
RasterNet: Modeling Free-Flow Speed using LiDAR and Overhead Imagery

Armin Hadzic1 Hunter Blanton1 Weilian Song2 Mei Chen1 Scott Workman3 Nathan Jacobs1

1University of Kentucky 2Simon Fraser University 3DZYNE Technologies

Abstract

Roadway free-flow speed captures the typical vehicle

speed in low traffic conditions. Modeling free-flow speed

is an important problem in transportation engineering with

applications to a variety of design, operation, planning, and

policy decisions of highway systems. Unfortunately, col-

lecting large-scale historical traffic speed data is expensive

and time consuming. Traditional approaches for estimating

free-flow speed use geometric properties of the underlying

road segment, such as grade, curvature, lane width, lateral

clearance and access point density, but for many roads such

features are unavailable. We propose a fully automated

approach, RasterNet, for estimating free-flow speed with-

out the need for explicit geometric features. RasterNet is

a neural network that fuses large-scale overhead imagery

and aerial LiDAR point clouds using a geospatially consis-

tent raster structure. To support training and evaluation,

we introduce a novel dataset combining free-flow speeds of

road segments, overhead imagery, and LiDAR point clouds

across the state of Kentucky. Our method achieves state-of-

the-art results on a benchmark dataset.

1. Introduction

Free-flow speed is defined as the average speed a mo-

torist would travel on a given road segment when it is not

impeded by other vehicles. This is an important measure

used in transportation engineering for a variety of appli-

cations such as traffic control, highway design, measuring

travel delay, and setting speed limits. Existing approaches

for collecting measurements of free-flow speed have largely

been manually intensive and difficult to scale [3], putting

a large strain on transportation engineering budgets. Only

recently have more advanced techniques, such as probe ve-

hicles, been used for road performance monitoring [19]. To

avoid the upfront cost of collecting traffic speed data, a vari-

ety of recent work has explored developing automatic meth-

ods for estimating free-flow speeds.

Traditional approaches for free-flow speed modeling in-

volve the use of geometric road features (also known as

highway geometric features) such as lane width, lateral

Figure 1: We propose an automatic approach for estimat-

ing free-flow speed from overhead imagery and 3D airborne

LiDAR data. (left) A map representing Campbell county in

Kentucky, USA. (right) The corresponding map of free-flow

speeds generated using our method.

clearance, median type, and access points [13]. These ap-

proaches tend to be specific to certain road network types

(arterial, local, collector) [22], or geographical areas (urban

and rural) [20]. While these methods have demonstrated

good performance, their use is limited to areas where the

necessary road metadata is available. Typically, these areas

include state-maintained highways such as interstates, US

highways, and state roads. However, this is often a small

portion of all roads. For example, only 35% of all road-

way miles in Kentucky are state-maintained. The detailed

geometric features required for estimating free-flow speed

on locally maintained roads are mostly unavailable or pro-

hibitively expensive to collect. Estimating free-flow speeds

at large scales requires learning-based methods that take ad-

vantage of alternative data sources (Figure 1).

Recent work has shown that road geometry approaches

can be augmented with visual data, in the form of overhead

imagery, to improve performance [23]. Though adding vi-

sual features results in better performance than road geo-

metric features alone, model applicability is still limited to

sufficiently documented roads. Instead, we explore replac-

ing explicit road geometric features with features extracted



from airborne LiDAR (Light Detection and Ranging) point

clouds. Compared to image data which is often impacted

by transient effects (e.g., weather), 3D point clouds are

viewpoint invariant, robust to weather and lighting condi-

tions, and provide explicit 3D information not present in

2D imagery, offering a supplementary source of data. Our

approach combines both sources, visual features extracted

from overhead imagery and geometric features extracted

from point clouds.

We propose RasterNet, a multi-modal neural network ar-

chitecture that combines overhead imagery and airborne Li-

DAR point clouds for the task of free-flow speed estimation.

To align the input domains, RasterNet organizes local point

cloud neighborhoods using a raster center grid and pairs

them with spatially consistent features extracted from the

image data. Features from both domains are then merged

together and used to jointly estimate free-flow speed. To

support the training and evaluation of our methods, we in-

troduce a large dataset containing free-flow traffic speeds,

overhead imagery, and airborne LiDAR data across the state

of Kentucky. We evaluate our method both qualitatively and

quantitatively, achieving state-of-the-art results compared

to existing methods, without requiring explicit geometric

features as input.

Our primary contributions can be summarized as fol-

lows:

• A large dataset for free-flow speed estimation that

combines speed data, overhead imagery, and corre-

sponding point clouds.

• A novel multi-modal neural network architecture for

free-flow speed estimation that advances the state-of-

the-art on an existing benchmark dataset.

• A method for fusing overhead imagery and airborne

LiDAR point clouds using a geospatially consistent

raster structure.

2. Related Work

We provide an overview of work in three related fields:

point cloud representations multi-modal data fusion, and es-

timating traffic speed.

2.1. Point Cloud Representations

Many methods have been proposed for extracting feature

representations from point clouds. Recently, Weinmann et

al. [25], Liu et al. [12], and Dubé et al. [5] demonstrated that

point clouds could be represented by neighborhood struc-

tural statistics in order to improve performance on scene un-

derstanding and place recognition tasks. The seminal work

of Qi et al. [17] introduced PointNet, a general deep neu-

ral network for point cloud feature extraction. This work

inspired a series of works in point cloud shape classifica-

tion [10, 14, 24] and object detection [21]. Later, Qi et al.

presented PointNet++ [18], a shape classification method

and extension to PointNet which adds local feature extrac-

tion to improve performance. This method allows for pre-

cise control over the spatial location of extracted features,

which we use for geospatially aligning point cloud features

with visual features from an image.

2.2. MultiModal Data Fusion

A significant amount of work has explored combining

imagery with LiDAR data for various tasks. Liang et al. [11]

designed a method for multi-scale fusion of ground imagery

with overhead LiDAR point clouds to perform object de-

tection from multiple viewpoints and modalities. Similar

to our own work, Jaritz et al. [8] used a cross-modal au-

tonomous driving dataset to perform unsupervised domain

adaption for 3D semantic Segmentation. Their dataset com-

bined terrestrial LiDAR point clouds and camera images for

different times of day, countries, and sensor setups. Their

proposed cross-modal model, xMUDA, performs data fu-

sion by projecting 3D point cloud points onto the 2D im-

age plane and sampling features at corresponding pixel lo-

cations. While this dataset and method were designed for

small spatial areas around a vehicle, we perform data fu-

sion of overhead imagery and airborne LiDAR point clouds

of large 200× 200m2 areas.

Recent work has also explored the fusion of airborne Li-

DAR with overhead imagery for the task of semantic seg-

mentation in an urban area [2]. Typically these approaches

render the LiDAR data as 2D images through digital surface

models and use a traditional CNN. This strategy results in

a loss of precise 3D information due to discretization. This

is an issue, as raw point cloud methods have been shown to

outperform discretization-based approaches for classifica-

tion tasks [15]. Our approach uses point cloud understand-

ing to process 3D point clouds.

2.3. Estimating Traffic Speed

Several works have proposed automatic methods for esti-

mating the speed of vehicles. Huang [7] used video surveil-

lance data of traffic to perform individual vehicle speed es-

timation. We perform average free-flow speed estimation

to characterize traffic flow behavior and capacity of roads

instead of individual vehicle speed characteristics. Most

similar to our own work, Song et al. [23] performed free-

flow speed estimation using overhead imagery and geomet-

ric road features on the Kentucky free-flow speed dataset.

Our RasterNet model is trained on the same overhead im-

agery and label data, but our approach replaces the pro-

vided geometric road features with point cloud features of

the same spatial area.



Figure 2: Examples of our multi-modal dataset. A geospatially aligned overhead image and corresponding point cloud are

shown for an urban scene (left) and a rural scene (right). Point cloud coloring represents the relative grayscale intensity.

3. A Multi-Modal Dataset for Free-Flow Speed

Estimation

We introduce a large-scale dataset for free-flow speed es-

timation that combines free-flow speed data, point clouds

obtained from airborne LiDAR, and overhead imagery. Our

dataset extends a recently introduced dataset that relates

speed data on road segments throughout Kentucky, USA

with overhead imagery. We begin by giving an overview

of this existing dataset, then describe how we augment it

with geospatially consistent 3D point cloud data.

3.1. Kentucky FreeFlow Speed Dataset

The Kentucky Transportation Center [1] licensed and ag-

gregated HERE Technologies’s speed data across uncon-

gested periods to produce free-flow speeds for road seg-

ments across Kentucky. The speed data was then spatially

joined with the Kentucky Transportation Cabinet’s highway

inventory data. For each road segment, Song et al. [23]

collected an overhead image centered at the location of

the free-flow speed label. The overhead imagery is from

the National Agriculture Imagery Program (NAIP) with 1m

ground-sample distance (GSD). A single image has a spa-

tial coverage of 200 × 200m2. Each image was resized to

224×224 pixels and rotated to ensure the road segment was

aligned with direction of travel to the North. The dataset is

representative of rural, urban, highway and arterial roads

ranging in structure from multi-lane paved roads to single-

lane dirt/gravel roads.

3.2. Augmenting with Point Cloud Data

We augment this dataset with 3D point clouds extracted

from LiDAR data collected by the Kentucky Division of

Geographic Information’s KyFromAbove [9] program. Un-

like overhead images, geometric features such as change in

elevation, road curvature, lane delineation markings, lane

width, proximity to neighboring structures, and more, can

be easily detected from airborne LiDAR point clouds. The

LiDAR data was stored as a collection of 1524 × 1524m2

tiles covering the state of Kentucky. To relate point cloud

data with geospatially aligned overhead imagery and free-

flow speed data, we performed a two-step process consist-

ing of LiDAR tile selection and point cloud sampling.

In order to associate each free-flow speed label with its

containing tile, we constructed an R-tree using each tile’s

geospatial coordinates. Then for each tile, we constructed

a k-d tree over a random subset of points (50% selected

uniformly at random) to support faster nearest-neighbor

lookup. To generate an aligned point cloud, we use an

80 × 80 uniformly sampled grid to guide point subsam-

pling in a bounding box of the same spatial dimension as

the overhead image. The resulting point cloud is centered

on the target label location and is used to represent the spa-

tial features of a given road segment.

An overview of our dataset is shown in Figure 2. The ur-

ban road segment depicted in Figure 2 (left) corresponds to

the point cloud of the same road segment. The point cloud

intensities are illustrated by dark blue roadways in stark

contrast with the red roof tops of sky scrapers (top right).

Similarly, the rural road segment point cloud in Figure 2

(right) shows the dynamic topography of the surrounding

landscape not present in the corresponding overhead image.

4. Methods

We introduce RasterNet, an architecture for free-flow

speed estimation that fuses multi-modal sensory input from

overhead images and 3D point clouds. A visual overview of

our architecture is given in Figure 3. Overhead images pass

through an image encoder, while point clouds and raster

center locations are passed through a point cloud encoder.

A set of raster center locations guide point cloud feature

extraction to produce geospatially consistent features be-

tween the two domains. The two sets of features are then

channel-wise concatenated before being passed through a

shared model to produce a free-flow speed prediction. We

describe each component of our architecture in detail in the

following sections.
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Figure 3: An overview of the RasterNet architecture. Overhead images pass through an image encoder, while point clouds

and raster center locations are passed through a point cloud encoder. Each cell of the point cloud feature map corresponds to

a set of features of a local point cloud neighborhood. The two sets of features are channel-wise concatenated before being

passed through a shared model (ResNet block) to produce a free-flow speed prediction.

4.1. Learning Visual Features

RasterNet’s image encoder is based on ResNet [6], a

popular neural network architecture that contains residual

connections. Specifically, we chose ResNet18 for our image

feature extractor due to its low parameter count and rela-

tively high performance on other tasks such as ImageNet [4]

classification. In this work, we truncate before the average

pooling layer such that the final encoding is size C×H×W ,

where C refers to the channel dimension and H and W refer

to the spatial dimensions of the output feature map.

4.2. Extracting Point Cloud Features

We explore two strategies for extracting point cloud fea-

tures: (1) using a learning-based method (RasterNet Learn),

and (2) using features computed from structural statistics

(RasterNet Statistics). We begin by describing how we de-

fine a grid of point locations to align point cloud features

with visual features.

4.2.1 Aligning Visual and Point Cloud Features

An inherent challenge of training deep learning models on

point clouds is their lack of fixed and consistent structure.

To guide point cloud feature extraction, we propose a struc-

tural tool, the raster center grid, to impose consistent struc-

ture on extracted point cloud features. As Figure 4 illus-

trates, each raster center (red dots) binds local neighbor-

hoods of point cloud features to a fixed location in a H×W

(Latitude, Longitude)

Figure 4: Image features are paired with point cloud fea-

tures using a grid of raster center points (red dots), ensuring

geospatial consistency between the two feature sets.

grid, similar to how CNNs group image features. The raster

center grid was constructed to geospatially align with the

pixel locations of the 2D image encoding. We did this by

linearly sampling an H ×W grid within the known bound-

ing box of the overhead image. This enables features ex-

tracted from point clouds to be directly paired with image

features in a geospatially consistent manner.

4.2.2 Learned Features

The RasterNet Learn model uses a modified Point-

Net++ [18] architecture as a learned point cloud feature ex-

tractor. PointNet++ was selected as a point cloud feature ex-

tractor because of its simplicity and high accuracy on point



(a) Full Point Cloud (b) Grouping 16 Samples

(c) Grouping 32 Samples (d) Grouping 128 Samples

Figure 5: PointNet++ [18] style multi-scale grouping de-

picted for a point cloud (a) centered on a known free-flow

speed label location. Grouping operations are performed

around each of the raster centers (red) at different scales and

number of samples. Local point clouds (green) are grouped

at varying sample sizes: 16 samples (b), 32 samples (c), and

128 samples (d).

cloud tasks. The publicly available PyTorch [16] implemen-

tation of PointNet++ from Wijmans [26] was modified so

the second multi-scale grouping layer performed grouping

around the raster center grid of a given point cloud instead

of using furthest point sampling. This modification allows

the point cloud features to be combined with image fea-

tures while maintaining spatial consistency. After the sec-

ond multi-scale grouping layer the remainder of Pointnet++

was replaced with a series of 1×1 convolutions that reduced

the number of collected features per raster center to 16.

4.2.3 Statistical Features

Alternatively, we also developed the RasterNet Statistics

model that directly extracts structural statistic features from

the input point cloud. The RasterNet Statistics model re-

placed the PointNet++ architecture from RasterNet Learn

model with a single instance of multi-scale grouping, as de-

picted in Figure 5. This approach allowed the model to ag-

gregate spatial features at small, medium, and large scales.

A single-scale grouping operation collects groups of points

around each of the raster center points. Multi-scale group-

ing transformed each input point cloud into three separate

collections point clouds, each for a different neighborhood

group size k.

Inspired by Liu et al’s [12] work on place recognition us-

Table 1: Structural Statistics

Structural Statistic Equation

Change of Curvature C = λ3

λ1+λ2+λ3

Omni-variance O =
3
√

λ3

λ1+λ2+λ3

Linearity L = λ1−λ2

λ1

Eigenentropy A = −
∑3

j=1
λj lnλj

Local Point Density D = k
4

3

∏
3

j=1
λj

2D Scattering S2D = λ2D
1 + λ2D

2

2D Linearity L2D =
λ2D
2

λ2D
1

Verticality V = v3,z

Max Height Difference ∆Z = max(xz)−min(xz)

Height Variance σ2 = 1

N

N
∑

i=1

(xzi − xz)
2

ing LiDAR point cloud structural features, we extracted sta-

tistical features from airborne LiDAR point clouds. Let xi,k

be a point cloud containing k neighborhood points around

point i. Neighborhood statistical features were extracted

by first calculating the covariance matrix of xi,k. We com-

pute eigenvalues of the covariance matrix, resulting in three

eigenvalues λ1 ≥ λ2 ≥ λ3 ≥ 0. The structural statistics of

the point cloud were calculated according to the equations

listed in Table 1. Note, 2D statistics (Scattering and Lin-

earity) were calculated using 2D eigenvalues, which were

calculated from the covariance matrix of the 3D point cloud

projected to the xy-plane. We use xz to specify that we con-

sider only the z component of the points in point cloud x,

and xzi to express the ith point in xz . For verticality [25],

v3,z is the z component of the eigenvector corresponding to

the smallest eigenvalue, λ3.

In order to get statistical features at local point cloud re-

gions, we extracted 10 statistical features for each of the lo-

cal point cloud neighborhoods corresponding to each raster

center. We compute this for three different group sizes

k ∈ {16, 32, 128}, resulting in 30 total features per local

point cloud neighborhood. The structure features of each

raster center are tiled to create a single 30 × H × W fea-

ture map, corresponding to the feature map resolution of the

image encoding. This is then reduced to 10 × H × W by

applying a series of 1× 1 convolutions.



4.3. Feature Fusion for Estimating FreeFlow Speed

The visual features and point cloud features are channel-

wise concatenated and passed through a shared module

whose role is to extract high-level features from the com-

bined domains and produce a free-flow speed estimate. The

spatial correspondence established by the raster center grid

between the overhead image and point cloud features en-

sured that the two sets of input features are spatially aligned.

To represent the shared module, we use a single ResNet18

block and a drop out layer for regularization followed by a

fully connected layer with K outputs.

4.4. Implementation Details

We model the free-flow speed prediction as a multi-class

classification problem. Free-flow speeds were binned into

K = 79 possible classes, each in 1mph increments. Our

models train using the cross-entropy loss (L) with a softmax

activation defined as follows,

L(Y, Ŷ ) = −
1

N

N
∑

i=1

log

(

eyi

∑K

j eŷi,j

)

. (1)

Let yi ∈ Y be a positive class bin label for the ith sample

from N training samples. The predicted probability from

the distribution Ŷ for the ith sample from the jth class was

expressed as ŷi,j , where j ∈ {0, 1, · · · ,K}.

The x and y dimensions of point clouds in dataset were

translated such that the origin corresponds to the center of

the matching overhead image. The height dimension of the

point cloud was normalized by subtracting from the median

height for the given point cloud and the point intensity val-

ues were normalized by dividing by 255. All point clouds

were then rotated such that the direction of travel of the tar-

get road was pointed north, similar to how the imagery was

aligned.

Given an input image of size 224 × 224, the output

feature map of the image encoder is of size C × 7 × 7.

Therefore, we define the raster center grid to be of size

H × W = 7 × 7. Unlike the shared module and point

cloud encoder, the image encoder was pretrained on Ima-

geNet [4] and frozen. The training configuration of each

network included an Adam optimizer with learning rate of

1x10−6 and weight decay of 0.1. The learning rate was re-

duced by a factor of 10 every 25 epochs.

5. Evaluation

We present an ablation study, a quantitative analysis

compared with an existing approach on a held-out test set,

and a qualitative evaluation of our best method compared

with known free-flow speeds. Training, validation, and test

dataset partitioning followed the methodology established

by Song et al. [23]. Each model was evaluated on the set of

Table 2: Free-flow Speed Estimation Model Performances

Method Accuracy

Song et al. Image Only [23] 37.60%

Song et al. Image + Road Features [23] 49.86%

Reduced PointNet++ [18] 34.08%

ResNet [6] 42.01%

RasterNet Statistics 47.75%

RasterNet Learn 50.47%

weights chosen based on the lowest validation loss. Roads

within the borders of the following Kentucky, USA coun-

ties were held-out for the test set: Bell, Lee, Ohio, Union,

Woodford, Owen, Fayette, and Campbell. The validation

set was constructed from 1% of the training set samples.

5.1. Quantitative Evaluation

We performed an ablation study comparing different im-

age feature extractors and the impact of point cloud features

on free-flow speed estimation, shown in Table 2. Follow-

ing previous work, free-flow speed estimation was evalu-

ated using within-5mph accuracy. In this metric, predicted

free-flow speed is considered correct if it is within 5mph of

the true speed.

We evaluated the performance of a full ResNet model

trained only on overhead imagery in order to highlight the

differences in image feature extractors compared to previ-

ous work. Specifically, we compared an Xception-style [23]

architecture to our ResNet18 architecture. The first 3 blocks

and the 4th block’s residual sub-block were frozen, similar

to the RasterNet architectures. The smaller ResNet (12M

parameters) network trained only with image features out-

performed the Xception-based network (23M parameters)

by 5% average within-5mph test accuracy, suggesting it was

the superior image feature extractor for this task.

To understand the impact of augmenting point cloud fea-

tures with visual features, we compared our approach to a

point cloud only baseline that uses a reduced PointNet++

model as in RasterNet Learn. Following the same strat-

egy, the second multi-scale grouping layer was modified

to extract features at raster center locations. The number

of fully connected layers in the last MLP (after the multi-

scale grouping layer) was reduced to two layers for faster

training. The reduced PointNet++ with raster center loca-

tions had the worst performance of all of the evaluated mod-

els. While the performance is still respectable, it shows that

point clouds alone do not provide the features necessary for

this task.

Next, we examined the performance impact of the point

cloud feature extraction strategies. We observed that the

learned features (RasterNet Learn) perform better than the

structural features (RasterNet Statistics). By combining fea-
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Figure 6: Scatterplot of free-flow speed predictions on the

test set from the RasterNet Learn model compared with

known speed labels. Overlayed heatmap depicts higher

point density in darker color. Optimal performance should

follow the green line.

tures from both point cloud and overhead imagery, we are

able to greatly improve the accuracy compared to the sin-

gle modality networks. Furthermore, our RasterNet Learn

model achieves state-of-the-art performance over the pre-

vious best method, despite not using highway geometric

features. In subsequent experiments, we use the RasterNet

Learn model.

5.2. Qualitative Evaluation

Figure 6 shows a scatter plot of the model’s prediction

versus ground-truth free-flow speeds on the test set. In ad-

dition, it includes a heatmap, generated using kernel den-

sity estimation, to make the joint distribution clear. Overall,

the highest density of predictions (the darker colors) fol-

low the green line, indicating a positive relationship with

the true free-flow speeds. While the model had difficulties

in predicting speeds accurately for roads with true free-flow

speeds < 10mph, for most other roads the model predicts

speeds close to the ground-truth speed.

Additionally, we visualized the RasterNet Learn model

by constructing free-flow speed maps. We generated these

maps with the ground truth and predicted free-flow speeds

for 3 Kentucky counties from the test set: Fayette, Wood-

ford, and Union. Since Fayette and Woodford counties are

adjacent, we visualize them on the same map in Figure 7

(a) and (b). Figure 7 (b) suggests that the model is capable

of estimating free-flow speeds on highways accurately, as

shown by two major highways both being red in both maps.

Unlike highways and surban areas, urban arterial road seg-

ments, as seen in the Lexington city center of Figure 7 (a)

and (b), are more challenging. These low speed urban ar-

terial road segments are impacted by traffic signal timings

which play a large role in regulating vehicle speeds, which

are not captured in overhead imagery and LiDAR data.

The model performs well in rural counties, such as

Union county in Figure 7 (c) and (d), with speeds primarily

ranging from 30-50mph. Note in Figure 7 (c), the road seg-

ment on the far left is dark blue, indicating free-flow speeds

< 20mph. The predicted free-flow speed map in Figure 7

(d) suggests that the model predicts speeds > 20mph for

said road segment. The road segment in question is a

dirt road, an underrepresented road type in the training set,

likely causing the poor performance in this scenario.

6. Conclusion

We presented a novel multi-modal architecture for free-

flow speed estimation, RasterNet, that jointly processes

aligned overhead images and corresponding 3D point

clouds from airborne LiDAR. To support training and eval-

uating our methods, we introduced a large dataset of free-

flow speeds, overhead imagery, and LiDAR point clouds

across the state of Kentucky. We evaluated our approach

on a benchmark dataset, achieving state-of-the-art results

without requiring explicit highway geometric features, un-

like the previous best method. Additionally, we show how

our approach can be used to generate large-scale free-flow

speed maps, a potentially useful tool for transportation engi-

neering and roadway planning. Our results demonstrate that

a combination of overhead imagery and 3D point clouds can

replace and ultimately outperform existing approaches that

rely on manually annotated input data. Our hope is that our

dataset and proposed approach will inspire future work in

estimating free-flow speeds from multi-modal input data.
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