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Abstract

One of the practical problems with surrounding view

cameras (SMCs) of a vehicle is the degradation of image

quality due to obstacles by substances adherent to their lens

surface, such as raindrops and mud. Such image degrada-

tion could be improved by image restoration techniques that

have been studied in the field of computer vision. However,

to assist the driver, real time processing and fidelity of the

recovered image are essential, which disqualifies most of

the existing methods. In this study, we propose to adopt a

recently developed video-inpainting method that can restore

high-fidelity images in real time. It estimates optical flows

using a CNN and use them to match occluded regions in

the current frame to unoccluded regions in previous frames,

restoring the former. Although the direct application does

not lead to satisfactory results due to the peculiarities of the

SMC videos, we show that two improvements make it possi-

ble to obtain good results that are useful in practice. One is

to use a model-based flow estimation method to obtain tar-

get flows for training the CNN, and the other is to improve

how the estimated flows are used to match the current and

previous frames. We conducted experiments using real im-

ages mainly of parking spaces in urban areas. The results,

including subjective evaluation, show the effectiveness of

our approach.

1. Introduction

Image sensors are used in a variety of ways to support

the driving of automotive vehicles, from the visualization

of blind spots around vehicles to more advanced applica-

tions such as autonomous driving and advanced driver assis-

tance systems (AD/ADAS). In these applications, surround-

ing monitoring cameras (SMCs) are playing an important

role.

Raindrops, dust and dirt on the surface of the SMC lens

obstruct the driver’s view, as shown in Figure 1. Since rain-

drops are usually distributed sparsely on the lens, pedestri-

ans and objects on the road are intermittently occluded, as

the car and/or the objects move. This will be an issue even

if the occlusion is only intermittent, since the driver cannot

stare at the monitor all the time.

This problem can be solved if clean images free of these

obstacles can be restored and displayed on the monitor.

There are two requirements for this image restoration, i.e.,

real time computation and fidelity of the restored images.

These two are vital to support the drivers from a safety point

of view.

There have been many studies of image restoration to im-

prove the quality of images degraded due to various factors;

[10, 25, 8, 13, 7, 30] to name a few. These include several

studies for removing raindrops from images [21, 20, 26, 12].

In particular, recent applications of CNNs have greatly ac-

celerated the overall research on image restoration. How-

ever, these existing methods do not meet the above two re-

quirements and thus cannot be used for our purpose.

First, most of the methods do not meet the fidelity re-

quirements of the restored images. This is arguably obvi-

ous for the recent methods that use only a single image. If

there are large occluded areas in the image due to raindrops

or dust, it is in principle impossible to reconstruct the scene

behind them from that image alone. Not only the studies

of raindrop removal but a broader range of image restora-

tion studies (e.g., GAN-based super-resolution and single-

image inpainting) have tended to aim at producing images

that appear more natural to human eyes, even if they are

fake, rather than pursuing the fidelity.

In this study, we propose a method based on the princi-

ple of video inpainting to remove raindrops, dust, dirt etc.

on SMC images. It finds the pixel values of the scene oc-

cluded by these obstacles in another frame and then copies

their pixel values to the pixels in the current frame. Thus,

the fidelity of the restored images can be maximally en-
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Figure 1. An example of a video sequence captured by the surrounding monitoring camera (SMC) used in our experiments. One of the

raindrops adherent to the lens surface occludes a person sitting on the ground after the frame (107th) shown in the middle.

sured. While the above single-image restoration methods

could synthesize fake images, this method can recover the

correct image as long as the occluded scene parts are visi-

ble in any of the previous frames. We assume in this paper

that these obstacles can be accurately detected from each

video image, which provides the image regions to be re-

stored, called masks, in video inpainting.

To satisfy another requirement of real-time processing,

we employ the recently proposed method for video inpaint-

ing [17]. While conventional video inpainting methods can-

not operate in real time, their method can, with fairly good

image quality. This is made possible by using a CNN to es-

timate optical flow fields, making high speed and accuracy

compatible.

However, we found a few issues when applying their

method directly to raindrop removal with our SMC images,

although their method achieves good inpainting accuracy

on the standard benchmark datasets. There are two ma-

jor problems. One is that i) CNNs trained with the stan-

dard dataset for optical flow estimation, which is commonly

used in related studies (and therefore employed in [17]),

only achieve lower-than-expected estimation accuracy for

the SMC videos. This is attributable to the discrepancy be-

tween the training data and the SMC videos, which causes

the domain shift. The other is that ii) the restored images

for typical SMC videos tend to be generally blurry, leading

to insufficient image quality.

Both of (i) and (ii) can be attributed to the following

characteristics of the SMC videos, which differentiate them

from the above standard datasets. Firstly, the motion of the

SMC induced by that of the car is mostly parallel to its op-

tical axis, making the dominant image motion zooming. As

a result, a scene point tends to be occluded for a longer time

period. Moreover, the scenes of urban parking spaces tend

to have fewer textures. Finally, the SMC has a wide angle

of view, inducing larger optical distortion.

For (i), we create training data using the SMC videos

themselves for the optical flow estimation from them. To

obtain the ground-truth flows that are necessary for the

training, we employ a flow estimation method based on a

flow model and optimization [19], which does not rely on

machine learning and thus is free from the domain shift,

and treat the estimated flows as ‘ground truths’ for train-

ing the CNN. Although they are not error-free, we show

through experiments that using them does contribute to im-

provement of restoration accuracy. For (ii), we first ana-

lyze why the restored images by the method [17] tend to be

blurry, and then present a solution that solves the issue at

the expense of a certain level of increase in memory usage.

Our experimental results show that it can greatly improve

image quality while meeting the requirement of real time

computation.

2. Related work

2.1. Singleimage raindrop removal

A number of methods have been proposed to remove

raindrops adherent on the glass surface in front of the cam-

era from a single image and then restore a clean image free

of the raindrops. In early days, a method based on an opti-

cal model of raindrops was explored [9]. Recently, the ap-

plication of CNN has accelerated the research, resulting in

the proposal of many methods that can restore high-quality

images [21, 26, 12, 20, 16]. However, even with the lat-

est methods, if the raindrops are large and the background

scene is largely invisible, the recovered image will have to

be fake, since the single image lacks enough information. In

such cases, similar results will be obtained by the general-

purpose inpainting method [5] applied with raindrops speci-

fied as the region to be inpainted; the above limitation holds,

too.

2.2. Multiimage raindrop removal

Several methods have been proposed to remove rain-

drops from video images [30, 18, 28, 22, 29]. As with

the video inpainting methods described below, they match

image points or patches across occluded and unoccluded

regions in the of spatio-temporal video volume to remove

raindrops. The problem with these methods is that the qual-

ity of the restored images is not enough, and neither is the



computational speed. In [15], a method for detecting the

position of raindrops in real time is presented.

The problem of raindrop removal reduces to that of video

inpainting, provided that the positions of raindrops are iden-

tified. Many general-purpose methods have been proposed

so far, all of which can potentially be employed. They

can be classified into several categories depending on how

to establish correspondences in spatio-temporal video vol-

umes. Early methods assume offline computation and need

long computational time. In recent years, the application of

CNNs has enabled us to improve both the quality of restored

images as well as the computational speed. Our study relies

on [17], which focuses on good quality video inpainting in

real time.

3. Method

As mentioned earlier, the proposed method extends the

baseline method of Murase et al. [17] in several aspects. We

first briefly summarize the baseline method in Section 3.1

and then explain our extensions in Section 3.2 and 3.3. Fig-

ure 2 shows the baseline and the proposed method.

Notation

We follow the standard formulation of video inpainting,

where, given N pairs of an input image and an associated

mask specifying the regions to be restored, we want to pro-

vide N restored images. In this paper, we denote the input

pair by (Ik,Hk), and the resultant image by Îk. The input

and resultant images are color images of size H ×W × 3,

where H and W are their height and width, respectively.

The masksHk’s specifying the image regions to be restored

are binary images of the same size, i.e., {0, 1}H×W ; the

pixels with the value one should be restored and those with

zero be left untouched. Following [17], we denote the in-

verted (i.e., 0 ↔ 1) version of H by H̄; for a given image

I, we represent the warping operation with an optical flow

W byW ⊙ I and an element-wise masking operation with

a maskH byH · I.

3.1. The baseline method

As shown in Figure 2(A), the baseline method [17] re-

stores the image regions specified by the mask Hk of the

image Ik, where k is the latest frame. It is the first method

that can perform video inpainting in real time by leverag-

ing recently developed CNN-based optical flow estimators,

which is also the reason that we chose it. The pseudo code

of processing an input sequence is given in Algorithm 1.

The method consists of two components, the optical-flow

estimator and the warp and copy-paste module.

The key problem of video inpainting is to match im-

age pixels from masked to unmasked regions in the spatio-

temporal video volume. Suppose that a scene point is un-

observed in the latest frame and thus specified with a mask.

If we can find a previous frame in which the same scene

point is observed, then we can inpaint the masked pixel by

copy-pasting the color of the observed pixel. To perform

this spatio-temporal matching in the video volume, differ-

ent video-inpainting methods employ different approaches.

The baseline method employs optical-flow fields for this

purpose, to fulfill the requirements of causality and com-

putational speed. A problem is that an optical-flow field,

which is well-defined for a consecutive video frames, is not

well-defined for the image regions that are occluded and

thus specified with masks. To cope with this, the base-

line method extends an existing CNN-based flow estima-

tor, such as FlowNet2 [14] and PWC-Net [24], to be able to

simultaneously estimate the optical flows of unmasked, ob-

served regions as well as masked, unobserved regions. This

is enabled by inputting the masks Hk and Hk−1 through

additional channels along with the original inputs Ik and

Ik−1 to an optical-flow estimator, and training it to pre-

dict the optical flows of unmasked as well as masked re-

gions. The data for this training are generated syntheti-

cally by randomly creating occluding objects with corre-

sponding masks and pasting them into the images of Fly-

ingChairs dataset [6]. The FlyingChairs dataset is a stan-

dard dataset for optical flow estimation, which is created by

superimposing synthetic 3D-chair models [1] into natural

images retrieved from Flicker, providing accurate and reli-

able ground truths of optical flow fields. In summary, the

extended optical-flow estimator estimates the optical flow

field over the whole image including masked regions using

two consecutive image frames along with their masks. In

Algorithm 1, we denote it by FlowEstimator and its output

by Ŵ(k)→(k−1) ∈ R
H×W×2.

The second component, the warp and copy-paste mod-

ule, first warps the restored image Îk−1 at the last frame

with the estimated optical-flow field Ŵ(k)→(k−1). This op-

eration yields the warped image Ŵ(k)→(k−1) ⊙ Îk−1 by

propagating the pixels of Îk−1 to geometrically align them

with the current image Îk. As the optical flows Ŵ(k)→(k−1)

are estimated with subpixel precision, bilinear interpolation

is employed for this pixel propagation. Then, as in line 4 of

Algorithm 1, the masked regions of the warped image and

the unmasked regions of the current image are merged to

construct the restored image Îk.

3.2. Finetuning to mitigate domain shift

An important key to the success of the above approach is

accurate estimation of optical flows. The CNN-based flow

estimators trained on the FlyingChair dataset perform fairly

well on the standard benchmark datasets, which are widely

used in the studies of optical flow estimation. However, we

found through experiments that they, even without the ex-

tension enabling flow estimation behind masks, do not per-

form well on the data dealt with in this study, which are the



Figure 2. Overview of the baseline and the proposed method. The core components for the both methods are the extended flow estimator,

which estimates the flow of unoccluded (unmasked) as well as occluded (masked) regions using a CNN, and the subsequent operation

of copying pixels from previous frames to compute a restored image Îk. (A) The architecture of the baseline method. To compute

the restored image Îk from the current input (Ik,Hk), it re-uses the the restored image Îk−1 of the last frame, making the restored

images blurry. (B) That of the proposed approach. Instead of re-using the previously restored image(s) Îk−1, it uses previous inputs

(Ik,Hk), . . . , (Ik−1,Hk−1) by back-tracing optical flows as explained in Section 3.3 to geneerate the restored image Îk.

Algorithm 1 Warp & Copy-paste procedure of the baseline

method [17]

Input: {(I1,H1) , . . . , (IN ,HN )}
Output: {Î1, . . . , ÎN}

1: Î1 ← H̄1 · I1
2: for k = 2, · · · , N do

3: Ŵ(k)→(k−1) ← FlowEstimator(Ik,Hk, Ik−1,Hk−1)

4: Îk ← Hk ·
(

Ŵ(k)→(k−1) ⊙ Îk−1

)

+ H̄k · Ik

5: end for

video images captured by a rear-view camera of a vehicle

while it is backing up in parking spaces. There are the fol-

lowing differences from the above standard datasets. i) The

dominant image motion is zooming not translation, which is

created by the ego-motion of the camera (vehicle). ii) The

scenes are mostly parking spaces that tend to have less tex-

tures. iii) Moreover, the camera has a wider field of view,

causing lens distortion in the captured images. These dif-

ferences could have caused domain shift for the CNN-based

estimator, arguably leading to worse estimation accuracy.

An obvious solution to resolve the issue is to train the

CNN on a training dataset created using the same or sim-

ilar camera and experimental setup. However, it is gener-

ally hard to obtain accurate ground-truth optical flows for

the videos acquired by such a real camera system. Thus,

we propose to use classical methods of optical flow estima-

tion [4, 3] for obtaining the ‘ground-truth’ optical flows. To

be specific, we apply pyflow1 to the video images captured

by our SMC with a vehicle. These methods are model-based

and rely on optimization to estimate optical flows. They do

not depend on machine learning, making them immune to

1https://github.com/pathak22/pyflow

the aforementioned domain shift issue.

Note that these methods are superior in terms of domain

(in)dependency but inferior in terms of computational speed

due to iterative nature of the optimization, as compared with

the CNN-based methods. Their accuracy tends to be on par

with or often lower than the CNN-based methods provided

that the CNN-based methods are free from domain shift.

Of course, the flow fields estimated by them are not

error-free, but training with the estimated flows do con-

tribute to improvement of estimation accuracy, as will be

shown in our experimental results. We will refer to the

estimated optical-flow as pseudo-ground-truth in what fol-

lows. In our experiments, we train the CNN by first training

it using FlyingChairs with occluded objects, as mentioned

ealier, and then fine-tuning it using the parking videos with

the pseudo-ground-truth data.

3.3. Optical flow tracing to maintain resolution

In the second step after the optical flow estimation, we

use the calculated optical flow to copy the corresponding

pixels from previous frames to each pixel in the masked re-

gion of the current frame. Originally, the pixel of the pre-

vious frame that is the source of the copy must be located

in the unmasked area in that frame, but it is not necessarily

the frame right before the current one. In general, it is often

a more previous frame, and how far back we need to go de-

pends on a combination of the size of the masked area and

the flow length. That is, depending on the position of the

masked region (for each pixel), the corresponding frame is

generally different.

The baseline method avoids this complexity of matching

the current frame and previous frames by propagating pixel

values only between the consecutive frames. More specifi-

cally, for each pixel in the masked region of Ik, the baseline

method always refers to the corresponding point in the last



Algorithm 2 Proposed method of back-tracing optical flows

to restore masked image regions

Input: {(I1,H1) , . . . , (IN ,HN )}
Output: {Î1, . . . , ÎN}

1: Î1 ← H̄1 · I1
2: for k = 2, · · · , N do

3: H ← Hk

4: Îk ← H̄ · Ik
5: k′ ← k − 1
6: while k′ ≥ max(1, k −D) andH 6= 0 do

7: Compute Ŵ(k)→(k′)

8: R ← H ·
(

Ŵ(k)→(k′) ⊙ H̄k′

)

9: Îk ← R ·
(

Ŵ(k)→(k′) ⊙ Ik′

)

+ R̄ · Îk

10: H ← H · R̄
11: k′ ← k′ − 1
12: end while

13: end for

restored image Îk−1 and copies its pixel value, regardless

of whether it is inside or outside the mask. Figure 3 illus-

trates this in one-dimensional case. The repetition of this

operation makes it eventually possible to refer to the right

point in the right previous frames. While this operation has

the advantages of high speed and low memory consumption

due to its simplicity, it has a problem with image quality.

Since the flow is obtained with sub-pixel accuracy, interpo-

lation is necessary when propagating pixel values between

the consecutive frames. This interpolation acts as a kind of

low-pass filters and the resulting image tends to be blurry

with a strength proportional to the number of propagation

counts, as will be shown in Figure 7.

Considering our application, we employ a method that

maximizes image quality while maintaining the constraints

of real time execution. Specifically, we compute the op-

tical flow between any distant frames k and k′ by inte-

grating the flows between adjacent frames (e.g., k and

k − 1), as Ŵ(k)→(k′) = Ŵ(k)→(k′+1) ⊙ Ŵ(k′+1)→(k′) =
Ŵ(k)→(k−1) ⊙ · · · ⊙ Ŵ(k′+1)→(k′). We then select the op-

timal frame for each pixel in the masked region and copy

the pixel in the unmasked region of that frame. The pseudo

code is shown in Algorithm 2. Note that the binary vari-

able R in Algorithm 2 represents the region of k-th frame

restored by the k′-th frame, and D is a parameter of inte-

ger that specifies the maximum depth of tracing. In this

method, it is necessary to save the estimated optical flow at

each frame in the memory. We assume here that sufficient

memory is available.

3.4. Detecting image obstacles

We have assumed so far that the masks are given that

specify the image regions to be restored. These masks are

created by detecting the image obstacles we want to remove.

There are several substances adherent to lens surface that

are the target of this study, such as raindrops, dusts, dirt, etc.

They are relatively easy to detect, by using standard CNN-

based detectors trained with a realistic amount of training

data. We can also employ existing methods for detecting

raindrops etc. [27, 23, 11], some of which are model-based

and do not need training data. As they work well on a sin-

gle image, we can obtain a mask from each frame indepen-

dently. We do this right after the latest video frame arrive

before the start of the video inpainting pipeline. Its com-

putational cost is much smaller than that of video inpaint-

ing, and thus the overall procedure can be performed in real

time.

4. Experimental results

4.1. Dataset

We created a dataset for the evaluation of the proposed

method as well as for its training. We captured videos of

multiple scenes using a fish-eye rear-view camera mounted

on the rear-end, above the license plate, of a vehicle; ex-

amples are shown in Figure 1. They are captured with the

resolution of 1280 × 800 at the frame rate of 30 fps. We

drove the vehicle on the street and parking spaces in urban

areas to capture videos of 73 scenes. The total number of

video frames is 191k.

We split these 73 scene videos into evaluation and train-

ing sets. The evaluation set consists of 22 scenes, which are

the videos of different parking spaces containing 13k im-

ages in total. The training set consists of the remaining 51

scenes. We add masks to each of the video images in the

evaluation set. The masks are created such that pedestrians

including sitting persons, paintings, and other objects are

occluded to assess the quality of the restored images in the

most effective way. Figure 4 shows examples of images of

a scene with the created masks.

4.2. Details of finetuning of the flow estimator

As explained above, we fine-tune the flow estimator on

the video images obtained as above. For the flow estimator,

we selected PWC-Net [24] and extended it to estimate the

flows behind occluding objects by modifying its input layer.

We first pre-train the extended model on the FlyingChairs

dataset with synthetic occluding objects and their masks,

following the procedure in [17].

We then fine-tune the pre-trained model. For this pur-

pose, we choose 3,324 pairs of consecutive frames ran-

domly from the videos of the training split. We also choose

360 pairs from the evaluation split for the evaluation of

the optical flow estimation, which will be shown in Sec-

tion 4.3.1. For each pair, we apply the flow estimation

method [19] to obtain the pseudo ground-truth flows, as ex-



Figure 3. One-dimensional illustration of how each masked pixel in the current frame is matched to a unmasked pixel in a previous frame

in the baseline and the proposed methods. (A) Ground-truth pixel values and flow field. (B) The strategy of reusing the restored image

pixels in [17]. It needs the repetition of interpolation of pixel values. (C) The proposed strategy that back-traces the flows in previous

frames. It needs the interpolation of flow vectors but does not need interpolation of pixel values.

Figure 4. An example of a video sequence of a parking space used for evaluation. The region highlighted in red color indicates the mask

we specify. The curb is occluded by the mask in the last frame.

plained in Section 3.2.

For the training of the flow estimator, we synthesize oc-

cluding objects on the images of each pair for training. The

experimental results in [17] show that the size and shape

of the occluding objects synthetically generated for train-

ing do not have a large impact on the estimation accuracy.

Considering also the shape similarity with raindrops into

account, we choose a circular disk having the radius of 100

pixels for the occluding objects. Following [17], we fill

them with black pixels. We randomly generate five disks

per image and also create the masks having the same po-

sition and shape. Note that the pseudo ground-truth flows

are estimated by the method of [19] from the pairs of origi-

nal images without a synthetic occluding object. Using the

Adam optimizer for the training with standard hyperparam-

eters, we train the flow estimator for 500 epochs.

4.3. Results

4.3.1 Accuracy of optical flows

We first evaluate the effectiveness of the fine-tuning of the

flow estimator. For this purpose, we compare two models,

the pretrained and the fine-tuned models, in terms of accu-

racy of their estimated flows. It should be noted that for

the ‘true’ flows to measure errors, we used the flows esti-

mated by pyflow, as in the fine-tuning. Although it does not

represent the true accuracy, we believe that this evaluation

is useful, since we confirmed that the flows by pyflow is

quite accurate, as is observed from the restored images us-

ing them; see the ‘PsuedoGT’ column in Figure 7. For the

evaluation, we use 360 image pairs chosen as above, and

create circular disks on each image pair in the same way

as the training data except their sizes and positions. To be

specific, we consider disks with three different radi, i.e., 10,

50, and 100 pixels; we then place a disk on three positions

(i.e., left, center, and right) along the horizontal line located

in the middle of the image. We measure the accuracy of the

estimated flows over the whole image and also inside the

occluding disks using root-mean-square-error (RMSE).

Figure 5 shows the results, the RMSEs of the two mod-

els (pretrained denoted by ‘FlyingChairs’ vs. fine-tuned de-

noted by ‘FineTuning’) over the whole image and the mask

region for three disk sizes. It is clearly seen that the fine-

tuning on the additional dataset decreases the RMSEs; the

improvements tend to be larger for smaller occluding disks.

There is little difference due to the positions of the disks,

and thus the results are omitted here.



Figure 5. Accuracy of the estimated optical flows by the pretrained

(‘FlyingChairs’) and the fine-tuned (‘FineTuning’) models. RMSE

is used. The bars with ‘(whole)’ show errors over the whole image

and those with ‘(masked)’ show errors of only the masked regions.

4.3.2 Quality of restored images

Figure 7 shows examples of the restored images. To eval-

uate the effectiveness of the proposed two extensions, we

apply four methods, i.e., the baseline method [17], that

with fine-tuning (Section 3.2), that with flow tracing (Sec-

tion 3.3), and that with both of them, to images with manu-

ally specified masks, which are shown in the second column

of Figure 7. For the flow tracing, the parameter D in Algo-

rithm 2 was set as D = ∞ to obtain maximum restoration

quality. It is seen that the four methods restore the occluded

scenes with different accuracy. Comparing the results ob-

tained by those with fine-tuning and without it, we can see

that the former yields results with smaller geometric dis-

tortion, confirming that the fine-tuning contributes to obtain

more accurate flows. By comparing those with flow trac-

ing and without it, it is observed that the former yields less

blurry images, validating the proposed method of flow trac-

ing. Thus, we conclude that the method with the proposed

two extensions yields the best results.

For each result shown in Figure 7, we also show quan-

titative differences between the ground-truth image and

the restored image, which are measured by the two stan-

dard metrics of image restoration, peak signal-to-noise ra-

tio (PSNR), and structural similarity (SSIM), and shown

below the title of each restored image. It is seen from

them that the proposed method does not necessarily achieve

the best scores. This is also confirmed from the av-

erage errors (PSNR/SSIM) over the 22 scenes for the

four methods: 17.653/0.539 (baseline), 17.790/0.543 (fine-

tuning), 16.493/0.508 (flow-tracing), and 16.711/0.524

(both). These are evaluated for the last frame of each video

using its cropped regions associated with the masks, as

shown in Figure 7. These results show that the method with

only fine-tuning achieves the best score in the both metrics.

However, we do not believe that this result is inconsistent

Figure 6. Results of the subjective evaluation experiment. Six

subjects were asked to sort the restored images by the four meth-

ods plus the ground truth image according to their naturalness. The

number in each cell indicates the frequency of the rank (column)

of the method (row). The red dots show the average ranking scores

for the five images.

with the above observation. As has been recognized in re-

cent image reconstruction studies (e.g., [2]), the error mea-

sures based on differences in pixel values, such as PSNR

and SSIM, generally tend to show better scores for more

blurry images. In particular, in our problem, there has to

be some amount of alignment errors between the restored

and the ground truth images, due to inevitable estimation

errors of optical flows. In this case, blurring the restored

images tends to make the difference in pixel values smaller.

In short, these metrics are not suitable for evaluating the

quality of the restored images.

Aiming at performing better evaluation of image qual-

ity, we also conduct an experiment of subjective evalua-

tion. In the experiment, we show the restored images along

with the ground-truth image for each scene to six subjects

whose ages ranged from 28 to 56. For each of 22 scenes,

we show five images (four restored images and the ground-

truth) to each subject and ask her/him to sort them accord-

ing to the naturalness of the restored images. The results

are shown in Figure 6, which shows the distribution of the

ranks of the five images given by the subjects. As there are

22 scenes, five images per scene, and six subjects, we col-

lected 6 × 22 × 5 = 660 answers in total. Each of the five

rows of the matrix in Figure 6 shows the rank distribution

of 132(= 6 × 22) answers. It is seen that the results by

the method with both fine-tuning and flow tracing are given

higher ranks than others but the ground-truth, and the base-

line method are given the lowest rank. This validates well

the effectiveness of the proposed method.

5. Conclusion

In this paper, we have shown a method for removing ob-

stacles from the video of a SMC mounted on a vehicle for



Figure 7. Examples of the image restoration by the baseline method with the pseudo ground-truth (pyflow) flows, the baseline method [17],

with fine-tuning, with flow tracing, and with fine-tuning + flow tracing (the proposed method). Each image is cropped from its original

version based on the specified mask (shown in the second column).

the purpose of assisting the driver. Considering the require-

ments for real-time processing and high fidelity of restored

images, we adopt a recently proposed method for real time

video inpainting, which estimates optical flows by a CNN

and use them to match occluded and unoccluded image re-

gions to restore the former. However, we found that the

direct application does not lead to satisfactory results due

to the peculiarities of SMC images. Specifically, the esti-

mation accuracy of the flow is insufficient and the restored

images tend to be blurry. To solve the former, we used a

model-based optical flow estimation method, which is un-

affected by domain shift associated with the training data,

to obtain target flows and train the CNN to predict them.

To solve the latter problem, we improved how the estimated

flows are used to match occluded and unoccluded image re-

gions. Experiments with real images confirm that these im-

provements make it possible to remove obstacles from SMC

camera images for the purpose of supporting the driver.
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