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Abstract

High-resolution satellite imagery is critical for vari-

ous earth observation applications related to environment

monitoring, geoscience, forecasting, and land use analy-

sis. However, the acquisition cost of such high-quality im-

agery due to the scarcity of providers and needs for high-

frequency revisits restricts its accessibility in many fields. In

this work, we present a data-driven, multi-image super res-

olution approach to alleviate these problems. Our approach

is based on an end-to-end deep neural network that consists

of an encoder, a fusion module, and a decoder. The encoder

extracts co-registered highly efficient feature representa-

tions from low-resolution images of a scene. A Gated Re-

current Unit (GRU)-based module acts as the fusion mod-

ule, aggregating features into a combined representation.

Finally, a decoder reconstructs the super-resolved image.

The proposed model is evaluated on the PROBA-V dataset

released in a recent competition held by the European Space

Agency. Our results show that it performs among the top

contenders and offers a new practical solution for real-

world applications.

1. Introduction

Enhancing the quality of aerial and satellite imagery

is one of the most prominent and challenging problems

in remote sensing. The processes behind the acquisition

pipelines that determine the quality of the imagery rely

heavily on the quality of the sensors themselves, whether

electro-optical, radar, or laser-based. High-precision sen-

sors which can observe the earth with high resolution have

historically been very expensive despite regular advances

in technology over the past few decades. Recently, the

availability of low-cost, low-resolution imagery provided

by commercial space industries is exploding due to the de-

ployment of new satellite constellations [39]. While these

offer very interesting perspectives in terms of revisit fre-

quency and coverage, there is a detachment between their

capabilities and the current need for high-resolution im-

agery.

In this work, we present a super-resolution method based

on a neural architecture to enhance the quality of satellite

imagery. Our data-driven technique can potentially help

bridge the gap between the needs for low-cost and high-

resolution data using already existing acquisition capabil-

ities. We approach the super-resolution problem from the

image reconstruction perspective which aims at generat-

ing a high-resolution image based on one or more low-

resolution images. Super-resolution in the special case of

remote sensing has two important particularities that we can

highlight:

1. Variety of data sources. Although high-resolution

data sources are expensive, these can still be used in

parsimony for the validation of enhancement meth-

ods. On the other hand, low-resolution data are plen-

tiful and sometimes even publicly available at no

cost. However, these may involve different acquisi-

tion sources, locations, or times, and may thus require

special care in the way they are combined for super-
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resolution purposes.

2. Data misalignment and pixel-level inconsistencies.

Satellite imaging systems typically orbit the earth with

pre-defined speeds and paths. Pixel-level inconsisten-

cies can however still occur even with a well-calibrated

system, and sub-pixel registration is often a necessary

processing step for applications using several images

at once. On the other hand, evolving land use and cli-

mate phenomena can have an impact on the similarity

between images of the same region even if calibration

issues are taken into account.

Modern super-resolution solutions have to take these con-

siderations into account in order to achieve practical results.

Recent advances in deep learning have offered numerous

new avenues for the single-image super-resolution (SISR)

problem [8, 9, 37, 41, 26]. Most works related to SISR

rely on neural networks to learn complex hierarchical rep-

resentations for different versions of an observed region at

varying resolutions. These representations are used to re-

construct high-quality images from low-quality ones based

on the high-level understanding of the observed scene’s un-

derlying phenomena. The one-to-one mapping (in terms of

inputs-to-ouputs) of the SISR approach may however hinder

the quality of the reconstruction due to the low amount of

information present in the original image. As a result, SISR

solutions may lead to the “hallucination” of high-resolution

details based on their training bias. In such cases, fake pat-

terns with no discernible link to the input image may ap-

pear in the observed scene depending on the requested out-

put resolution. This possibility may be cause for concern

in applications that could lead to the misguidance of scien-

tists or decision makers. A simple solution to this problem

is to increase the amount of input information by instead

using multiple low-resolution images at once. This tech-

nique is called multi-image super-resolution (MISR). The

challenge for MISR approaches then becomes information

fusion (or registration) due to the noisy nature of the imag-

ing process. In general, MISR is capable of more accurate

high-resolution reconstructions than SISR as it aggregates

more information extracted from multiple views of the tar-

get region [22].

Image enhancement with the MISR approach is espe-

cially well suited for remote sensing for two major reasons.

First, as mentioned earlier, it is fairly easy to obtain mul-

tiple low-resolution satellite images and a handful of high-

resolution ones for the proper evaluation of the reconstruc-

tion of specific regions. Second, the use of multiple low-

resolution images can alleviate some of the issues caused

by misalignments and pixel-level inconsistencies through

information fusion. In reality, atmospheric turbulence and

sensor noise may even help regularize the information fu-

sion process in a natural way.

Our solution tackles the MISR problem in an end-to-

end fashion using a neural network-based model which we

call MISR-GRU. Our processing pipeline is composed of

three stages: we first encode the input low-resolution im-

ages into a set of low-resolution feature maps. Then, these

are fused using a recurrent structure to obtain a combined

scene representation. Finally, we decode this scene repre-

sentation into a single high-resolution image. In the first

stage, we choose a reference image to implicitly co-register

the low-resolution information in the encoding space. In

the second stage, we use a Convolutional Gated Recurrent

Unit (ConvGRU) [1] model to fuse multiple low-resolution

feature maps by capturing within-and-across-view relation-

ships. In the third stage, we employ deconvolution lay-

ers [48] to reconstruct a high-resolution image from the

fused feature maps. Our contributions mainly lie in the uni-

fied end-to-end architecture we propose. More specifically:

1. We formulate a feature encoding strategy which ex-

tracts effective features and acts as an implicit co-

registration of low-resolution (LR) views in the em-

bedding space.

2. We propose an efficient information fusion approach

based on a Recurrent Neural Network (RNN) architec-

ture: ConvGRU. This architecture can examine corre-

lations between features within-and-across views ob-

tained from a variable-length sequence of input low-

resolution images.

3. We evaluate our solution on real-world imagery

collected by the European Space Agency (ESA)’s

PROBA-V satellite. Our results demonstrate the

proposed architecture’s competitive performance on

the ESA’s Advanced Concepts Competition portal,

Kelvins1, in comparison with other state-of-the-art so-

lutions.

The rest of the paper is organized as follows: Sec-

tion 2 reviews relevant works and image super-resolution

techniques, Section 3 describes the proposed MISR-GRU

model architecture, Section 4 presents our results as ob-

tained from the Kelvins portal, and Section 5 concludes

with an overview.

2. Related Work

Single Image Super Resolution. The recent advances

in deep learning have provided a considerable number of

new ideas to tackle the super-resolution problem. One of

the early models for SISR was proposed by Dong et al. [8]:

they proposed using an approximate mapping from low-

resolution features to high-resolution ones based on three-

layer Convolutional Neural Networks (CNNs). Motivated

1https://kelvins.esa.int/



by this work, several other authors proposed to adapt other

deep learning architectures like RNNs [40, 10, 28], Resid-

ual CNNs [17], and GANs [15] to tackle SISR. Among

them, Ledig et al. [26] introduced a ResNet-inspired archi-

tecture, “SRResNet”, which preserves batch normalization

inside the original residual blocks. This allows their model

to require significantly less memory and allows the adapta-

tion of several ideas introduced for image de-blurring [33].

Similarly, Lim et al. [29] proposed a new type of resid-

ual block by removing batch normalization and proposing

their own type of residual (or “skip”) connection. Skip con-

nections in general are quite beneficial for CNNs as they

constrain a layer to only learn the residual between its in-

put and output [17]. The DenseNet architecture proposed

by Huang et al. [18] is also based on this idea, and was

adapted for SISR by Tong et al. [42]. More recently, Gao et

al. [14] proposed Multi-scale Deep Neural Networks (Ms-

DNNs) to tackle high-resolution image reconstruction when

the up-scaling factors of image pairs are unknown and dif-

ferent from each other. In their solution, they reconstruct

the details of an image by employing Multi-scale Residual

Networks (MsRNs) in the downscaling spaces based on the

residual blocks.

Multi Image Super Resolution. As detailed earlier,

MISR approaches aim to reconstruct hidden high-resolution

details using multiple low-resolution observations of the

same scene. In contrast with SISR which has been exten-

sively studied in the deep learning literature, MISR has seen

slower progress due to the need to address the additional

challenges of co-registration and information fusion. MISR

faces the fundamental problem of de-aliasing, i.e. disen-

tangling high-frequency artifacts caused by low-resolution

sampling under varying phases [43]. The seminal work

of Tsai et al. [43] reformulated this task through the co-

registration of low-resolution images in the frequency do-

main. Over the years, other image registration and data

fusion techniques [20, 12, 2] were introduced that also fo-

cused on the reconstruction of high-frequency details lost

in the image acquisition process. In addition to these prob-

lems, MISR approaches must often address almost-random

inconsistencies in images that increase the complexity of

their registration. These inconsistencies include, for exam-

ple, geometric distortions, blur, and pixel noise. Results can

be improved by assuming that prior knowledge on these is-

sues are being used at evaluation time [36]. Many mod-

ern optimization-based approaches to MISR build a gen-

erative model that, given a high-resolution image, simu-

lates the acquisition of low-resolution images. An initial

guess for the high-resolution image is then improved by

minimization of the error between simulated and ground-

truth low-resolution images. To reduce the parameter search

space and to derive objective functions, these methods com-

monly model additive noise and prior knowledge about

the acquisition process explicitly, using e.g. Tikhonov

regularization [34], Huber potential [36] or Total Varia-

tion [11, 45]. When image degradation processes are too

complex or unknown, non-parametric strategies become

more interesting. High-resolution details can be for exam-

ple reconstructed using a patch-based approach. These de-

tails can be inferred using sparse coding or sparse dictionary

methods [23, 49, 47], or simply using k-nearest neighbor

search [13, 3].

Recently, deep learning techniques have been applied to

address the MISR problem in an end-to-end learning frame-

work. Kawulok et al. [22] proposed a deep learning method

for video image super-resolution for natural images which

apply shift-and-add strategy for fusion without any image

registration. For satellite image MISR of PROBA-V com-

petition, DeepSUM [30] method is proposed which uses

a convolutional neural network (CNN) architecture to reg-

ister and fuse multiple unregistered LR images from the

same scene. Moreover, another solution named HighRes-

net [7] from the same competition uses a CNN-based model

to solve registration problem implicitly and merge the LR

view in a recursive way. We briefly summarize some meth-

ods of interest that we compare our results to in Section 4.2.

3. Model

We formulate our proposed architecture and model

around the task of MISR for satellite imagery for applica-

tions related to land cover and vegetation growth monitor-

ing. Our primary goal is to offer a solution to the issue of the

multiple-to-one mapping of MISR and support a variable

number of LR images as input. We also wish to offer an in-

telligent end-to-end design that can tackle various types of

pixel-level inconsistencies automatically. Accordingly, this

section introduces our MISR-GRU architecture.

3.1. Problem Formulation

Let us denote by θ, α, and β the parameters of our En-

coder, Fusion, and Decoder modules (respectively), and γ

is the (up-)scaling factor. We define the ith LR image of a

scene as li ∈ Rc×h×w. Here, c, h, and w are the (channel-

wise) depth, height, and width of the input LR image, re-

spectively. For our evaluation, c is 1 and γ is 3. We de-

note the ground-truth high-resolution (HR) image for the

same scene as H ∈ R
c×γh×γw. The predicted output of our

model is denoted by Ĥ = F
γ

(θ,α,β)({l1, . . . , lK}), where K

is the number of LR views of a scene.

An overview of our model is shown in Figure 1. It can

be split into three modules (left to right): 1) Encoder, which

encodes relevant features from the low-resolution images

into latent representations; 2) Fusion Module, which merges

the latent representations across the set of input images; and

3) Decoder, which reconstructs the target high-resolution
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Figure 1. Architectural overview of the proposed MISR-GRU.

image. Each module is described in the following subsec-

tions.

3.2. Encoder

MISR approaches assume that the low-resolution image

sets that are provided as input contain more information

than any of such image alone. To exploit this information,

the model has to be robust against uncontrolled factors such

as blurriness or distortions. In our specific problem formu-

lation, we do not assume that the images of a common scene

are already co-registered. Deep learning approaches have

been introduced already to tackle the generic image regis-

tration problem with respect to a reference image [27]. We

follow a similar strategy and use a reference image, noted

q ∈ Rc×h×w, as an auxiliary representation of our inputs.

This reference image is obtained by computing the pixel-

wise median value of several input images in a way similar

to the technique of [7]. We concatenate the intermediate

feature representations of reference image with the feature

representations of each of the LR images so that the net-

work figures out the co-registration implicitly with respect

to the reference image representations.

We show in Figure 2 a symbolic view of our Encoder

module.

Given the input tensors (li)
K
i=1, and q, the network

is trained to produce feature representations, denoted by

(ri)
K
i=1. To obtain these representations, we first embed

li and q using Unit1. This produces two feature maps,

l
′

i ∈ R64×h×w and q′ ∈ R64×h×w respectively. Then l
′

i is

concatenated with q′ and passed through Unit2. The result

is a co-registered feature map ri ∈ R64×h×w. The Unit1

and Unit2 consist of two convolutional layers and two resid-

ual blocks [17] each. This type of block layout is inspired

by [21] and combines two convolutional layers and activa-

tion functions without any batch-normalization layer. For

li

Unit1

q

Unit1

Cat

Unit2

ri

Figure 2. Overview of an encoder module.

all the convolutions, we use 3x3 kernels with feature map of

64, and for the activations, we use Parametric ReLU [16].

Formally, the feature representations (ri)
K
i=1 are computed

using

q′ = Unit1(q), (1)

l′i = Unit1(li), (2)

ri = Unit2([l′i, q
′]), (3)

where we represent the concatenation operation between

two tensors A and B as [A,B].

3.3. Fusion Module

As mentioned earlier, many image fusion techniques for

MISR rely on weighted average [4, 25] or directly apply

CNNs on the stacked images [19]. In contrast, RNNs are



generally designed for modeling sequential data. Although

our problem is not truly sequential in nature, we can still

consider the set of input low-resolution images as a se-

quence. A direct advantage of this strategy is the possibility

of processing sets of any size, while still being able to model

within-and-across-view relationships between images of the

input set. The ConvGRU model [1] is an extension of the

GRU block introduced in [5] in which fully-connected lay-

ers are replaced with convolutional layers both in the input-

to-state and state-to-state connections. The hidden state ht

of the ConvGRU is recurrently connected to its sequential

neighbors. It is updated by convolution from the input fea-

ture map xt and the previous hidden state ht−1 as follows:

ut = σ(Wi ∗ [xt, ht−1] + bi)

rt = σ(Wj ∗ [xt, ht−1] + bj)

ct = tanh(Wh ∗ [xt, rt ⊙ ht−1] + bh

ht = (1− ut)⊙ ht−1 + ut ⊙ ct

Here, W. and b. are convolution kernels and biases re-

spectively. ∗ and ⊙ are the convolution and element-wise

multiplication operators, respectively.

Each convolutional transition is defined using 2-D ker-

nels that represent the receptive fields of ht’s hidden units

in the input xt and in the previous hidden state ht−1.

In formal terms, ConvGRU acts as the fusion network

fα : R
K×64×h×w → R

K×C
hGRU×h×w that converts K

input representations (ri)
K
i=1 to K hidden representations

(hGRU
i

)K
i=1

. Then, global average pooling (GAP) is used on

the sequence dimension to return a fixed-size representa-

tion havg ∈ R
C

hGRU ×W×H . The fusion network fα can be

stacked as necessary to obtain more complex features that

cover a wider receptive field in the input images. In that

case, we denote the embeddings for L levels of convolution

layers as h
GRU(l)

with l = 1, · · · , L. In any case, the K

different representations (ri)
K
i=1 obtained from the encoder

are used to initialize the first level of the fusion network.

More specifically,

(hi)
K

i=1
= (hGRU

i

(L)
)K
i=1

= fα(r1, · · · , rK) (4)

havg = GAP(h1, . . . , hK) (5)

For our own experiments, we set L to 2 and ChGRU to

64.

3.4. Decoder

The role of the decoder is simply to upsample the com-

bined representations havg obtained by averaging the Conv-

GRU hidden states into a tensor Ĥ the size of the target

high-resolution image H . Formally, Ĥ is computed via

Ĥ = decoder
γ
β(havg) ∈ R

c×γh×γw. (6)

The decoding network itself consists of a deconvolution

layer [48] and a 1×1 convolution layer. The deconvolution

layer is useful here as it increases the accuracy and the train-

ing speed of this final stage of our proposed architecture, as

reported in [9, 38, 44]. We used 3×3 kernels, 64 features

maps, a stride of 3, and Parametric ReLU as the activation

function.

Finally, an ultimate 1 × 1 convolution layer is used

to project the decoder’s output feature map of dimen-

sions R64×γh×γw into the target image space of dimension

R
c×γh×γw.

3.5. Target Image Registration

The super-resolution image Ĥ generated by the pro-

posed MISR-GRU model may be shifted with respect to

the ground-truth high-resolution image H due to misalign-

ments in the image calibration process. Training without

trying to account for this issue results in blurry reconstruc-

tions. To compensate for this issue, we rely on the ShiftNet

strategy of [7] which is inspired by the idea of Deep Homog-

raphyNet[6]. In short, ShiftNet warps the predicted image

based on deep learning based estimation of translation pa-

rameters so that it fits with the target high-resolution image

during training. At evaluation time, the direct output of the

MISR-GRU model is reconstructed as-is without warping.

3.6. Loss Function

The typical way to formulate the super-resolution train-

ing objective is to minimize the reconstruction error be-

tween the target high-resolution image and the model’s pre-

diction. In this spirit, the Mean Squared Error (MSE) is

commonly used in practice due to its interpretability and ef-

fectiveness [45]. Measuring the Peak Signal-to-Noise Ratio

(PSNR) can also give a good idea of a model’s performance.

However, both the PSNR and MSE are sensitive to biases in

brightness. In concordance with the evaluation guidelines

of the challenge dataset (detailed in the next section), we

opt to use a corrected metric for our loss function. We settle

on a variant of the MSE called the corrected MSE (cMSE)

which equalizes the brightness in both predicted and target

images. The cMSE is defined by the following equations

b =
1

|S|

∑

(

(H − Ĥ) · S
)

, (7)

cMSE(H, Ĥ) =
1

|S|

∑

(H − Ĥ + b)2, (8)

where b is the brightness bias (a scalar), S is the binary map

which indicates clear pixels in H , and where the images

H and Ĥ are both normalized to the [0, 1] range. We can

then calculate the corrected PSNR (cPSNR) from the cMSE

using



cPSNR(H, Ĥ) = −10× log10(cMSE(H, Ĥ)). (9)

Finally, to define a loss function to minimize, we use the

negative cPSNR:

loss(H, Ĥ) = −cPSNR(H, Ĥ) (10)

4. Results

Our training and evaluation dataset is composed of im-

ages collected by the PROBA-V earth observation satel-

lite. The dataset was released as part of a super-resolution

competition held by ESA’s Advanced Concepts Team in

2019 [31]. The imagery consists of red and Near InfraRed

(NIR) spectral bands with 14-bit depth. The low-resolution

images were prepared with a shape of 128×128 pixels while

the high-resolution (target) images contained 384×384 pix-

els, meaning the (up-)scaling factor γ is exactly 3. In terms

of ground resolution, each pixel corresponds to 300m and

100m in the low-resolution and high-resolution images, re-

spectively. The image patches are provided with a binary

mask that indicates the quality/status of each pixel. This

mask identifies areas with clouds, water, shadows, or other

uncontrolled pixel-wise inconsistencies. The dataset con-

tains a total of 1450 target regions; of these, 1160 were pre-

selected for training and 290 were reserved for testing. Each

region is covered with an average of 19 low-resolution im-

ages, with a minimum of 9. An example of low-resolution

patches, reconstructed SR image by MISR-GRU, and a high-

resolution crop is shown in Figure 3.

4.1. Performance Score Calculation

The full methodology for the calculation of a method’s

performance score is detailed on the Kelvins portal2. This

methodology slightly compensates for image misalign-

ments by looking for the best super-resolution results under

a set of limited 2D pixel shifts 〈u, v〉 ∈ C. The methodol-

ogy also returns a normalized score that relates how well a

method performs in comparison to a simple baseline (based

on bi-cubic interpolation). Formally, given cPSNR∗(H) the

cPSNR obtained by the baseline for a high-resolution image

H , the score of a method is given as

z(Ĥ) = max
〈u,v〉∈C

cPSNR∗(H)

cPSNR(H〈u,v〉, Ĥ)
, (11)

where H〈u,v〉 is the target high-resolution image H shifted

in 2D space by 〈u, v〉 pixels. Lastly, the overall score of

a submission is obtained by averaging all its z(Ĥ) scores

over all test regions.

2https://kelvins.esa.int/proba-v-super-resolution/

scoring/

4.2. Experimental Setup

Our model was implemented in PyTorch [35] and made

publicly available3. The model was optimized end-to-end

using Adam [24] starting with an initial learning rate of

0.0007 and gradual learning rate decay with a factor of 0.97

whenever the validation score plateaued for more than 2

epochs. We trained the model for 400 epochs with a batch

size of 16. The training process took roughly 13 hours on a

NVIDIA Titan RTX with memory of 24GB. During infer-

ence our model can super-resolve around 14 scenes per sec-

ond in the same GPU if each scene is processed individually

without batching. Because of the memory constraint and

to improve generalization by data augmentation, we trained

our model with randomly cropped 64 × 64 LR and corre-

sponding 192 × 192 HR patches. As our model is fully

convolutional, at test time we feed full LR images of spa-

tial size 128 × 128 as input. MISR-GRU has around 0.9M

parameters. Table 2 gives an overview of the architecture.

We compare our results with those of numerous methods

taken from the literature or proposed by the ESA for the

competition. These are briefly summarized below:

• ESA Baseline: computes the average of most clear

low-resolution images and upsamples the result using

bicubic interpolation.

• FSRCNN-8 [9]: independently computes a high-

resolution version of 8 low-resolution inputs using FS-

RCNN and averages them into a final prediction.

• SRResNet-1 [26]: finds the most clear low-resolution

input image based on binary status map which indi-

cates the clear pixels and upsamples it using the SR-

ResNet based SISR approach.

• SRResNet-1 + ShiftNet: same as above, but registers

the most clear low-resolution image with the ground-

truth during training using ShiftNet.

• SRResNet-6 + ShiftNet: same as above, but applied

to six independent low-resolution images. The results

are also averaged into a final prediction.

• DeepSUM [32]: this is actually a variant of the

SRResNet-6 + ShiftNet approach where several low-

resolution images are independently upsampled and

gradually merged back into the final prediction.

• ACT [30]: concatenates 5 low-resolution images

channel-wise as input and uses a CNN to upsample

them directly.

• HighResNet [7]: co-registers up-to 32 low-resolution

images with a reference image and learns feature rep-

resentations that are recursively fused together. The

3https://github.com/rarefin/MISR-GRU



Figure 3. Example of a candidate region for super-resolution: a) overlapping low-resolution input images, b) reconstructed super resolution

image by MISR-GRU, c) target high-resolution image.

Table 1. PROBA-V super-resolution evaluation scores

Method Public score

SRResNet-1 [26] 1.0095

SRResNet-1 + ShiftNet 1.0002

ESA Baseline 1.0000

FSRCNN-8 [9] 0.9927

ACT [30] 0.9874

SRResNet-6 + ShiftNet [46] 0.9808

ConvGRU-24 (ours) 0.9808

ConvGRU-9 + ShiftNet (ours) 0.9776

ConvGRU-13 + ShiftNet (ours) 0.9757

ConvGRU-24 + ShiftNet (ours) 0.9581

ConvGRU-24⋆ + ShiftNet (ours) 0.9502

HighResNet [7] 0.9496

DeepSUM [32] 0.9488

MISR-GRU (ours) 0.9484

high-resolution image is generated and aligned using

ShiftNet.

The performance of the model depends on the number of

LR views, co-registration of them with respect to the refer-

ence view, and registration of reconstructed super-resolved

image. The model should also ideally be permutation in-

variant, i.e. the fusion result should not depend on the or-

der in which LR images are processed. To prevent over-

fitting and to encourage permutation invariance, we ran-

domly select a subset of LR images. For configurations

ConvGRU-24 + ShiftNet, ConvGRU-24⋆ + ShiftNet and

MISR-GRU we use the random selection introduced in [7],

which prefers those views with low amounts of occlusion.

For other configurations, all LR views are equally likely to

be drawn. We summarize the different network architecture

configurations used in our experiments below:

• ConvGRU-24: uses a sequence of up-to 24 low-

resolution images as input and reconstructs a high-

resolution image from the last hidden state represen-

tation of the ConvGRU.

• ConvGRU-9 + ShiftNet: same as ConvGRU-24 using

9 input images, but also registers the reconstructed out-

put with the target image during training using Shift-

Net.

• ConvGRU-13 + ShiftNet: same as ConvGRU-9 +

ShiftNet using 13 input images.

• ConvGRU-24 + ShiftNet: same as ConvGRU-24 ex-

cept that it also uses ShiftNet for registration of the

output with the target and the random selection of LR

views as in [7].

• ConvGRU-24⋆ + ShiftNet: same as ConvGRU-24 +

ShiftNet, but in addition using the co-registration with

a reference image described in Section 3.2.

• MISR-GRU: described in Section 3 uses up-to 24 LR

images.



Table 2. MISR-GRU Configuration & Parameters

Modules
Sub-

modules
Blocks Layers

Input

Channels

Output Configuration

(kernel, filters,

stride, padding)

Number of

Parameters

Conv2d 1 3×3, 64, s1, p1 640

PReLU 1

Unit1 ResidualBlocks









Conv2d

PReLU

Conv2d

PReLU









× 2









64

64









× 2









3×3, 64, s1, p1

3×3, 64, s1, p1









× 2









36928

1

36928

1









× 2

Conv2d 64 3×3, 64, s1, p1 36928

Encoder Conv2d 128 3×3,64,s1,p1 73792

PReLU 1

Unit2 ResidualBlocks









Conv2d

PReLU

Conv2d

PReLU









× 2









64

64









× 2









3×3, 64, s1, p1

3×3, 64, s1, p1









× 2









36928

1

36928

1









× 2

Conv2d 64 3×3, 64, s1, p1 36928

Fusion

Module

ConvGRU

Levels





Conv2d

Conv2d

Conv2d



 × 2





128

128

128



 × 2





3×3, 64, s1, p1

3×3, 64, s1, p1

3×3, 64, s1, p1



 × 2





73792

73792

73792



 × 2

ConvTranspose2d 64 3×3, 64, s3, p0 36928

Decoder PReLU 1

Conv2d 64 1×1, 1, s1, p0 65

923468 (total)

4.3. Discussion

Table 1 lists the PROBA-V super-resolution challenge

performance scores for our different configurations as well

as the competing and baseline solutions.

We can first observe that the use of a registration tech-

nique in the super-resolution process is quite beneficial

across the views. The co-registration of LR images im-

plicitly with respect to a reference image and registration

of reconstructed super resolved images with respect to the

ground-truths before calculating loss significantly improves

overall performance. We also found that use of more LR

images is beneficial (but we observed that the images need

to generally be as clear as possible). For example, us-

ing 13 images as input seemed to beat the configuration

that used 9 in combination with ShiftNet, however, more

LR images don’t help, if the super resolved image is not

registered (ConvGRU-24). MISR-GRU make use of up-to

24 low-resolution images and implicitly co-register them,

ConvGRU based fusion strategy and registration of super-

resolution image using ShiftNet and performs as one of the

top scorers.

We also observed in that if images were affected by un-

masked inconsistencies such as clouds, smoke, or shadows,

the reconstruction process was often misdirected. Incorpo-

rating metadata in the form of acquisition parameters (view

angle, latitude, longitude, etc.) could help learn more in-

variant feature representations. In the future, we will work

on addressing these issues.

5. Conclusion

We introduced a new deep learning-based MISR tech-

nique that relies on the implicit co-registration of feature

maps of low-resolution images to produce high-quality out-

put images in an end-to-end fashion. Our approach is based

on a convolutional RNN fusion architecture that can aggre-

gate an arbitrary number of low-resolution images into a

combined representation for decoding. We also employed

ShiftNet during the training process to bootstrap our model’s

registration capabilities. We believe this approach offers a

good practical solution to address the trade-off problem be-

tween image quality and acquisition cost/complexity in re-

mote sensing applications.
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