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Abstract

Intersection of adversarial learning and satellite image

processing is an emerging field in remote sensing. In this

study, we intend to address synthesis of high resolution

multi-spectral satellite imagery using adversarial learning.

Guided by the discovery of attention mechanism, we regu-

late the process of band synthesis through spatio-spectral

Laplacian attention. Further, we use Wasserstein GAN with

gradient penalty norm to improve training and stability of

adversarial learning. In this regard, we introduce a new

cost function for the discriminator based on spatial atten-

tion and domain adaptation loss. We critically analyze the

qualitative and quantitative results compared with state-

of-the-art methods using widely adopted evaluation met-

rics. Our experiments on datasets of three different sen-

sors, namely LISS-3, LISS-4, and WorldView-2 show that

attention learning performs favorably against state-of-the-

art methods. Using the proposed method we provide an ad-

ditional data product in consistent with existing high reso-

lution bands. Furthermore, we synthesize over 4000 high

resolution scenes covering various terrains to analyze sci-

entific fidelity. At the end, we demonstrate plausible large

scale real world applications of the synthesized band.

1. Introduction

Attention learning is a human vision inspired algorithm

that automatically attends to relevant attributes of an object.

Despite its remarkable progress [36, 4, 10, 8, 39], neces-

sary attention from remote sensing community has not been

paid towards this particular line of research. In this study,

we intend to take a step in this direction and explore at-

tention in multi-spectral super-resolution. To make the task

relatively more tractable, we formulate the ill-posed super-

resolution problem as multi-spectral band synthesis. As

shown in Figure 1, we aim to synthesize a high resolution
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Figure 1. Paired training data. Source domain consists of (a) high

resolution NIR (R), R (G) and G (B), and (b) a coarser resolu-

tion SWIR band. Target domain contains (c) corresponding high

resolution SWIR band.

band provided its coarser resolution band and existing high

resolution multi-spectral bands.

Single image super-resolution is a widely explored field

in computer vision. Recent advances in deep neural net-

works show compelling improvement over conventionally

driven approaches on diverse datasets [40, 2, 7, 15]. Among

the early works, Dong et al. [9] proposed SRCNN, which

is the first successful attempt towards employing Convolu-

tional Neural Networks (CNN) in super-resolution. There-

after several innovative methods [19, 35, 20, 44] have

emerged over the years that provided better context and gen-

eralizable representation. Most recently, Anwar et al. [1]

introduced Densely Residual Laplacian Network (DRLN)

that achieved state-of-the-art results on benchmark datasets.

Similar to supervised learning, adversarial learning

based super-resolution has obtained impressive results on
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Figure 2. Overall pipeline of the proposed methodology. Both generator and discriminator share similar architecture including number of

RDBs [32]. The Multi-Layer Perceptron (MLP) (here, 3 layers) maps disentangled features to real/fake class.

multitude of tasks. After the first pioneering work on single

image Super-Resolution using Generative Adversarial Net-

works (SRGAN) [22], many derivatives have emerged [22,

34, 38]. Enhanced Super-Resolution using Generative Ad-

versarial Networks (ESRGAN) [38] employed a relativistic

discriminator [18] along with global residual connections to

allow better gradient flow. Despite inferior Peak Signal to

Noise Ratio (PSNR), the adversarial learning based meth-

ods are shown to achieve higher visual perceptual quality as

reported in copious literature [22, 34, 38, 29].

In remote sensing community, deep learning based sin-

gle image super-resolution is a rapidly evolving field.

Huang et al. [16] used residual learning modules in remote

sensing image super-resolution. Luo et al. [25] designed

CNN based video satellite image super-resolution. Lei et

al. [23] combined global and local features to introduce

high resolution features in a coarser resolution remote sens-

ing image. Beaulieu et al. [6] applied CNN to super-resolve

Sentinel-2 imagery. Recently, Mario et al. [14] proposed

an unsupervised approach to super-resolve remote sensing

images.

Among high resolution band synthesis approaches, La-

naras et al. [21] developed a super-resolution framework

that exploits resolution invariant nature of deep neural net-

works. Further, Rout et al. [33] used global and local

residual learning to fuse spectral and spatial characteris-

tics of concurrent multi-resolution bands in band synthe-

sis. Rangnekar et al. [31] proposed adversarial learning

with L1-penalty to improve the spectral resolution of aerial

imagery. More recently, L. Rout [32] designed an adver-

sarial learning mechanism with expert regularization us-

ing Wasserstein GAN [12] to synthesize a missing band in

multi-spectral images. The authors of [32] demonstrated ef-

ficient gradient flow due to Residual Dense Blocks (RDBs).

While resolution invariant property [21] works well in cer-

tain situations, we argue that it fails to extrapolate the spa-

tial resolution with similar accuracy. In addition, due to sig-

nificant dependency on coarser band, it attributes towards

computational bottleneck as it requires precise cross-sensor

registration during operation. For this reason, we build our

framework on synthesizing SWIR band using existing con-

current high resolution bands. The proposed method does

not directly take coarser resolution band as input. It only

requires a glimpse of the coarse band just to identify rele-

vant parts of the image, which will be discussed in detail

later. Different from [32], we use spatial and Laplacian

spectral channel attention along with two newly introduced

cost functions in adversarial learning. Figure 2 pictorially

depicts our overall framework.

The rest of the paper is organized as follows. In Sec-

tion 2, we briefly discuss about the prior methods relevant

to this study. We describe the detailed methodology in Sec-

tion 3, and experimental details with analysis in Section 4.

Finally, we draw concluding remarks in Section 5.

2. Related Work

2.1. ImagetoImage Translation

GANs have been rigorously studied both from theoreti-

cal and application perspective in the last few years. Adver-

sarial learning introduced a concept of continuously evolv-

ing objective function that provides an edge over fixed ob-

jectives. In certain applications [45], where collection of

paired data is very costly, GANs learn a loss that adapts



to the data. In this line of work, Isola et al. [17] used

Conditional GANs, known as (cGAN) in image-to-image

translation. While cGAN learns from paired images, Zhu

et al. [45] designed CycleGAN that learns from unpaired

images. Sangwoo et al. [28] introduced context preserv-

ing loss by using semantic segmentation labels. Though

it preserves background during translation, it has a major

limitation for new applications where semantic labels are

not available. In a loose sense, our work can be charac-

terized as image-to-image translation where source domain

contains composites of existing low resolution bands and

target domain, the paired target band. Our work is more

similar to [17] as we condition the synthesis process on ex-

isting concurrent bands. Since generation of any band is

obviously not acceptable, we follow the common practice

of choosing cGAN. Different from these prior works, we

use global and local residual learning with spatio-spectral

attention in a WGAN framework. In particular, we explore

the efficacy of these methods in multi-spectral satellite im-

ages, which is the primary focus of this study.

2.2. Attention Learning

Attention learning is a mechanism to automatically at-

tend to relevant parts of an image while performing cer-

tain tasks. Inspired by human visual system, attention

mechanism focuses on salient attributes of an object. At-

tention adds an extra layer to the interpretability of deep

neural networks. It improves the performance in various

tasks [4, 10, 8, 39] encouraging further investigation in re-

mote sensing. Zagoruyko et al. [42] demonstrated that the

absolute value of activation of a hidden neuron is propor-

tional to the importance of that neuron in performing a de-

sired task. Mnih et al. [27] proposed a recursive visual at-

tention model that processed sequence of regions at a high

resolution. Wang et al. [37] used residual attention for im-

age classification.

Among generative models, Zhang et al. [43] designed

Self-Attention GAN (SAGAN) that incorporated attention

in the process of image generation. Emami et al. [10]

showed the benefits of using spatial attention from the dis-

criminator. In DRLN [1], the authors added an extra layer

in channel attention by introducing Laplacian pyramid. De-

spite increasing popularity of attention learning, necessary

attention has not been paid explicitly towards this line of re-

search in the remote sensing community. As a step towards

achieving this goal, Bastidas et al. [5] proposed Channel

Attention Network (CAN) that used soft attention in multi-

spectral semantic segmentation. In this study, we take a step

further to explore the plausible usage of spatial and Lapla-

cian spectral (channel) attention in band synthesis. We in-

corporate these attention modules in WGAN with gradient

penalty. In addition, we introduce spatial attention and do-

main adaptation loss for efficient learning.

3. Methodology

Following the notations from [32], let z1 ∼ PG, z2 ∼
PR, z3 ∼ PNIR, and x ∼ PSWIR, where PG, PR,

PNIR, and PSWIR represent the distribution of G,R,NIR,

and SWIR, respectively. The source domain consists of

samples from the joint distribution PS(z1, z2, z3), where

zi ∈ R
M×N , i = 1, 2, 3. The generator, G operates

on conditional input, z ∼ PS and spatial attention map,

As ∈ R
M×N from the discriminator, D. Let x̂ ∼ Px̂, where

x̂ = G(z,As) and Px̂ denotes the generator distribution.

The discriminator classifies x ∼ Px and x̂ to real and fake

categories, respectively. Here, Px denotes the target distri-

bution, PSWIR. The expert system has access to samples

from target domain that correspond to the physical land-

scape of identical samples in source domain. Let y ∼ Py

represents the corresponding target sample in SWIR band.

To study the impact of attention mechanisms, we build on

top of the baseline architecture as developed in [32]. The

overall pipeline is shown in Figure 2.

3.1. Adversarial Loss

After the discovery of GANs by Goodfellow et al. [11],

several variants of adversarial networks have been pro-

posed [26, 30, 3, 12]. In this study, we focus on Wasser-

stein GANs with gradient penalty due to its ability to cap-

ture difficult-to-learn latent patterns [12]. Thus, the min-

max objective function of WGAN+GP adapted to current

setting is given by

min
G

max
D

Ex∼Px
[D (x)]− Ex̂∼Px̂

[D (x̂)]

− λ Ex̃∼Px̃

[

(‖∇x̃D (x̃)‖
2
− 1)

2

]

,
(1)

where Px̃ denotes the distribution of samples along the line

of samples from Px and Px̂. In [12], the authors argue that

such gradient penalty is sufficient to maintain stability dur-

ing training. Also, it broadens the hypothesis space that can

be approximated by this estimator.

3.2. Spatial Attention from Discriminator

The spatial attention map from the discriminator ensures

that the generator focuses on relevant parts of the input im-

ages during domain-to-domain translation. Since discrimi-

nator classifies images into real or fake categories, evidently

it captures discriminative features in latent space. Thus,

identification of these regions serves as spatial attention that

can assist a generator to focus its attention.

We follow activation-based attention transfer as de-

scribed by Zagoruyko et al. [42]. Similar to transferring

attention of a teacher CNN to a student CNN, we trans-

fer knowledge of the discriminator to the generator through

spatial attention maps. In [10], the authors use normalized



spatial attention maps from the discriminator to transfer do-

main specific features. However, in the context of super-

resolution, or band synthesis such a straight forward imple-

mentation might not be adequate. A main reason could be

the absence of high-resolution bands in the target domain.

For this reason, we introduce a notion of spatial attention

loss and cross-resolution attention transfer during training.

Formally, D consists of two branches: a functional

branch to classify an image as real or fake, Drf : RM×N →
R and a computational branch to estimate its spatial atten-

tion, Ds : R
M×N → [0, 1]M×N . For K RDBs and C spec-

tral channels in the output of each RDB, let Ai ∈ R
M×N×C

denote the activation maps after ith RDB. Since different

layers focus on different features, we extract K attention

maps from various layers in the latent space. Finally, we

estimate the attention coefficients as:

As(x) = N (Ds(x)) ,

Ds(x) =

K
∑

i=1

N





C
∑

j=1

|Aij(x)|



 ,
(2)

where N (.) normalizes inputs to [0,1] range. In super-

resolution, we usually do not have high resolution samples

in the target domain unlike image-to-image translation. For

this reason, we use upsampled coarse resolution image to

compute the attention maps. Also, the geometric fidelity

and band-to-band registration are ensured by taking into ac-

count the importance of each neuron at every pixel loca-

tion. This is asserted by global skip connection and nor-

malization of activation maps in the latent space. The atten-

tion map and conditional input from source domain are then

passed to the generator.

3.2.1 Spatial Attention Loss

In addition, we introduce an additional loss to ensure that

discriminator attends to similar regions in both real and fake

images while classifying them into real and fake class, re-

spectively. This penalizes the discriminator for attending

to different locations in real and fake images. Thereby, the

discriminator learns to transfer both low and high level se-

mantics of target band. We define the spatial attention loss

as

Lsa = Ex̂∼Px̂,y∼Py

[

‖As(x̂)−As(y)‖
2

2

]

. (3)

3.2.2 Domain Adaptation Loss

Due to the absence of high resolution band in testing phase,

the discriminator is expected to predict relevant parts based

on existing coarse resolution band. By domain adaptation

loss, we enforce the discriminator to mimic the spatial atten-

tion map of actual high resolution band provided an upsam-

pled low resolution band. Thus, the discriminator captures

domain specific features so as to sharpen the spatial atten-

tion map which was obtained using blurry target band. The

domain adaptation loss is defined by

Lda = Eỹ∼Pỹ,y∼Py

[

‖As(ỹ)−As(y)‖
2

2

]

, (4)

where Pỹ denotes the distribution of upsampled coarse res-

olution band.

3.3. Spectral Attention from Generator

To equip the generator with tools so that it can attend

to relevant spectral channels, we employ Laplacian channel

attention after every RDB. The sparse channel coefficients

learned by generator suggest that spectral attention unit au-

tomatically eliminates the noisy spectral channels in latent

space. For K RDBs and C spectral channels in each RDB,

let Fi ∈ R
M×N×C denote the feature maps after ith RDB.

First, we apply global average pooling to reduce spatial di-

mension while preserving spectral dimension, i.e., M = 1
and N = 1. By convolution with kernel size (3,3), padding

(1,1), and dilation rate of 3, 5 and 7, we construct Lapla-

cian pyramid to reduce channel dimension by a factor of

16. We then concatenate the pyramidal features in channel

dimension, and apply convolution with kernel size (3,3) and

padding (1,1) to generate spectral channel attention coeffi-

cients, Ac(Fi) ∈ R
1×1×C . Thus, the importance of each

channel in latent space is estimated automatically for effi-

cient band-to-band synthesis. Finally, each feature map is

modulated by Fi ⊙ Ac(Fi) before being passed as an input

to the next RDB. Figure 2 shows spectral attention as a part

of the overall framework.

3.3.1 Pixel Loss

To make images more realistic in the target domain, a gen-

erator can synthesize many images satisfying this crite-

ria. However, these images may not represent the physical

landscape pertaining to the input image in source domain.

Therefore, to ensure faithful generation, we regularize the

objective function of generator with a pixel loss. Further,

we pretrain the generator for few epochs (here, 2) using

pixel loss before adversarial training. This offers faster con-

vergence and minimal empirical risk as argued in [32]. The

pixel loss used in this framework is given by

Lp = Ez∼Ps,ỹ∼Pỹ,y∼Py

[

‖G (z,As(ỹ))− y‖2
2

]

. (5)

It is worth mentioning that the generator learns to focus on

relevant parts of the source image, z by attending to upsam-

pled coarse resolution band, As(ỹ). By domain adaptation

loss, the discriminator makes As(ỹ) close to As(y), which

consequently improves the performance of the generator.
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Spatial Attention Maps

Figure 3. Spatial attention maps from various discriminators. (a)
Paired Images in source and target domain. Attention maps from
(b) S2A-v1 (c) S2A-v2, and (d) S2A-v3. Encoder and �nal atten-
tion maps are shown in upper and lower row, respectively.

3.4. Total Loss

Here, we consolidate the min-max objectives of genera-
tor and discriminator in adversarial setting. After incorpo-
rating the aforementioned losses, the �nal objective fuction
of the discriminator becomes

min
D

Ex̂ � Px̂ [D (x̂)] � Ex � Px [D (x)]

+ � gpE~x � P~x

h
(kr ~x D (~x)k2 � 1)2

i

+ � sa L sa + � da L da ;
(6)

where� gp; � sa , and� da represent the weights assigned to
gradient penalty, spatial attention, and domain adaptation
loss, respectively. Similarly, the objective function of the
generator is given by

min
G

� Ez� Ps ; ~y � P~y [D (G (z; As(~y)))]

+ � pEz� Ps ; ~y � P~y ;y � Py

h
kG (z; As(~y)) � yk2

2

i
;

(7)

where� p represents the weight assigned to pixel loss.

4. Experiments

In this section, we provide detailed description of our
experiments to critically analyze the ef�cacy of proposed
methodology.

4.1. Datasets and Study Area

We use Indian Remote Sensing (IRS) satellite
Resourcesat-2A (R2A) and WorldView-2 (WV-2) data
in the development process. The training data consists
of 32193 crops of size (64,64) which include various
signatures, such as vegetation, inland water, ocean, land,
mountain, road, urban area, and cloud. We use 5682
crops for 1-fold cross validation during training. In the
initial phase, we test on Linear Imaging and Self-Scanning
Sensor-3 (LISS-3) onboard Resourcesat-2A, which has a
Ground Sampling Distance (GSD) 24m. In this case, the
testing data contains 19050 crops which include most of

(c)
(49.31/91.89)
Multiplication (d)

(50.83/95.08)
Concatenation(a) Source (b) Target

(SRE/SSIM)

Figure 4. Comparison between element-wise multiplication and
concatenation of spatial attention map (contrast stretched).

the aforementioned features. Also, the model is tested
on multi-sensor and multi-resolution datasets of LISS-4
(GSD=6m) and WV-2 (GSD=1.84m) despite fully trained
on LISS-3. We test on 101023 crops of LISS-4 and
16510 crops of WV-2. For seamless band synthesis, we
use overlapping patches of stride (16,16) and stitch them
together using Gaussian feather mosaic [33]. Though the
model is trained on LISS-3 over Indian territory, we test on
a completely isolated physical landscape, Washington in
order to study its ability to generalize. Overall, we analyze
its performance on multi-temporal, multi-resolution, and
multi-sensor datasets.

4.2. Implementation Details

Here, we provide necessary details to reproduce the re-
sults reported in this paper. All the experiments are con-
ducted under identical setup. Both generator and discrim-
inator share similar architecture. The encoder and decoder
consist of two convolution layers each. We use (3,3) con-
volutional kernels everywhere except in global skip con-
nection, where (1,1) kernel is used. In channel attention
module, the �nal convolution layer uses sigmoid activation.
The MLP in discriminator has 3 linear layers with leaky
ReLU activation. The output linear layer in MLP does not
use any activation. There are 6 RDBs [32] in the trans-
former block of both generator and discriminator. Each
RDB uses 128 convolutional kernels, i.e.,C = 128 and
ReLU activations. We use ADAM optimizer with �xed
learning rate 0.0001. During adversarial learning, we up-
date critic once for every single update in the generator. We
set� gp = 10; � sa = 0 :1; � da = 0 :1, and� p = 100. The
entire framework is developed using PyTorch.

4.3. Ablation Study

In this section, we analyze various spatial attention con-
�gurations to address the problem under study. First, we
focus on the spatial attention maps from discriminator. As
shown in Figure2, we extract individual attention maps af-
ter encoder, RDBs, and decoder of the discriminator. For
conciseness, we focus on the �nal attention map and the
map after encoder. In S2A-v1 and S2A-v2, the attention
maps are computed by equation (8) and equation (9), re-












