kernels

of size (4× 4).

3.2. Training

The generative adversarial model is trained starting from

smallest input image x0 and largest patch size. The train-

ing loss of multi-layer architecture comprises of classical

conditional GAN loss:

LcGAN (Gm, Dm) = E(xm,ym) [log(Dm(xm, ym))]

+E(xm,ỹm) [log(1−Dm(xm, ỹm))] ,
(6)

Where Gm minimizes the previous objective function

against adversarial Dm in each layer m. Dm penalizes the

distance between the distribution of ground-truth image ym
and generated data ỹm. Binary cross-entropy and l2 losses

are used as adversarial loss and reconstruction loss in each
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layer to differentiate between y and ỹ with weight λ:

Ll2(Gm) = E(xm,ym)

[

(ỹm − ym)
2
]

, (7)

The final training loss of generative adversarial model can

be presented as:

G⋆ = argmin
Gm

max
Dm

LcGAN (Gm, Dm) + λLl2(Gm), (8)

4. Experiments

4.1. Data

AIA [12] and HMI [18] data are obtained from the

SDO [16] data center (https://sdo.gsfc.nasa.gov/) of Joint

Science Operations Center (http://jsoc.stanford.edu/) with

12-hours cadence. AIA data is generated by AIA instrument

with wavelength 304 angstrom (observing transition region

of solar atmosphere, called chromosphere) with 4096 ×
4096× 1 pixel; each 12 um pixel corresponds to 0.6 arcsec.

HMI data is generated by HMI instrument which is used

to measure line-of-sight magnetic field at the solar photo-

sphere using 6173 magnetogram with 2046×2046×1 pixel;

each 12 um pixel corresponds to 0.5 arcsec. EUVI [7] data

of STEREO B Observatory are obtained from STEREO

Science Center (https://stereo.gsfc.nasa.gov/) with 12-hours

cadence. This data is generated by Sun-Earth-Connection

Coronal and Heliospheric Investigation (SECCHI) instru-

ment with wavelength 304 angstrom with 2048× 2048× 1;

each 12 um pixel corresponds to 1.59 arcsec. The data

is splitted into two parts. The training data comprises of

data between January 2011 and December 2019, excluding

September and October. The testing data comprises of data

from September and October between 2011 and 2019 of

AIA/HMI pairs. To generate farside magnetograms, EUVI

data is only available before 1 October 2014 from January

2010 and doesn’t have ground-truth magnetograms. 4800

pairs of AIA/HMI images are selected to train network and

950 pairs of AIA/HMI images are selected to evaluate gen-

erator. All AIA, HMI and EUVI images are resized using

bi-cubic interpolation into 512× 512× 1. The range values

of AIA between −7.89± 1.29 to 4254.78± 5539.56, HMI

between −4764.16±211.57 to 4764.16±211.57 and EUVI

between 656.8± 1.6 to 13392.8± 3695.36.

4.2. Preprocessing and Experimental Setting

Preprocessing involves four main steps: projection,

masking, linear stretching and normalization. Image pro-

jection is used to align HMI with AIA data and align EUVI

with AIA data. Binary mask is applied to AIA, HMI and

AIA images to remove effects of background pixels by

equalization background pixels to minimum values. Linear

stretching and normalization are used to reduce low contrast

between solar pixels. AIA and EUVI data is normalized us-

ing 98% percentage and HMI data is normalized using z-

scale. Then all images are normalized between -1 and 1 as

inputs to generative networks.

Tanh and sigmoid are used as last activation function of

generator and discriminator, respectively. Adam optimiza-

tion function with learning rate equal 0.0002 and momen-

tum parameter B1 = 0.5 and B2 = 0.999 is applied with

mini-batch SGD. The experiment starts with the weights of

Gaussian distribution with mean 0 and standard deviation

0.02.

The size of the input image of the first generator G0 is

128× 128× 1 (X0), second generator G1 is 256× 256× 1
(X1) and third generator G2 is 512×512×1 (X2). The size

of the input patch of the first discriminator (D0) is 64× 64,

second discriminator (D1) is 32×32 and third discriminator

(D2) is 16× 16. The network is trained for 100000 epochs

with batch size 1. All experiments are run on Nvidia Tesla

V100 GPUs-32 GB with Keras 2 of Tensorflow 1.4.

4.3. Evaluation Metrics

Ground-truth HMI is compared with generated HMI

magnetograms. Some metrics of previous work [10], which

uses image to image translation with conditional GAN [8],

are used to compare the performance with previous one.

Pixel to pixel correlation coefficient (CC), total unsigned

of magnetic flux [15] correlation coefficient (CC), relative

error (R1) of the total unsigned magnetic flux [1] and nor-

malized mean square error (R2) of the magnetic field [1]

between HMI and generated HMI are used. In additional

to previous metrics, the average of root mean squared error

(RMSE) and the structural similarity index (SSIM) [2, 17]

(higher better quality) is used, as shown in Eq. 9. Peak

signal-to-noise ratio (PSNR) [2] (higher better quality) are

also used.

E(y, ỹ) =
RMSE(y, ỹ) + (1− |SSIM(y, ỹ)|)

2
, (9)

4.4. Results

4.4.1 Comparison between the proposed GAN and

previous method

The model is evaluated using a pair of AIA and HMI images

from 2011 to 2019 during September and October. Fig-

ure 3 shows AIA, true HMI, generated HMI from previous

method [10] and generate HMI of the proposed model in the

first, second, third and four row, respectively. It presents so-

lar observations each 2 days at 12:00 UT (Universal Time):

1 September 2017 12:00 UT, 3 September 2017 12:00 UT, 5

September 2017 12:00 UT and 7 September 2017 12:00 UT.

In both cases, bipolar structure is restored; however previ-

ous method does not generate small details and reverses be-

tween magnetic fields around active region (reverses white
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(a) 1 Sept 2017 12 UT (b) Sept 2017 12 UT (c) Sept 2017 12 UT (d) Sept 2017 12 UT
Figure 3. Comparison between HMI and generated HMI magnetograms from AIA 304− Å for 1 September 2017 12:00 UT, 3 September

2017 12:00 UT, 5 September 2017 12:00 UT and 7 September 2017 12:00 UT with 2 days cadence. The input AIA image, HMI, gen-

erated HMI from [10] and generated HMI magnetograms from the proposed model are presented in first, second, third and fourth rows,

respectively.

and back areas in addition to over/under estimation of these

areas). The proposed method detects smaller details in quiet

regions and properly generates polarity patterns in active re-

gions due to hierarchical architecture with increasing image

size and decreasing patch size, which helps to capture dif-

ference in patterns and preserve local and global structures.

The performance of the proposed and previous genera-

tive networks [10] in 950 pairs of AIA and HMI is measured

based on physical properties (e.g., total unsigned magnetic

flux and magnetic field) and image properties (e.g., SSIM

and PSNR) in Table 1. Taeyoung et al. [10] use Image-

GAN of full disk of AIA and HMI images (first column),

as mentioned previously in Section 2. In order to com-

pare with the proposed model, PatchGAN (64 × 64) is ap-

plied to the previous network (second column). PatchGAN

(64 × 64) of multi-layer architecture (third column) and
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Method Taeyoung et. al. Proposed

Image Patch 64× 64 Patch 64× 64 multi-patch

Pixel2Pixel CC 0.85 0.89 0.90 0.94

Total unsigned magnetic flux CC 0.59 0.64 0.75 0.89

Total unsigned magnetic flux-R1 0.091± 0.079 0.080± 0.059 0.070± 0.019 0.050± 0.007
Magnetic field -R2 0.055± 0.005 0.045± 0.005 0.040± 0.032 0.011± 0.007

RMSE-SSIM 0.82± 0.032 0.85± 0.022 0.87± 0.01 0.90± 0.01
PSNR 17.74± 1.19 15.74± 1.19 14.00± 1.21 11.14± 1.21

Table 1. Comparison between previous model [10] and proposed model.

then multiple PatchGAN starting from 64× 64 (fourth col-

umn) are used. It is remarkable that applying PatchGAN

improves the performance of the previous network. Pixel-

to-pixel CC and total unsigned magnetic flux CC of Patch-

GAN are increased from 0.85 and 0.59 to 0.89 and 0.64,

respectively. In addition, errors of unsigned magnetic flux

and magnetic field are reduced by 10% and image qualities

(RMSE-SSIM and PSNR) are improved. These imply that

solar magnetograms are better generated using PatchGAN.

However, using multi-layer architecture with standard patch

size or multiple patch size demonstrates better estimation of

physical properties (higher correction coefficient and lower

error) and higher quality (RMSE-SSIM=0.90 ± 0.01 and

PSNR=11± 1.21) of generated images.

The model is also evaluated using EUVI 304 − Å after

projecting with AIA 304 − Å. Generated magnetograms is

not compared with true magnetograms because farside solar

magnetograms are not available, as mentioned previously in

Section 4.1. Active regions from farside to frontside obser-

vations are temporally monitored each 3 days at 00:00 UT.

Figure 4 shows 2 EUVI images in 14 September 2014 and

17 September 2014 (a and b) and then AIA images in 20

September 2014 and 23 September 2014 (c and d). In both

cases, bipolar patterns around active regions are conserved

and are moved from farside images (a and b) to appear in

frontside images (c and d).

4.4.2 Comparison between ImageGAN and PatchGAN

in multi-layer architectures

Figure 5 shows results of applying ImageGAN and Patch-

GAN. Fig. 5(b) is an output of applying baseline architec-

ture. Fig. 5(c) is an output of applying multi-layer architec-

ture, where the input data of discriminators is image size;

image size is depending in which level in the architecture.

Fig. 5(d) is a result of multi-layer architecture, where the

input data of discriminators is hierarchical patch-size; start-

ing from largest size to smaller size. It is noticed from

(c) and (d) that multi-layer architecture succeeds to restore

most global and small structure. On other hand, generated

HMI magnetograms from ImageGAN (c) miss tiny differ-

ence in bipolar structure around some active regions (white

area (positive magnetic polarity) is underestimated to black

area (negative magnetic polarity) or reverse), which could

be important to study active region properties (e.g, magnetic

flux, current helicity) if it is predicted correctly. White re-

gions present magnetic field pointing out of the Sun, black

regions shows magnetic field pointing into the Sun and ting

flux elements that cover most of gray area are results of

HMI extraordinary capabilities. In general, precisely pre-

diction of ting black and white regions is important because

they are the basis for coronal loop and prominences in the

solar atmosphere (e.g., AIA) and many solar activities (e.g.,

flares and coronal mass ejections) which can effect nega-

tively on the Earth.

4.4.3 Comparison between uNet and other generator

architectures

Multi-layer generative model is evaluated using different

end-to-end architectures as generators. Simplified version

of ResNet [6], encoder-decoder with astrous convolution [3]

and uNet are applied. ResNet network is composed of one

encoder block and five residual blocks and one decoding

block. Each encoding/decoding block consists of convo-

lution/deconvolution, instance-norm, ReLU. Each residual

block consists of convolution, instance-norm, convolution

and instance-norm residual connection. Encoder-decoder

with astrous convolution applies spatial pyramid pooling to

the encoder-decoder architecture. Table 2 illustrates that

encoder-decoder with astrous convolution and ResNet have

better interpretation of physical variables; high correlation

coefficients of pixel2pixel and unsigned magnetic flux with

low error in unsigned magnetic flux and magnetic field. In

addition, they have better image quality (high RMSE-SSIM

and low PSNR). Usually, ResNet network is effective be-

cause of residual connections. On other hand, encoder-

decoder with astrou convolution captures the contextual in-

formation by pooling features at different resolution. In this

case, most active regions (black/white areas from gray area)

have sharp change in magnetic field values from positive to

negative or reverse, where this network can interpret. Mag-

netic flux is a result of multiplying magnetic area (number

of magnetic pixel) with magnetic field; better estimation of
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(a) 14 Sep 2014 00 UT (b) 17 Sep 2014 00 UT (c) 20 Sep 2014 00 UT (d) 23 Sep 2014 00 UT
Figure 4. Comparison between HMI and generated HMI magnetograms from EUVI 304 − Å for 14 September and 17 September 2014

and AIA 304− Å for 20 September and 23 September 2014 with 3 days cadence. The first and second images are EUVI images and third

and fourth images are AIA images in the first row. solar magnetograms from [10] and generated solar magnetograms from the proposed

model are presented in second row and third row, respectively.

(a) AIA (b) HMI (c) HMI-ImageGAN (d) HMI-PatchGAN
Figure 5. Comparison between generated HMI magnetograms after applying ImageGAN and PatchGAN in multi-layer architecture. AIA,

ground-truth HMI, generated HMI of ImageGAN and of PatchGAN are presented in the first, second, third and fourth images, respectively

(23 Oct 2012 12:00 UT).

magnetic field means better estimation of magnetic flux.
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Method Encoder-Decoder with Astrou Convolution ResNet uNet

Pixel2Pixel CC 0.95 0.93 0.94

Total unsigned magnetic flux CC 0.90 0.89 0.89

Total unsigned magnetic flux-R1 0.043± 0.52 0.048± 0.44 0.050± 0.007
Magnetic field -R2 0.021± .32 0.010± 0.23 0.011± 0.007

RMSE-SSIM 0.90± .0.31 0.92± 0.21 0.90± 0.01
PSNR 9± 3.11 8.32± 5.12 11.14± 1.21

Table 2. Comparison between generator’s architecture: encoder-decoder with astrou convolution, ResNet and uNet.

5. Summary and Future Work

In this work, a multi-layer generative model is proposed,

which uses PatchGAN to learn local and global structure

from hierarchical input data. Its ability to generate bipolar

structure of solar magnetograms is demonstrated from

coarsest to finest scale. The goal is to continue this work

to reproduce physical variables by using synthetically

generated images. The proposed model is trained and

evaluated for 24th solar cycle (12-hours cadence :00 UT

and 12 UT). It may more effective to train each 3, 6 or 9

hours cadence (odd solar cycle) and evaluate for different

cycle 4 ,8 or 12 hours cadence (even solar cycle). This

work shows image-to-image translation between different

sensors. The AIA image instrument provide imaging

observations of solar photosphere, chromosphere and

corona in 2 Ultraviolet and 7 Extreme Ultraviolet channels

(e.g., AIA 171 − Å, AIA 192 − Å, AIA 211 − Å); each

presents a certain wavelength. This work can be extend to

include observations with various wavelengths to improve

fidelity of other observations in active regions (e.g., AIA

211 − Å and AIA 335 − Å) and consequently reproduce

physical variables by using generated images.
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