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Abstract

Object detection in high-resolution aerial images is a

challenging task because of 1) the large variation in ob-

ject size, and 2) non-uniform distribution of objects. A

common solution is to divide the large aerial image into

small (uniform) crops and then apply object detection on

each small crop. In this paper, we investigate the image

cropping strategy to address these challenges. Specifically,

we propose a Density-Map guided object detection Network

(DMNet), which is inspired from the observation that the

object density map of an image presents how objects dis-

tribute in terms of the pixel intensity of the map. As pixel

intensity varies, it is able to tell whether a region has ob-

jects or not, which in turn provides guidance for cropping

images statistically. DMNet has three key components: a

density map generation module, an image cropping mod-

ule and an object detector. DMNet generates a density map

and learns scale information based on density intensities

to form cropping regions. Extensive experiments show that

DMNet achieves state-of-the-art performance on two popu-

lar aerial image datasets, i.e. VisionDrone [30] and UAVDT

[4].

1. Introduction

Object detection is a fundamental problem in computer

vision, which is critical for surveillance applications, e.g.,

face detection and pedestrian detection. Deep learning

based architectures have now become the standard pipelines

for general object detection (e.g., Faster RCNN [17], Reti-

naNet [11], SSD [14]). Although these methods achieve

good performance on natural image datasets (e.g., MS

COCO dataset [13] and Pascal VOC [5] dataset), they are

not able to generate satisfactory results on specialized im-

ages, e.g., aerial and medical images.

Due to the special view point and large field of view,

aerial image has become an important source for practical

applications, e.g., surveillance. Aerial images are usually

collected by drones, airplane or satellite from top view [23],

therefore their visual appearance can be significantly differ-
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Figure 1: Visualization of density cropping vs. uniform

cropping. Top row provides an example of uniform crop-

ping. Bottom row gives a comparable example of density

cropping. Uniform crops have more background pixels and

fail to accommodate the bounding box resolution of dif-

ferent categories compared with density crops. The first

column shows the input aerial image. The second column

shows the proposal regions for cropping. The third column

shows the cropping results. Blue and red rectangles indicate

candidate regions for cropping.

ent from natural images like ImageNet [18]. These char-

acteristics give rise to several special challenges for aerial

image object detection: (1) Due to variation of the photoing

angle, object scale variance exists in aerial image dataset.

(2) The number of objects is highly imbalanced across dif-

ferent categories in most of the cases. (3) Occlusion (be-

tween objects) and truncation (objects appear on the bound-

ary) are common in aerial images. (4) Small objects ac-

count for a larger percentage compared with natural image

datasets.

Early works [9, 2] on aerial image object detection sim-

ply leverage the general object detection architecture and

focus on improving the detection of small objects. [9] in-

troduces the upsampling module after feature extraction to

increase spatial resolution. [2] generates fine-grained fea-

ture representations to help map small objects to its larger

correspondences. The improved small object detection may



achieve reasonable results on popular datasets [30, 31, 23],

they are far from satisfactory for practical applications.

To address the scale variation problem, another promis-

ing direction is to crop the original image into small

crops/chips before applying the object detection, such as

uniform cropping [15] and random cropping. For most of

the cases, these simple cropping strategies help improve the

detection accuracy of small objects, since the resolutions of

small crops become higher when they are resized to the size

of the original image. However, they are not able to lever-

age the semantic information for cropping, thus resulting in

a majority of crops with only background. In addition, large

objects may be cut into two or more different crops by these

strategies.

Following the idea of image cropping, how to find rea-

sonable crops turn out to be critical for aerial image object

detection. Apparently, cropping based on the distribution of

objects would generate better crops than uniform or random

strategy. And how to generate the distribution of objects has

been studied in a similar task [24], crowd counting, which

shares the same challenge of scale and viewpoint variation.

In dense crowd scenes, bounding box based detection may

not be applicable for small objects. Recent state-of-the-art

methods leverage the power of density map for estimating

the distribution of people in the scene, and achieve promis-

ing performance. This inspires us to explore the power of

object density map in generating crops for aerial image ob-

ject detection.

In this paper, we propose a density map based aerial im-

age detection framework – DMNet. It utilizes object den-

sity map to indicate the presence of objects as well as the

object density within a region. The distribution of objects

enables our cropping module to generate better image crops

for further object detection as shown in Fig. 1. For ex-

ample, a proper density threshold can filter out most of the

background area and reduce the number of objects in each

crop, which makes it possible to recognize extremely small

objects by upsampling the image crops.

Fig. 2 shows the framework of the proposed DMNet.

First, we introduce a density map generation network to

generate the density map for each aerial image. Second,

we assign a window with average object scale and slide the

window over the density map without overlapping. The

density map intensity indicates the probability of object

presence in one position. Therefore, at each window posi-

tion, the sum of all (density) pixel intensities within the win-

dow is computed, which can be considered as the likelihood

of objects in this window. Then, a density threshold is ap-

plied to filter out windows with low overall intensity values.

That is we assign “0” to the window whose intensity sum

value is below the threshold (i.e., the pixels in this window

all have 0 value), and “1” to the opposite. Third, we merge

the candidate windows assigned with “1” into regions via

connected component to generate image crops. Variations

of pixel intensity in different regions implicitly provide the

context information (e.g., background between neighboring

objects) to generate valid crops accordingly. Finally, we use

the cropped images to train the object detector.

Compared with existing approaches, DMNet has the fol-

lowing advantages: (1) It offers a simple design to crop im-

age based on the distribution of objects with the help of ob-

ject density map. (2) It is able to alleviate object truncation

and preserve more contextual information than the uniform

cropping strategy. (3) Compared with [26], which also de-

velops a non-uniform cropping scheme, DMNet only needs

to train a simple density generation network instead of train-

ing two sub-networks (i.e. a cluster proposal sub-network

(CPNet) and a scale estimation sub-network (ScaleNet)).

In summary, the paper has the following contributions.

• We are the first to introduce density map into aerial

image object detection, where density map based crop-

ping method is proposed to utilize spatial and context

information between objects for improved detection

performance.

• We propose an effective algorithm to generate image

crops without the need of training additional deep neu-

ral networks, as an alternative to [26].

• Extensive experiments suggest that the proposed

method achieves the state-of-the-art performance on

representative aerial image datasets, including Vision-

Drone [30] and UAVDT [4].

The rest of the paper is organized as follows. Section

2 discusses related work for object detection. Section 3

presents the methodology in detail. Section 4 provides ex-

perimental results on two datasets and extensive ablation

studies. Finally, Section 5 concludes the paper.

2. Related work

2.1. General object detection

General object detection targets primarily on natural im-

ages. Proposal-based detectors introduce the concept of

anchors with multiple stages. Fast R-CNN [6] generates

proposals using selective search and then extracts features

and classifies objects accordingly based on those propos-

als. Faster R-CNN [17] generates proposals by the region

proposal network (RPN) which significantly accelerates the

inference speed. Mask R-CNN [7] extends Faster R-CNN

to perform detection and instance segmentation tasks simul-

taneously. On the other hand, YOLO3 [16], SSD [14] and

RetinaNet [11] are examples of single stage detectors. Sin-

gle stage detectors skip proposal stage and detect directly

on sampling regions. They improve detection speed at the
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Figure 2: Overview for the DMNet framework. First, DMNet learns features of aerial images and predicts density map via

the density generation module. Then it utilizes a sliding window (Section 3.2) on the density map to obtain density mask

and applies connected component algorithm to generate proposal regions for cropping. The generated image crops and the

original global aerial image are feed into the same object detector for object detection. Finally, detection results from the

global image and crops are fused to generate the final detection. More details are presented in Section 3.

cost of accuracy drop. Some object detection tasks may suf-

fer from data imbalance issue. To solve the issue, RetinaNet

[11] introduces focal loss, which is a variation of cross en-

tropy loss. It places more weights on hard examples than

easy examples to guide detector to pay more attention to

hard-to-learn objects.

2.2. Object detection in aerial images

Aerial image object detection faces more challenges

compared with general object detection. First, small ob-

jects account for a higher percentage in aerial image dataset,

which requires more attention on small objects [30]. Sec-

ond, the object scale varies per image, per category due

to the change of camera viewpoint. Third, data imbalance

issue exists in aerial image dataset since some categories

(such as tricycle and awning-tricycle in VisionDrone [30]

dataset) rarely show in real world. Finally, aerial images

may have object occlusion issue during photoing. Many

research works have been developed to address these chal-

lenges.

[15] suggests that tiling helps improve detection per-

formance of small objects. To counter the scale variation

caused by the change of viewpoint, in [20], a detection net-

work is proposed to increase the receptive field for high-

level semantic features and to refine spatial information

for multi-scale object detection. [26] proposes a cluster

network to crop regions of dense objects and leverages a

ScaleNet to adjust generated shape of crops. The final de-

tection result is fused from cropped images and the original

image to improve overall performance. [27] pays attention

to learn regions with low scores from a detector and gains

performance by better scoring those low score regions. To

solve data imbalance issue, [27] introduces IOU-sampling

method and a balanced L1 loss. Moreover, [19, 28] discuss

challenges and insights for object detection in Very High

Resolution (VHR) remote sensing imagery.

2.3. Density map estimation

Density map is commonly used in crowd counting liter-

ature. Crowd counting requires to estimate the head counts

for a given scene where a large number of people present.

Due to the high density of objects, general object detec-

tors fail to detect and count the number of people correctly.

Since density map can reflect the head location and offer

spatial distribution, it turns out to be a better solution since

an integral of density map can approximate head counts.

Such method provides higher accuracy and thus is widely

used in counting tasks.

To improve the performance of density map based count-

ing, [29] proposes geometry adaptive and fixed kernels with

Gaussian convolution to generate density map. [10] fur-

ther improves the quality of density map by introducing a

VGG16-based dilated convolutional neural network. [25]

observes that the large difference in object scales leads to

a great variation in density map. A scale preservation and

adaption network is thus introduced to balance the pixel dif-

ference in generated density maps for robust counting per-

formance. [21] captures the pixel-level similarity in original

images and implements the locally linear embedding algo-

rithm to estimate density maps while persevering the geom-

etry property. [22] further improves the quality of generated

density maps by introducing a sparsity constraint which is

motivated by manifold learning.

3. Density Map guided detection Network

(DMNet)

3.1. Overview

As shown in Fig. 2, DMNet consists of three compo-

nents, which are density map generation module, image



cropping module and fusion detection module. In detail,

we first train a density map generation network to predict

density map for each aerial image. Afterwards, we apply a

sliding window on the generated density map to gather the

sum of pixel intensities and compare its value with a density

threshold to form a density mask. We connect the windows

whose pixel intensity is above the density threshold to gen-

erate image crops. The final detection result will be fused

from detection on the image crops and the original image.

3.2. Density map generation

3.2.1 Density map generation network

Density map is of great significance in the context of crowd

counting. [29] proposes the Multi-column CNN (MCNN)

to learn density map for crowd counting task. Due to the

variation of head size per image, single column with fixed

receptive field may not capture enough features. Therefore

three columns are introduced to enhance feature extraction.

In aerial image object detection, the general categories can

be broadly divided to three sub-categories by scale (small,

medium and large). To capture the balanced feature pat-

terns in all scales, we adopt MCNN [29] in our approach to

generate object density map for image cropping.

The loss function for training density map generation

network is based on the pixel-wise mean absolute error,

which is given as below:

L(Θ) =
1

2N
∗

N
∑

i=1

‖D(Xi; Θ)−Di‖
2. (1)

Θ is the parameters of density map generation module. N is

the total number of images in the training set. Xi is the input

image and Di is the ground truth density map for image

Xi. D(Xi; Θ) stands for the generated density map by the

density generation network.

As MCNN [29] introduces two pooling layers, the output

feature map will shrink by 4× for both height and width. To

preserve the original resolution, we upsample the generated

density map by 4× with cubic interpolation to restore the

original resolution. For the case where the image height or

width is not the multiplier of four, we directly resize the

image to its original resolution.

As reported in [1], it is also a working solution to add

the same number of upsampling layers to restore the res-

olution. However, only a slight difference (approximately

0.02 in terms of mean absolute error in evaluation) is ob-

served for this approach in our experiment. However, the

size of feature maps is largely increased during training,

which may cause memory issue for images with large res-

olution. Therefore, we do not introduce upsampling layers

in our density map generation network.

3.2.2 Ground truth object density map

To generate the ground truth object density maps for aerial

images in the training stage, we follow the similar idea

as proposed in [29] and [10] for crowd counting, where

two methods, geometry-adaptive and geometry-fixed ker-

nel, are developed. Both methods follow the similar con-

cepts. We use Gaussian kernel (normalized to 1 in gen-

eral) to blur each object annotation to generate ground truth

density maps. The key to distinguish adaptive kernel from

fixed kernel is the spread parameter σ. It is fixed in fixed

kernel but is computed by the K-Nearest-Neighbor (KNN)

method for adaptive kernel. The formula for geometry-

adaptive kernel is defined in Eq. 2 [29],

F (x) =

N
∑

i=1

δ(x− xi)×Gσi
(x), with σi = βd̄i, (2)

where xi is the target of interest. Gσi
(x) is the Gaussian

kernel, which convolves with δ(x− xi) to generate ground

truth density map. d̄i is the average distance of K near-

est targets. In our implementation, we prefer the fixed ker-

nel as we consider the following assumptions for geometry-

adaptive kernel are violated. (1) The objects are neither in

single class nor evenly distributed per image, resulting in

no guarantee for accurate estimation of geometric distor-

tion. (2) It is not reasonable to assume the object size is

related to the average distance of two neighboring objects,

since objects in aerial images are not so densely distributed

as in crowd counting. Based on these considerations, we

choose geometry-fixed kernel accordingly.

3.2.3 Improving ground truth with class-wise kernel

In fixed kernel method, the standard deviation of Gaussian

filters is constant for all objects, regardless of the shape of

the exact object. This leads to possible truncation when

cropping large objects (such as buses). One example is pro-

vided at the top-right of Fig. 3.

To resolve the possible truncation issue, we propose the

class-wise density map ground truth generation method. To

start, exploratory data analysis is performed on the train-

ing set to analyze the average scale for each target category.

Then we compute σ by estimating the average scale for each

object category.

Assuming that the average height and width for a cate-

gory is Hi and Wi, where i is the current object category,

we estimate σ by applying Eq. 3:

σi =
1

2

√

H2

i +W 2

i . (3)

We record those σ values for each category and apply

them to Eq. 2 to generate density maps. In this case, we are

able to accommodate the scale of medium and large objects
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Figure 3: Visual comparison between fixed kernel and

class-wise kernel. Left top is the density map for fixed σ.

Left bottom is its corresponding cropping results. As can be

observed, the bus is not fully covered by the light blue rect-

angle, which results in truncation. To resolve this issue, we

replace the fixed σ with the average scale of bus category

(right top). Then the light blue rectangle (right bottom) is

able to fully cover the bus. Light blue rectangle represents

the candidate region to crop.

in a more suitable manner. A comparison between fixed

kernel and our proposed class-wise kernel for ground truth

density map generation is provided in Fig. 3.

3.3. Image cropping based on density map

3.3.1 Density mask generation

The core of DMNet is to properly crop images from the con-

textual information provided by density maps. As observed

from the density mask provided in Fig. 1, the regions with

more objects (labeled in yellow color) have higher pixel in-

tensities compared with those with fewer objects. By plac-

ing a threshold within a region, we can estimate the object

counts and filter out pixels in the region with no or limited

objects accordingly.

We introduce a sliding window on a density map, where

the size of the window is the average size of the objects

in the training set. We slide the window with the step of

window size (i.e., non-overlapping). Then we sum all pixel

values in the current window and compare the sum with the

density threshold. If the sum value is below the threshold,

then the pixels in this window will all have 0 value, and “1”

for the opposite case. This leads to a density mask with 0

and 1 values. The detailed implementation is illustrated in

Algorithm 1.

The density threshold is introduced to control the noise

from predicted density map. In the meanwhile, it dynami-

cally adjusts the number of objects finally collected per den-

sity crop. By increasing the threshold, the boundary will be

irregular and pixels on the boundary will be more likely to

be filtered out at a higher threshold. This leads to more

crops with some only have a few objects. Fig. 4 provides

a visualization to graphically explain how different density

thresholds may affect the cropping boundary.

Algorithm 1 Density mask generation

Input: Aerial image Img. Density map Den. Sliding

window size Wh,Ww. Density threshold TH .

Output: Density mask M .

⊲ Initialization.

Ih, Iw = Img.height, Img.width.

M = zeros (Ih, Iw)
⊲ Generate density mask

for h in range(0, Ih,Wh) do

for w in range(0, Iw,Ww) do

S = sum (Den[h : h+Wh, w : w +Ww])
if S > TH then

M [h : h+Wh, width : width+Ww] = 1
end if

end for

end for

return M

3.3.2 Generating density crops from density mask

The generated density mask indicates the presence of ob-

jects. We generate image crops based on the density mask.

First, we select all the pixels whose corresponding density

mask value is “1”. Second, we merge the eight-neighbor

connected pixels into a large candidate region. Finally, we

use the candidate region’s circumscribed rectangle to crop

the original image. We filter out the crops whose resolution

is below the density threshold. The reasons are: (1) some

of the predicted density maps are not in high quality and

contain noise that spreads over the whole map given a low

density threshold. Thus, it is likely to obtain some random

single windows as the single crop. Keeping such crops is

not desired. (2) Object detectors cannot perform well on

low resolution crops, as crops become really blurry after re-

sizing to the original input size.

3.4. Object detection on density crops

After obtaining image crops from the density map, the

next step is to detect objects and fuse results from both den-

sity crops and the whole image. Any existing modern detec-

tors can be of the choice. We first run separate detection on

original validation set and density crops. Then we collect

the predicted bounding boxes from density crops detection

and add them back to the detection results of original im-

ages to fuse them together. Finally, we apply non maximum

suppression (NMS) to all bounding boxes and calculate the

final results. The threshold of NMS is 0.5 which follows
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Figure 4: Visualization of density mask under different thresholds. As the threshold increases, the yellow region shrinks and

one large region breaks into disconnected sub-regions. Yellow region is the candidate crop region and the light blue bounding

box indicates the full region to crop.

the setting in [26]. Note that in our fusion design, we do

not remove bounding boxes from original detection result.

From our visualization analysis, we observe that the origi-

nal detection results contain large objects that are correctly

detected. Removing those detection will result in a drop

in APlarge, which does not fully show the performance of

the detector. Thus we keep those detected bounding boxes

during evaluation.

Figure 5: A visual example of the final detection result. The

yellow rectangles represent regions of density crops. The

blue rectangles represent ground-truth bounding boxes. The

bounding boxes from both density crops and the whole im-

ages in inference stage are kept and labeled on the plot, as

well as their corresponding categories. NMS is applied af-

ter obtaining the fusion bounding boxes. Thus we do not

show it in this figure.

4. Experiments

4.1. Implementation details

Our implementation is based on the MMDetection tool-

box [3]. The MCNN [29] is selected as the baseline net-

work for density map generation. For object detector, we

use Faster R-CNN with Feature Pyramid Network (FPN).

Unless specified, we use the default configurations for all

the experiments. We use ImageNet [18] pre-trained weights

to train the detector. The density threshold is set to 0.08

in both training and testing phases for VisionDrone dataset

and 0.03 for UAVDT dataset. The minimal threshold for fil-

tering bounding boxes is set to 70 × 70, which follows the

similar setting in [26].

The density map generation module is trained for 80

epochs using the SGD optimizer. The initial learning rate

is 10−6. The momentum is 0.95 and the weight decay is

0.0005. We only use one GPU to train the density map gen-

eration network and no data argumentation is used.

For the object detector, we set the input size to 600 ×
1,000 on both datasets. We follow the similar setup in [26]

to train and test on the datasets. The detector is trained for

42 epochs on 2 GPUs, each with a batch size of 2. The

initial learning rate is 0.005. We decay the learning rate by

the factor of 10 at 25 and 35 epochs. The threshold for non-

max suppression in fusion detection is 0.7. The maximum

allowed number for bounding boxes after fusion detection

is 500. Unless specified, we use MCNN to generate density

map and Faster R-CNN with FPN to detect objects for all

the experiments.

4.2. Datasets

To show the effectiveness of the proposed method,

we evaluate the performance of DMNet on two popular

datasets, VisionDrone 2018 [30] and UAVDT [4].

VisionDrone. VisionDrone is a widely used dataset for

aerial image detection. It includes 10,209 aerial images in

total. In detail, there are 6,471 training images, 548 vali-

dation images and 3,190 testing images. Ten categories are

provided for evaluation purpose with abundant annotations.

The image scale is about 2,000 × 1,500 pixels. Due to the

fact that we have no access to the test data and the eval-

uation server, we cannot evaluate our method on the test

set. As an alternative, we use the validation set to evaluate

the performance, which is also the choice of existing works

[26, 27].

UAVDT. UAVDT has a rich amount of images (23,258

training images and 15,069 test images) for aerial image



Table 1: Quantitative result on VisionDrone dataset. “Test data” represents the type of data used. “Original” is for the original

validation data. “Cluster” and “Density” denote cluster crops [26] and our density crops respectively. “#img” is the number

of images that send to the detector. In the experiment, we select Average precision (AP) as the primary metric to measure the

overall performance.

Method Backbone Test data #Image AP AP50 AP75 APsmall APmid APlarge

DetecNet+CPNet+ScaleNet [26] ResNet 50 Original+cluster 2716 26.7 50.6 24.7 17.6 38.9 51.4

DetecNet+CPNet+ScaleNet [26] ResNet 101 Original+cluster 2716 26.7 50.4 25.2 17.2 39.3 54.9

DetecNet+CPNet+ScaleNet [26] ResNeXt 101 Original+cluster 2716 28.4 53.2 26.4 19.1 40.8 54.4

DMNet ResNet 50 Original+density 2736 28.2 47.6 28.9 19.9 39.6 55.8

DMNet ResNet 101 Original+density 2736 28.5 48.1 29.4 20.0 39.7 57.1

DMNet ResNeXt 101 Original+density 2736 29.4 49.3 30.6 21.6 41 56.9

Table 2: Quantitative result for UAVDT dataset.

Method Backbone #Image AP AP50 AP75 APsmall APmid APlarge

R-FCN [6] ResNet 50 15096 7.0 17.5 3.9 4.4 14.7 12.1

SSD [14] N/A 15096 9.3 21.4 6.7 7.1 17.1 12.0

RON [8] N/A 15096 5.0 15.9 1.7 2.9 12.7 11.2

FRCNN [17] VGG 15096 5.8 17.4 2.5 3.8 12.3 9.4

FRCNN [17]+FPN [12] ResNet 50 15096 11.0 23.4 8.4 8.1 20.2 26.5

ClusDet [26] ResNet 50 25427 13.7 26.5 12.5 9.1 25.1 31.2

DMNet ResNet 50 32764 14.7 24.6 16.3 9.3 26.2 35.2

object detection. It has three categories, namely car, truck

and bus. Those (except car) all have a larger size compared

with categories in VisionDrone. The resolution for UAVDT

is about 1,024 × 540 pixels.

4.3. Evaluation metric

We follow the same evaluation metric as proposed in MS

COCO [13]. Six evaluation metrics are employed, namely

AP (average precision), AP50, AP75, APsmall, APmedium

and APlarge. The AP is the average precision under multi-

ple IoU thresholds, ranging from 0.50 to 0.95 with a step

size of 0.05. Since AP considers all thresholds, we use

AP to measure and compare the performance between the

proposed method and other competing approaches. Mean-

while, as the number of generated image crops will affect

the inference speed, we also record image counts in the ta-

ble for a fair comparison. We denote “#img” for the total

number of images (including both original images and den-

sity crops) we used in the validation set.

4.4. Quantitative result

In this section, we evaluate the proposed DMNet on Vi-

sionDrone and UVADT datasets. Table 1 shows the results

on VisionDrone. We can see that DMNet consistently out-

performs ClusDet [26] by 1-2 points on three different back-

bone networks. Specifically, DMNet achieves the state-of-

the-art performance of 29.4 AP with the ResNetXt101 back-

bone. This clearly exceeds all previous methods. Moreover,

the result of AP75 improves nearly 4 points compared with

ClusDet [26], indicating the robustness of DMNet at higher

IoU thresholds. We also observe more than 2 points im-

provements on APsmall under different backbones, which

suggests that the proposed density map crops significantly

help the detection for small scale objects.

Table 2 shows the results of different methods on

UVADT. It can be seen that general object detectors fail to

achieve a comparable result as discussed in Sec 1. Simi-

lar to the results in VisionDrone, DMNet substantially out-

performs ClusDet and achieves the state-of-the-art perfor-

mance of 14.7 AP on UVADT. Particularly, DMNet consis-

tently improves the accuracy on small scale, medium scale

and large scale objects. This validate the effectiveness of

our generated crops based on density maps.

Inference speed. Here we report the inference speed of

the proposed DMNet. We conduct the experiment on one

GTX 1080 Ti GPU per task. The inference speed on three

backbones (ResNet 50, ResNet 101 and ResNeXt 101) is

0.29 s/img, 0.36 s/img and 0.61 s/img, respectively.

4.5. Ablation study

In this section, we design a series of ablation studies to

analyze the contribution of each component in the proposed

DMNet. In all experiments, we use MCNN [29] as the den-

sity generation backbone and Faster RCNN [17] as the de-

tector. The input image size is 600 × 1000.

Density threshold. The density threshold is an impor-

tant factor as it controls how to generate density crops. In

this experiment, we remove thresholding by keeping all

windows whose pixel intensity is larger than 0. From Ta-

ble 3 we can clearly see that AP drops drastically without

thresholding. From the previous result analysis, we exam-

ine the generated crops and find most of them are large and

cover many objects, which makes it difficult to detect small

objects. Since no threshold is applied, more background

pixels are cropped, which further affect the performance of

detector.



Table 3: Ablation study on VisionDrone Dataset.

Method AP APsmall APmid APlarge

FRCNN [17]+FPN [12] 21.4 11.7 33.9 54.7

DMNet without thresholding 22.6 11.8 37.5 58.5

Uniform cropping without fusion 24.5 19.1 31.9 22.4

DMNet without fusion 25.9 19.4 38.1 41.6

DMNet with all components 28.2 19.9 39.6 55.8

Figure 6: Visualization of our DMNet detection results on VisionDrone (first row) and UAVDT (second row).

Comparison with uniform crops. As discussed in Sec

1, aerial images contain a majority of small scale objects.

DMNet is able to effectively crop small objects from the

whole image and significantly improve APsmall as stated

in Table 1. But one can also get small objects by uniform

cropping with a very small window size. In this experiment,

we replace our density crops with 3 × 4 uniform cropping,

where the size of each uniform crop is small to benefit small

object detection. As shown in Table 3, this method fails to

beat DMNet, although it improves nearly 3 points on AP

compared with the baseline. The reason is that although

small uniform crops are able to help small object detec-

tion, they also increase the risk of cutting off large objects.

We can see that the APsmall is comparable with DMNet

while there is a large drop in APmedium and APlarge. This

demonstrate the superiority of our DMNet since it is able to

better accommodate object scales and thus achieves better

performance.

Contribution of density crop detection. Directly de-

tecting objects on image crops instead of the original im-

age can give better performance as reported in [26]. How-

ever, how it contributes to the final fusion detection remains

unclear. Therefore, we additionally report performance of

DMNet with only detection on images crops (i.e., without

fusing the results of detection on the original whole im-

ages). The results are provided in Table 3. We can conclude

that density crop detection primarily contributes to APsmall

and APmid as the large performance improvements have

been observed on those two categories. Meanwhile, detec-

tion on the original image contributes more on the APlarge

category, compared with density crop detection.

5. Conclusion

In this paper, we propose the density map guided detec-

tion network (DMNet) to address the challenges in aerial

image object detection. Density map provides spatial dis-

tribution and collects window-based pixel intensity to im-

plicitly form the boundary of a potential cropping region,

which benefits the following image cropping process. The

proposed DMNet achieves state-of-the-art performance on

two popular aerial image detection datasets under different

backbone networks. Extensive ablation studies are con-

ducted to analyze the contribution of each component in

DMNet. Our proposed density map based image cropping

strategy provides a promising direction to improve the de-

tection accuracy in high resolution aerial images.
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