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Abstract

Haze removal in images captured from a diverse set

of scenarios is a very challenging problem. The exist-

ing dehazing methods either reconstruct the transmission

map or directly estimate the dehazed image in RGB color

space. In this paper, we make a first attempt to propose

a Hyperspectral-guided Image Dehazing Generative Ad-

versarial Network (HIDEGAN). The HIDEGAN architec-

ture is formulated by designing an enhanced version of

CYCLEGAN named R2HCYCLE and an enhanced condi-

tional GAN named H2RGAN. The R2HCYCLE makes

use of the hyperspectral-image (HSI) in combination with

cycle-consistency and skeleton losses in order to improve

the quality of information recovery by analyzing the en-

tire spectrum. The H2RGAN estimates the clean RGB im-

age from the hazy hyperspectral image generated by the

R2HCYCLE. The models designed for spatial-spectral-

spatial mapping generate visually better haze-free images.

To facilitate HSI generation, datasets from spectral recon-

struction challenge at NTIRE 2018 and NTIRE 2020 are

used. A comprehensive set of experiments were conducted

on the D-Hazy,and the recent RESIDE-Standard (SOTS),

RESIDE-β (OTS) and RESIDE-Standard (HSTS) datasets.

The proposed HIDEGAN outperforms the existing state-of-

the-art in all these datasets.

1. Introduction

Downgraded visibility is typically the product of poor

weather such as fog, snow, rain, and haziness in captured

images. Haze refers to the deterioration in ambiance qual-

ity due to the changes in the concentration of particulate

matter. Image quality is hampered by the variable density

of particulate matter in the environment. Furthermore, un-

der ambiguous conditions, floating objects such as dark-

ness and smoke in the atmosphere consume and spread

the light significantly and thus adversely affect image qual-

ity. Such visual disturbances also affect the performance of

modern technologies based on vision such as object detec-

(a) Hazy Input Image (b) Reconstructed HSI

(c) Dehazed Output Image (d) Ground Truth

Figure 1: Example input hazy image, reconstructed hyperspectral

image and the generated dehazed output image using HIDEGAN.

The effective dehazing and details of color and contrast can be

compared to the ground truth image shown on bottom right.

tion [1, 2, 3], segmentation [4, 5, 6, 7], object tracking [8, 9],

etc. Thus, haze removal is an essential task for the proper

functioning of several vision-based systems.

The existing dehazing methods in the literature can be

grouped into traditional and learning-based approaches [10,

11, 12]. In both the approaches, the physical scattering

model [13] is frequently used to represent image forma-

tion. In this model, the image is formulated based on the

properties of light transmission through the air. Most of the

learning-based dehazing methods [14, 15] in the literature

are based on the physical scattering model. The network

usually learns the transmission map, which is converted into

RGB image using the image formation model. However,

the accuracy of the estimated atmospheric light and trans-

mission map significantly influences the quality of the de-

hazed image. The disjoint optimization of transmission map

or atmospheric light may hamper the overall dehazing per-

formance. Some recent approaches [16, 17] have directly



Figure 2: Comparison of reconstructed luminance across several spectral bands for a hazy input image. Visually, it can be inferred that

different materials reflect and absorb differently. Spectral reflectance has a remarkable impact on image constrast. For instance, there is

significant enhancement in tree-like texture (right of image) as we go to higher wavelengths.

estimated the clear image with RGB-RGB mapping.

In this paper, we formulate the image dehazing prob-

lem as a hyperspectral image (HSI) guided image-to-image

mapping task. Figure 1 shows a sample hazy image, the

generated HSI, the dehazed image obtained using the pro-

posed method, and its comparison to the ground truth. The

proposed approach benefits from the spatial-spectral feature

learning and is also free from the intermediate computation

of transmission map. Our work is motivated by the study,

analysis of HSI, and its effect on image quality [18]. HSI

acquires spectral signatures from different wavelengths. As

different materials reflect and absorb differently, the large

pool of signals in HSI captured from different spectral chan-

nels are useful to discriminate between varieties of earth

materials. The HSI facilitates the use of spatial relations be-

tween the various spectral responses in the vicinity, which

is useful for better segmentation and classification of the

image. Although the rich information can facilitate numer-

ous applications, the storage requirements make it a very

costly proposition. As a result, the use of HSI has been lim-

ited to preliminary analysis of observable signals in order to

characterize the parts of the spectrum that carries valuable

information for the application. Such applications include

remote sensing [19, 20], astronomy [21], earth sciences[22],

agriculture [23], and geology [24].

The use of HSI in general computer vision, in particular

in the analysis of natural images, is still in its infancy. The

main obstacles are lower resolution and higher cost of hy-

perspectral devices. Recently, researchers have focused on

using approximation techniques which can reconstruct HSI

from RGB images [25]. Researchers [26, 27] suggested a

greater range of performance in the thermal IR band to look

through the fog than in the visible band. Their models sug-

gest that thermal imaging cameras can be useful for landing

aids for aircraft or enhancing driver vision in the transporta-

tion and automotive industries. The models show that the

fog penetration in the Long Wavelength Infrared (LWIR) is

higher than the Medium Wavelength Infrared (MWIR) in

all the cases tested. The results are corroborated by recon-

structed HSI, as shown in Figure 2. In this paper, we try to

extend this analysis as a significant incentive to analyze the

entire spectrum for dehazing images. The main contribu-

tions of this paper can be summarized as follows:

1. We propose a hyperspectral guided generative adver-

sarial network HIDEGAN for image dehazing. The

HIDEGAN architecture is formulated by designing

a CYCLEGAN named R2HCYCLE and a conditional

GAN (cGAN) named H2RGAN. To the best of our

knowledge, this is the first attempt to use HSI in GAN

framework for haze removal.

2. The proposed R2HCYCLE makes use of HSI in com-

bination with cycle-consistency and skeleton losses in

order to improve the quality of information recovery

by analyzing the entire spectrum for dehazing. The

H2RGAN generates the final dehazed output based on

the RGB-HSI mapping learned from the R2HCYCLE.

3. HIDEGAN significantly outperforms the existing

state-of-the-art methods in D-Hazy, HazeRD, and the

more recent RESIDE-Standard (SOTS), and RESIDE-

β (HSTS) datasets. Furthermore, the detailed ablation

study is carried out to analyze the effects of different

components of the proposed network.

The rest of this paper is organized as follows. Section

2 discusses the related work. The proposed method is de-

scribed in 3. Experimental results and discussion are delin-

eated in Section 4, followed by the conclusion in 5.

2. Related Work

The dehazing methods are primarily aimed at restoring

the clear image from a given hazy image. Existing tech-

niques model scene reflection, atmospheric light and trans-

mission map. The techniques can be divided into two broad

categories of solutions, namely, prior-based and learning-

based methods. The prior-based methods can be further



Figure 3: The architecture of HIDEGAN consists of two GANs, namely R2HCYCLE and H2RGAN. R2HCYCLE refers to GAN used for

spectral reconstruction from hazy RGB images. The generated hyperspectral image is fed into H2RGAN to generate the corresponding

clean RGB image. For, R2HCYCLE, G1 & G2 refers to the generators, and D1 & D2 to the discriminators. For the sake of clarity, the

representation is split into two parts: hazy RGB to hazy HSI, and hazy HSI to hazy RGB image. For H2RGAN, F refers to the generator

and DF is the corresponding discriminator. Best viewed in color.

categorized in terms of multiple inputs images and polar-

izing filter based dehazing. The learning-based approaches

adopt single image dehazing. These techniques also utilize

additional information like depth or semantics.

Image dehazing was initially addressed by prior-based

approaches [13]. He et al. [14] implemented dark channel

prior (DCP) based on the statistics of clear images which

help in estimating the transmission map. This was possi-

ble by utilizing dark pixels of different channels. For linear

mapping of the local priors, Zhu et al. [28] proposed color

attenuation prior (CAP). Used by Berman et al. [29], non-

local color priors (NCP) model a hazy picture that incorpo-

rated a large number of distinct colors. Further, they employ

clustering to represent a line in RGB space. Berman et al.

[29] presented a haze-line prior-based approach to estimate

the ambient atmospheric light. Similarly, a multi-scale ap-

proach was used for night-time dehazing by Ancuti et al.

[15].

The dehazing task has also been tackled progressively by

learning-based approaches. Such models typically CNNs

and GANs are trained to learn the transmission map or at-

mospheric light [29]. Recently, deep-learning models have

also been proposed for direct RGB-RGB mapping. Ren et

al. proposed MSCNN [30] and GFN [31], where the for-

mer uses fine-scale local refinement holistic transmission

map prediction, and the latter extracts multiple inputs that

are further gated to dehaze the image. Several other CNN

architectures [32, 33] were also presented in the literature

for estimating the transmission maps. Cai et al. [10] pro-

posed DehazeNet to estimate the intermediate transmission

of map used to generate the haze-free image. Li et al. [34]

engineered AOD-Net which has been able to produce de-

hazed images without any calculation for intermediate maps

for learning a CNN dependent mapping feature for the re-

formulated physical scattering model.

Inspired by GAN’s performance in image-to-image

translation, several researchers have also solved the image

dehazing problem by developing effective GAN architec-

tures [16, 17]. Zhang et al. implemented DCPDN [35],

which optimizes the relationship between hazy and haze-

free image by estimating the transmission map and atmo-

spheric light with two generators simultaneously. Exist-

ing GAN based techniques such as RI-GAN [11] and CD-

Net [36] utilized cycle-consistency metrics while Yang et

al. [37] tackled the problem by an unsupervised approach.

Besides, Chen et al.[38] reformulated the concept by using

a multiscale adaptive approach.

HSI were initially used for the analysis of astronomical

data [39] in spectrometers. Recently, researchers have fo-

cused on the reconstruction of HSI from RGB images using

dictionaries, sparse coding, and manifold learning [25, 40].

The spectral response is, in practice, tough to learn, which



(a) Stacked RGB Image (b) Hyperspectral Image

Figure 4: The spectral response of an hyperspectral image (right)

and its corresponding RGB image stacked to form 31 channels

(left)

makes the applicability of these approaches limited to spe-

cific scenarios. Therefore, CNN models have been pro-

posed to overcome those problems [41, 42, 43, 44, 45].

Gwn Lore et al. [46] proposed a GAN based model to esti-

mate the HSI from RGB input. Due to a lack of large-scale

hyperspectral datasets, there has not been much focus on

the use of hyperspectral guided approaches in image dehaz-

ing. Therefore, this work focuses on HSI reconstruction

using an unsupervised domain adaptation approach. Re-

cently, Sakaridis et al. [47] and Dai et al. [48] utilized

domain adaptation framework for semantic segmentation in

foggy scenes. We apply and adapt unsupervised domain

adaptation to HSI reconstruction, which is, to the best of

our knowledge, the first attempt for haze removal.

3. Proposed Method

The problem of reconstructing 31-channel HSI from 3-

channel RGB input is clearly under-constrained. Hence,

previous approaches have often relied on dictionary meth-

ods constructed from available large-scale hyperspectral

image datasets. However, there are no datasets for hazy

HSI.

We embrace the underlying uncertainty of the problem

by posing it as an interpolation task. We stack 3-channel

RGB image as a 31-channel image. Let an image matrix

of height h and width w, consisting of 3 channels be rep-

resented as I3, and a stacked image matrix consisting of 31

channels be represented as I31.

I3 = (rh×w×1 | gh×w×1 | bh×w×1)

I31 = (rh×w×10 | gh×w×10 | bh×w×11)
(1)

where r, g, b denote the red, green and blue channels respec-

tively. Thus, the transformed problem is to interpolate the

spectral response of stacked RGB input to an actual hyper-

spectral image as shown in Figure 4.

Hyperspectral Reconstruction [R2HCYCLE] We use

an enhanced version of CYCLEGAN [49] to reconstruct

HSI from stacked RGB images. The proposed architecture

for interpolation, referred to as R2HCYCLE, is ultimately

aimed at end-to-end hyperspectral reconstruction. It uses

a cyclic skeleton-consistency loss in order to improve im-

age consistency metrics apart from a min-max-based loss in

the pixel domain. The essential idea behind cyclic skeleton-

consistency loss is to compare the edges of the input im-

age of the generated HSI. The proposed approach thus com-

putes loss between the original image with the reconstructed

hyperspectral image in both domains where the cyclic con-

sistency ensures higher PSNR values, and the skeleton

loss preserves the generated image sharpness.

For mapping function G1 : I31 → X The adversarial

loss for R2HCYCLE can be expressed as,

LGAN1(G1, D1, I31, X)

= Ei31∼pdata(i31)
[log(1−D1(G1(i31)))]

+ Ex∼pdata(x)
[log(D1(x))]

(2)

LGAN2(G2, D2, X, I31)

= Ex∼pdata(x)
[log(1−D2(G2(x)))]

+ Ei31∼pdata(i31)
[log(D2(i31))]

(3)

LGAN = LGAN1 + LGAN2 (4)

Cyclic skeleton-consistency loss Given, image xǫX do-

main & image yǫY domain, a generator G : X → Y&

generator F : Y → X , the formulation of cyclic skeleton-

consistency loss is presented as,

Lskeleton = ‖ψ(x)− ψ(F (G(x)))‖2
2

+ ‖ψ(y)− ψ(G(F (y)))‖2
2
.

(5)

where (x, y) refers to stacked RGB image and hyperspectral

image referred to as ground truth from unpaired image set.

ψ denotes a Canny edge detector. Equation 6 denotes L2-

cycle consistency loss.

LL2 = ‖x− F (G(x))‖2

+ ‖y −G(F (y))‖2.
(6)

The objective of proposed R2HCYCLE can be presented in

Equation 7.

L(G1, G2, D1, D2) = LGAN (G1, G2, D1, D2)

+ λ · Lskeleton(G1, G2)

+ λ · LL2(G1, G2)

(7)

Image Dehazing [H2RGAN] Further, H2RGAN ad-

dresses the problem of estimating a clean RGB image from

a hazy hyperspectral image. The reconstructed hyperspec-

tral image is fed into an enhanced conditional GAN archi-

tecture, referred to as H2RGAN. The GAN is trained with



reconstructed HSI as the input domain and clean ground

truth RGB images as the output.

Let x ǫ R
h×w×31 denote a reconstructed hyperspectral

image and y ǫ Rh×w×3 denote the corresponding clean im-

age. The goal of H2RGAN is to seek a mapping that maps

from x to y. It uses a min-max-based loss in the pixel do-

main for optimization of parameters.

We use the objective function of a conditional GAN

which can be expressed as

LcGAN (F,DF , X, Y, Z) = Ex,z[log(1−DF (x, F (x, z)))]

+ Ex,y[log(D(x, y))]

(8)

Network Architecture As demonstrated in Figure 3, the

proposed architecture for R2HCYCLE consists of two gen-

erators G1, G2 and two discriminators D1, D2. For the

sake of brevity, the figure shows both the generators in two

different parts. In favor of generating a hyperspectral im-

age, the architecture make use of cycle-consistency, cyclic

skeleton-consistency losses and identity loss [49] besides

the regular GAN discriminator and generator losses. As a

result of this, the architecture is forced to preserve edge in-

formation of the input images and generate unique HSI. In

addition, Figure 3 presents H2RGAN. It consists of a gen-

erator F and a discriminator DF .

Implementation Details Zhu et al. [49] used a L1 dis-

tance in conjunction with the adversarial loss. As the prob-

lem is unconstrained in the case of R2HCYCLE, we ex-

plored L2 distance, which restricts the solution space. This

ensures that the discriminator’s task is to fool the generator

while generating a conditional output close to the ground

truth. We utilized L2 distance in R2HCYCLE as well as

H2RGAN.

We adopt a U-Net with skip connections for generator ar-

chitecture and PatchGAN for the discriminator. We utilize

both bilinear interpolation layers and ConvTranspose2D

layer for upsampling. All the components of HIDEGAN

were implemented in PyTorch. We have used a batch size

of 8, with Adam optimizer and a decaying learning rate.

R2HCYCLE was trained for 20 epochs, while the H2RGAN

ran for 50 epochs for both indoor and outdoor models. The

training was carried out on datasets mentioned in Table 1

with NVIDIA RTX 2080ti GPU (11GB RAM).

4. Experimental Results and Discussion

In this section, we present a thorough evaluation of the

proposed HIDEGAN. To determine the robustness of the

proposed method, we examined it on both quantitative and

qualitative grounds. For quantitative evaluation, metrics of

structural similarity index (SSIM) [50] and peak signal to

noise ratio (PSNR) are used, which are the most accepted

and widely used metrics for dehazing algorithms assess-

ment. Also, we conduct several ablation experiments in or-

der to evaluate the contribution of various components in

HIDEGAN.

Table 1: Dataset distribution for training and testing

Dataset
Training Testing

Outdoor Indoor Outdoor Indoor

RESIDE β OTS 14,000 —- —- —-

RESIDE Std ITS —- 13,990 —- —-

RESIDE Std HSTS —- —- 10 —-

RESIDE Std SOTS —- —- 500 500

HazeRD 75 —- —- —-

D-HAZY —- 971 —- 478

4.1. Datasets

The ICVL BGU Hyperspectral dataset [25] is used in

training R2HCycle for hyperspectral reconstruction. It con-

sists of 200 natural images, consisting of houses, trees, spe-

cific indoor scenes, and various other objects and themes.

Every hyperspectral image has a size of 1392 ×1300 with

519 bands each. However, the dataset also provides sam-

pled images consisting of 31 bands separated by roughly

10nm each to address computational constraints. The same

dataset was used for the hyperspectral reconstruction chal-

lenge as a part of NTIRE 2018 [55]. In addition, we also

used HSI from NTIRE 2020 hyperspectral reconstruction

challenge which consists of 360 HSI. As a part of data aug-

mentation, like flipping and random cropping were carried

Table 2: Comparative results of the proposed method and ex-

isting state-of-the-art dehazing methods over RESIDE-standard

SOTS [51] Indoor dataset. (% inc denotes the percentage improve-

ment for HIDEGAN over the given method)

Method SSIM (%inc) PSNR (% inc)

DCP [14] 0.818 (6.15) 16.62 (48.67)

GRM [52] 0.855 (1.51) 18.86 (31.01)

CDNet [36] 0.885 (-1.92) 21.3 (16)

AOD-Net [34] 0.850 (2.09) 19.06 (29.64)

DDN [37] 0.824 (5.34) 19.38 (27.5)

CycleGAN [49] 0.5738 (51.31) 14.16 (74.5)

CycleDehaze [16] 0.692 (25.41) 15.86 (55.79)

GFN [31] 0.880 (-1.34) 22.31 (10.75)

C2MSNet [53] 0.815 (6.5) 20.12 (22.81)

RYFNet [12] 0.871 (-0.39) 21.44 (15.25)

Pix2Pix [54] 0.820 (5.88) 16.84 (46.73)

RI-GAN [11] 0.850 (2.14) 19.83 (24.62)

HIDEGAN 0.868 ( – ) 24.71 ( – )



Table 3: Comparative results of the proposed method and existing

state-of-the-art dehazing methods over D-HAZY [15] dataset. (%

inc denotes the percentage improvement for HIDEGAN over the

given method)

Method SSIM (%inc) PSNR (% inc)

DCP [14] 0.706 (8.5) 11.59 (76.19)

DehazeNet [10] 0.727 (5.36) 13.40 (52.39)

CDNet [36] 0.741 (3.36) 13.84 (47.54)

C2MSNet [53] 0.720 (6.37) 12.71 (60.66)

MSCNN [30] 0.723 (5.93) 12.82 (59.28)

AODNet [34] 0.717 (6.73) 12.41 (64.54)

Pix2Pix [54] 0.752 (1.88) 16.43 (24.28)

RI-GAN [11] 0.818 (-6.35) 18.82 (8.52)

DDN [32] 0.738 (3.75) 10.96 (86.31)

CycleGAN [49] 0.649 (18.03) 13.69 (49.16)

CycleDehaze [16] 0.674 (13.55) 12.54 (62.84)

HIDEGAN 0.766 ( – ) 20.42 ( – )

out to obtain 11000 HSI.

The quantitative comparisons were made using four

datasets – RESIDE-SOTS indoor dataset (500 images),

RESIDE-SOTS outdoor dataset (500 images), RESIDE

HSTS (10 images) [51], and D-Hazy (1499 images) [15].

RESIDE is among the benchmark datasets for image de-

hazing, and it also provides benchmarking of nine rep-

resentative state-of-the-art dehazing networks by offering

full reference evaluation metrics such as PSNR and SSIM

for the synthetic objective test set (SOTS). The RESIDE-

hybrid subjective test collection (HSTS) offers ten hazy out-

door synthetic images for test purposes only. The HazeRD

dataset [56] is composed of 15 real-world outdoor scenes.

Five different weather conditions are simulated for each

scene, which leads to 75 pairs of hazy and clean images.

Similarly, the D-Hazy dataset [15] includes 1449 pairs of

clear and synthesized hazy images that can be used to eval-

uate haze removal.

We have used a large variety of datasets for training and

testing purposes, to ensure that HIDEGAN does not over-

fit on any single dataset, and effectively eliminates haze by

learning the underlying task. It also means that HIDEGAN

can work under varying conditions of haze. The detailed

distribution of the data set for training and testing is given

in Table 1.

4.2. Quantitative results

We report the average PSNR and SSIM of all stated net-

works and the proposed method. Along with the respective

values, we also report the percentage increase (in SSIM or

PSNR) achieved by our model as compared to each method.

According to Tables 2, 3, 4 and 5, HIDEGAN achieves im-

pressive performance and outperforms all the approaches in

Table 4: Comparative results of the proposed method and ex-

isting state-of-the-art dehazing methods over RESIDE-standard

SOTS [51] Outdoor dataset. (% inc denotes the percentage im-

provement for HIDEGAN over the given method)

Method SSIM (%inc) PSNR (% inc)

DCP [14] 0.815 (7.76) 19.13 (33.49)

DehazeNet [10] 0.851 (3.12) 22.46 (13.7)

AOD-Net [34] 0.876 (0.17) 20.29 (25.86)

MADN [60] 0.913 (-3.91) 23.64 (8.02)

GFN [31] 0.844 (3.98) 21.55 (18.5)

Enh. Pix2Pix [17] 0.863 (1.74) 22.57 (13.14)

HIDEGAN 0.878 ( – ) 25.54 ( – )

terms of PSNR. We also achieve superior or comparable re-

sults in terms of SSIM.

RESIDE dataset (SOTS indoor/outdoor, HSTS). Table

2 displays the comparative findings collected over 12 state-

of-the-art methods for the RESIDE-SOTS indoor dataset

along with the proposed HIDEGAN. The results clearly

indicate that the proposed model is much more effective

than others, especially in terms of PSNR. The improve-

ment margin in PSNR ranges from 10.75 to 74.5 percent.

In comparison with all six current state-of-the-art methods

benchmarked over the RESIDE-SOTS outdoor images (Ta-

ble 4), we witness a similar improvement in both SSIM and

PSNR. Even from Table 5, we can observe a significant im-

provement in performance in terms of PSNR over the HSTS

dataset.

D-Hazy dataset. D-Hazy dataset was evaluated on the

indoor model. This dataset contains images of relatively

denser haze. Nonetheless, as is evident from Table 3, the

proposed method outperforms existing solutions. The im-

provement in PSNR ranges from 8.52 to 76.19 percent. The

improvement in SSIM is also substantial.

4.3. Qualitative results

The efficacy of the hyperspectral-guided approach of

HIDEGAN is demonstrated by qualitative analysis and

comparison with existing approaches.

Figure 5 compares the performance of the proposed ap-

proach with several prior based approaches and compares

them to the ground truth (denoted as GT). It can be observed

that prior based approaches are not able to retain the original

color and contrast of the image. At the same time, HIDE-

GAN renders these details faithfully and its dehazed output

is the closest to the ground truth.

In Figure 6, HIDEGAN is compared with learning-based

approaches (the ground truth is depicted as GT in the im-

age). It can be observed that dehazed output DeepDCP [59]



(a) Hazy Input (b) DCP [14] (c) NLD [29] (d) CAP [57] (e) BCCR [58] (f) HIDEGAN (g) GT

Figure 5: Qualitative comparision on RESIDE HSTS [51] dataset with Prior Based models.

(a) Hazy Input (b) AOD [34] (c) DehazeNet [10] (d) DeepDCP [59] (e) MSCNN [30] (f) HIDEGAN (g) GT

Figure 6: Qualitative comparison on RESIDE HSTS [51] dataset with Learning Based models.

(a) Hazy Input (b) DCP [14] (c) DehazeNet [10] (d) MSCNN [30] (e) CycleDehaze [16] (f) HIDEGAN

Figure 7: Qualitative comparison on natural hazy images with state-of-the-art-results



Table 5: Comparative results of the proposed method and exist-

ing state-of-the-art dehazing methods over RESIDE HSTS [51]

dataset. (% inc denotes the percentage improvement for HIDE-

GAN over the given method)

Method SSIM (%inc) PSNR (% inc)

DCP [14] 0.761 (17.49) 14.84 (88.96)

FVR [61] 0.762 (17.26) 14.48 (93.66)

BCCR [58] 0.738 (21.11) 15.08 (85.95)

GRM [52] 0.818 (9.24) 18.54 (51.25)

Deep DCP [59] 0.933 (-4.18) 24.44 (14.74)

NLD [29] 0.741 (20.63) 18.92 (48.21)

DehazeNet [10] 0.915 (-2.33) 24.48 (14.55)

MSCNN [30] 0.817 (9.45) 18.64 (50.44)

AODNet [34] 0.897 (-0.37) 20.55 (36.46)

GFN [31] 0.874 (2.29) 22.94 (22.24)

HIDEGAN 0.894 ( – ) 28.04 ( – )

still has a hazy tinge while the original colors have been dis-

torted in MSCNN [30]. HIDEGAN also achieves sharper

details and edges as compared to other approaches.

Finally, we evaluate the performance of HIDEGAN on

real-world hazy images (for which the ground truth is not

available), as shown in Figure 7. In comparison to the ex-

isting methods, HIDEGAN recovers uniform color and con-

trast details. It can be clearly seen that images dehazed by

HIDEGAN have less noise and sharper edges for both syn-

thetic and real-world hazy images.

4.4. Ablation study

In this subsection, we perform a component-wise ab-

lation analysis to understand the contribution of the ma-

jor components of our network towards effective dehazing.

We have considered 4 baseline models apart from the final

model, HIDEGAN. Two of the four baseline works are CY-

CLEGAN [49] and Pix2Pix [54]. The performances of all

models are compared on RESIDE-SOTS [51] indoor dataset

and summarized in Table 6.

Hyper-spectral imaging. The GAN architectures of

CYCLEGAN [49] and pix2pix [54], which perform dehaz-

ing by using the RGB images, do not fare well as compared

to HIDEGAN, which can be directly observed in terms of

the PSNR and SSIM reported in Table 6. The performance

of HIDEGAN clearly shows the benefit of using HSI in-

formation over RGB. This component is represented by the

“HSI” column name in the Table 6 (Xmeans hyperspectral

images were used in the model).

Stacked RGB input (I31) for generating HSI images

using R2HCYCLE. This part is referenced in Table 6 as

I31, and we consider Model 1 without the stacked RGB in-

put. It can be easily inferred from the results of Model 1

that HSI generation, being an ill-posed problem, becomes

Table 6: Component-wise Ablation Study

Components SOTS

Model HSI Skeleton Loss I31 SSIM PSNR

CycleGAN[49] 0.573 14.16

Pix2Pix[54] 0.820 16.84

Model 1 X X 0.486 13.17

Model 2 X X 0.828 21.83

HIDEGAN X X X 0.868 24.71

worse when it has to be performed only from three chan-

nels. Since the intermediate HSI obtained is poor in that

case, H2RGAN also fails to fare well. Stacking the RGB

to R2HCYCLE with a 31 channel input clearly enhances its

performance and thus greatly improves the output.

Effect of loss. The effect of skeleton loss in Eq. 5 is

verified in Table 6. Model 2 does not incorporate skele-

ton loss. The structure of objects present in an image is

one of the typical underlying detail which remains intact in

an RGB image and its corresponding hyperspectral image.

Thus, adding a loss that penalizes the distorted edges helps

the network learn better. This is confirmed by the contrast

between the results obtained with Model 2 and HIDEGAN.

The component-wise ablation study conclusively

demonstrates that HIDEGAN, utilizing hyperspectral

information, I31 input and skeleton loss is superior to

models not having any one of them.

5. Conclusion

This paper presented a first attempt at a hyperspectral-

guided generative adversarial network HIDEGAN for im-

age dehazing. The HIDEGAN architecture uses an en-

hanced CYCLEGAN (R2HCYCLE) which utilized HSI in

combination with cycle-consistency and skeleton losses in

order to improve the quality of information recovery by an-

alyzing the entire spectrum for dehazing. The architecture

further used an enhanced conditional GAN (H2RGAN),

which generates the final dehazed image based on the RGB-

HSI mapping learned from the R2HCYCLE. A detailed ab-

lation study demonstrated the worth of the individual com-

ponents of HIDEGAN. HIDEGAN also outperforms the

existing state-of-the-art methods, quantitatively and quali-

tatively.

Acknowledgement

The authors are thankful to NVIDIA for providing TI-

TAN Xp GPU grant. We would also like to thank Mr Aryan

Mehra for his valuable support.



References

[1] Linghua Zhou, Weidong Min, Deyu Lin, Qing Han, and

Ruikang Liu, “Detecting motion blurred vehicle logo in iov

using filter-deblurgan and vl-yolo,” IEEE Transactions on

Vehicular Technology, 2020. 1

[2] Murari Mandal, Manal Shah, Prashant Meena, Sanhita Devi,

and Santosh Kumar Vipparthi, “Avdnet: A small-sized ve-

hicle detection network for aerial visual data,” IEEE Geo-

science and Remote Sensing Letters, 2019. 1

[3] Murari Mandal, Manal Shah, Prashant Meena, and San-

tosh Kumar Vipparthi, “Sssdet: Simple short and shal-

low network for resource efficient vehicle detection in aerial

scenes,” in 2019 IEEE International Conference on Image

Processing (ICIP). IEEE, 2019, pp. 3098–3102. 1

[4] Murari Mandal, Vansh Dhar, Abhishek Mishra, and San-

tosh Kumar Vipparthi, “3dfr: A swift 3d feature reductionist

framework for scene independent change detection,” IEEE

Signal Processing Letters, vol. 26, no. 12, pp. 1882–1886,

2019. 1

[5] Murari Mandal, Mallika Chaudhary, Santosh Kumar Vip-

parthi, Subrahmanyam Murala, Anil Balaji Gonde, and

Shyam Krishna Nagar, “Antic: Antithetic isomeric cluster

patterns for medical image retrieval and change detection,”

IET Computer Vision, vol. 13, no. 1, pp. 31–43, 2018. 1

[6] Murari Mandal, Prafulla Saxena, Santosh Kumar Vipparthi,

and Subrahmanyam Murala, “Candid: Robust change dy-

namics and deterministic update policy for dynamic back-

ground subtraction,” in 2018 24th International Conference

on Pattern Recognition (ICPR). IEEE, 2018, pp. 2468–2473.

1

[7] Thangarajah Akilan, QM Jonathan Wu, and Wandong

Zhang, “Video foreground extraction using multi-view

receptive field and encoder–decoder dcnn for traffic and

surveillance applications,” IEEE Transactions on Vehicular

Technology, vol. 68, no. 10, pp. 9478–9493, 2019. 1

[8] Pei-Hsuan Chiu, Po-Hsuan Tseng, and Kai-Ten Feng, “Inter-

active mobile augmented reality system for image and hand

motion tracking,” IEEE Transactions on Vehicular Technol-

ogy, vol. 67, no. 10, pp. 9995–10009, 2018. 1

[9] Murari Mandal, Lav Kush Kumar, Mahipal Singh Saran,

and Santosh Kumar vipparthi, “Motionrec: A unified deep

framework for moving object recognition,” in The IEEE Win-

ter Conference on Applications of Computer Vision (WACV),

March 2020. 1

[10] Bolun Cai, Xiangmin Xu, Kui Jia, Chunmei Qing, and

Dacheng Tao, “Dehazenet: An end-to-end system for single

image haze removal,” IEEE Transactions on Image Process-

ing, vol. 25, no. 11, pp. 5187–5198, 2016. 1, 3, 6, 7, 8

[11] Akshay Dudhane, Harshjeet Singh Aulakh, and Subrah-

manyam Murala, “Ri-gan: An end-to-end network for sin-

gle image haze removal,” in Proceedings of the IEEE Con-

ference on Computer Vision and Pattern Recognition Work-

shops, 2019, pp. 0–0. 1, 3, 5, 6

[12] Akshay Dudhane and Subrahmanyam Murala, “Ryf-net:

Deep fusion network for single image haze removal,” IEEE

Transactions on Image Processing, 2019. 1, 5

[13] Robby T Tan, “Visibility in bad weather from a single im-

age,” in 2008 IEEE Conference on Computer Vision and

Pattern Recognition. IEEE, 2008, pp. 1–8. 1, 3

[14] Kaiming He, Jian Sun, and Xiaoou Tang, “Single image

haze removal using dark channel prior,” IEEE transactions

on pattern analysis and machine intelligence, vol. 33, no. 12,

pp. 2341–2353, 2010. 1, 3, 5, 6, 7, 8

[15] Cosmin Ancuti, Codruta O Ancuti, and Christophe

De Vleeschouwer, “D-hazy: A dataset to evaluate quanti-

tatively dehazing algorithms,” in 2016 IEEE International

Conference on Image Processing (ICIP). IEEE, 2016, pp.

2226–2230. 1, 3, 6
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