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Abstract

Anomaly detection in surveillance videos has been re-

cently gaining attention. A challenging aspect of high-

dimensional applications such as video surveillance is con-

tinual learning. While current state-of-the-art deep learn-

ing approaches perform well on existing public datasets,

they fail to work in a continual learning framework due to

computational and storage issues. Furthermore, online de-

cision making is an important but mostly neglected factor in

this domain. Motivated by these research gaps, we propose

an online anomaly detection method for surveillance videos

using transfer learning and continual learning, which in

turn significantly reduces the training complexity and pro-

vides a mechanism for continually learning from recent data

without suffering from catastrophic forgetting. Our pro-

posed algorithm leverages the feature extraction power of

neural network-based models for transfer learning, and the

continual learning capability of statistical detection meth-

ods.

1. Introduction

The number of closed-circuit television (CCTV) surveil-

lance cameras are estimated to go beyond 1 billion glob-

ally by the end of 2021 [22]. Particularly, video surveil-

lance is an essential tool with applications in law enforce-

ment, transportation, environmental monitoring, etc. For

example, it has become an inseparable part of crime deter-

rence and investigation, traffic violation detection, and traf-

fic management. However, the monitoring ability of surveil-

lance systems has been unable to keep pace due to the mas-

sive volume of streaming video data generated in real-time.

This has resulted in a glaring deficiency in the adequate uti-

lization of available surveillance infrastructure and hence

there is a pressing need for developing intelligent computer

vision algorithms for automatic video anomaly detection.

Video anomaly detection plays an important role in en-

suring safety, security and sometimes prevention of poten-

tial catastrophes, hence another critical aspect of a video

anomaly detection system is the real-time decision making

capability. Events such as traffic accidents, robbery, and

fire in remote places require immediate counteractions to

be taken promptly, which can be facilitated by the real-time

detection of anomalous events. However, online and real-

time detection methods have only recently gained interest

[30]. Also, many methods that claim to be online heavily

depend on batch processing of long video segments. For

example, [23, 16] perform a normalization step which re-

quires the entire video. Regarding the importance of timely

detection in video, as [30] argues, the methods should also

be evaluated in terms of the average detection delay, in ad-

dition to the commonly used metrics such as true positive

rate, false positive rate, and area-under-the-curve (AUC).

Although deep neural networks provide superior perfor-

mance on various machine learning and computer vision

tasks, such as object detection [8], image classification [21],

playing games [38], image synthesis[35], etc., where suffi-

ciently large and inclusive data sets are available to train

on, there is also a significant debate on their shortcom-

ings in terms of interpretability, analyzability, and reliabil-

ity of their decisions [17]. Recently, statistical and near-

est neighbor-based methods are gaining popularity due to

their appealing characteristics such as being amenable to

performance analysis, computational efficiency, and robust-

ness [4, 12].

A key challenge of anomaly detection in videos is that

defining notions of normality and abnormality that encom-

pass all possible nominal and anomalous data patterns are

nearly impossible. Thus, for a video anomaly detection

framework to work in a practical setting, it is extremely cru-

cial that it is capable of learning continually from a small

number of new samples in an online fashion. However, a

vast majority of existing video anomaly detection methods

are completely dependent on data-hungry deep neural net-

works [40]. It is well known that naive incremental strate-

gies for continual learning in deep/shallow neural networks

suffer from catastrophic forgetting [19]. On the other hand,

a cumulative approach would require all previous data to

be stored and the model to be retrained on the entire data.
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This approach quickly becomes infeasible due to compu-

tational and storage issues. Thus, preserving previously

learned knowledge without re-accessing previous data re-

mains particularly challenging [25]. Recent advances in

transfer learning have shown that using previously learned

knowledge on similar tasks can be useful for solving new

ones [24]. Hence, we propose a hybrid use of transfer learn-

ing via neural networks and statistical k-nearest neighbor

(kNN) decision approach for finding video anomalies with

limited training in an online fashion. In summary, our con-

tributions in this paper are as follows:

• We leverage transfer learning to significantly reduce

the training complexity while simultaneously outper-

forming current state-of-the-art algorithms.

• We propose a statistical framework for sequential

anomaly detection which is capable of continual and

few-shot learning from videos.

• We extensively evaluate our proposed framework on

publicly available video anomaly detection datasets

and also on a real surveillance camera feed.

In Section 2, we review the related literature for anomaly

detection in surveillance videos. Section 3 describes the

proposed method, a novel hybrid framework based on neu-

ral networks and statistical detection. In Section 4, the

proposed method is compared in detail with the current

state-of-the-art algorithms. Finally, in Section 5 some con-

clusions are drawn, and future research directions are dis-

cussed.

2. Related Works

A commonly adopted learning technique due to the

inherent limitations in the availability of annotated and

anomalous instances is semi-supervised anomaly detection,

which deals with learning a notion of normality from nom-

inal training videos. Any significant deviation from the

learned nominal distribution is then classified as anomalous

[5, 16]. On the other hand, supervised detection methods

which train on both nominal and anomalous videos have

limited application as obtaining the annotations for train-

ing is difficult and laborious. To this end, [40] proposes

using a deep multiple instance learning (MIL) approach to

train on video-level annotated videos, in a weakly super-

vised manner. Even though training on anomalous videos

might enhance the detection capability on similar anoma-

lous events, supervised methods would typically suffer in a

realistic setup from unknown/novel anomaly types.

A key component of computer vision problems is the ex-

traction of meaningful features. In video surveillance, the

extracted features should capture the difference between the

nominal and anomalous events within a video. The selec-

tion of features significantly impacts the identifiability of

types of anomalous events in video sequences. Early tech-

niques primarily focused on trajectory features [1], limiting

their applicability to detection of anomalies related to mov-

ing objects and trajectory patterns. For example, [11] stud-

ied detection of abnormal vehicle trajectories such as illegal

U-turn. [31] extracts human skeleton trajectory patterns,

and hence is limited to only the detection of abnormalities

in human behavior.

Another class of widely used features in this domain

are motion and appearance features. Traditional meth-

ods extract the motion direction and magnitude to detect

spatiotemporal anomalies [37]. Histogram of optical flow

[3, 6], and histogram of oriented gradients [9] are some

other commonly used hand-crafted feature extraction tech-

niques frequently used in the literature. The recent liter-

ature is dominated by the neural network-based methods

[13, 14, 23, 28, 33, 36, 44] due to their superior performance

[44]. Contrary to the hand-crafted feature extraction, neu-

ral network-based feature extraction methods [44] learn the

appearance and motion features by deep neural networks.

In [27], the author utilizes a Convolutional Neural Net-

works (CNN), and Convolutional Long Short Term Mem-

ory (CLSTM) to efficiently learn appearance and motion

features, respectively. More recently, Generative Adversar-

ial Networks (GAN) have been gaining popularity as they

are able to generate internal scene representations based on

a given frame and its optical flow.

However, there has been a significant ongoing debate of

the shortcomings of neural network-based methods in terms

of interpretability, analyzability, and reliability of their de-

cisions [17]. Furthermore, it is well known that neural net-

works are notoriously difficult to train on new data or when

few samples of a new class are available, i.e., they strug-

gle with continual learning and few-shot learning. Hence,

recently few-shot learning and continual learning have been

studied in the computer vision literature [20, 42, 39, 43, 25].

However, not a lot of progress has been made yet in the field

of continual learning with applications to video surveil-

lance. Hence, in this work, we primarily compare our con-

tinual learning performance with the state-of-the-art video

anomaly detection algorithms even though they are not tai-

lored for continual learning.

3. Proposed Method

3.1. Motivation

In existing anomaly detection in surveillance videos lit-

erature, an anomaly is construed as an unusual event which

does not conform to the learned nominal patterns. How-

ever, for practical implementations, it is unrealistic to as-

sume the availability of training data which takes all pos-

sible nominal patterns/events into account. Often, anoma-

lous events are circumstantial in nature and it is challenging



Figure 1. Proposed continual learning framework. At each time t, neural network-based feature extraction module provides motion (optical

flow), location (center coordinates and area of bounding box), and appearance (class probabilities) features to the statistical anomaly

detection module, which makes online decisions and continual updates to its decision rule.

to distinguish them from nominal events. For example, in

many publicly available datasets a previously unseen event

such as a person riding a bike is considered as anomalous,

yet under different conditions, the same event can be cat-

egorized as nominal. Thus, a practical framework should

be able to update its definition of nominal events contin-

ually. This presents a novel challenge to the current ap-

proaches mentioned in Section 2, as their decision mech-

anism is extensively dependent on Deep Neural Networks

(DNNs). DNNs typically require the entire training data

to be made available prior to the learning task as updating

the model on new data necessitates either retraining from

scratch , which is computationally expensive, or iteratively

with the risk of catastrophic forgetting [19]. Moreover, an-

other motivational fact for us is that the sequential nature

of video anomaly detection and the importance of online

decision making are not well addressed [30].

3.2. Feature Selection

Most existing works focus on a certain aspect of the

video such as optical flow, gradient loss or intensity loss.

This in turn restrains the existing algorithms to a certain

form of anomalous event which is manifested in the consid-

ered video aspect. However, in general, the type of anomaly

is broad and unknown while training the algorithm. For ex-

ample, an anomalous event can be justified on the basis of

appearance (a person carrying a gun), motion (two people

fighting) or location (a person walking on the roadway). To

account for all such cases, we create a feature vector F i
t

for each object i in frame Xt at time t, where F i
t is given

by [w1Fmotion, w2Flocation, w3Fappearance]. The weights

w1, w2, w3 are used to adjust the relative importance of each

feature category.

3.3. Transfer Learning

Most existing works propose training specialized data-

hungry deep learning models from scratch, however this

bounds their applicability to the cases where abundant data

is available. Also, the training time required for such mod-

els grows exponentially with the size of training data, mak-

ing them impractical to be deployed in scenarios where

the model needs to continually learn. Hence, we propose

to leverage transfer learning to extract meaningful features

from video.

Object Detection: To obtain location and appearance

features, we use a pre-trained object detection system such

as You Only Look Once (YOLO) [34] to detect objects in

video streams in real time. As compared to other state-of-



the-art models such as SSD and ResNet, YOLO offers a

higher frames-per-second (fps) processing while providing

better accuracy. For online anomaly detection, speed is a

critical factor, and hence we currently prefer YOLOv3 in

our implementations. We get a bounding box (location),

along with the class probabilities (appearance) for each ob-

ject detected in frame Xt. Instead of simply using the en-

tire bounding box, we monitor the center of the box and

its area to obtain the location features. In a test video, ob-

jects diverging from the nominal paths and/or belonging to

previously unseen classes will help us detect anomalies, as

explained in Section 3.5.

Optical Flow: Apart from spatial information, temporal

information is also a critical aspect of videos. Hence, we

propose to monitor the contextual motion of different ob-

jects in a frame using a pre-trained optical flow model such

as Flownet 2 [15]. We hypothesize that any kind of mo-

tion anomaly would alter the probability distribution of the

optical flow for the frame. Hence, we extract the mean, vari-

ance, and the higher order statistics skewness and kurtosis,

which represent asymmetry and sharpness of the probability

distribution, respectively.

3.4. Feature Vector

Combining the motion, location, and appearance fea-

tures, for each object i detected in frame Xt, we construct

the feature vector

F i
t =
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as shown in Fig. 1, where Mean, Variance, Skewness and

Kurtosis are extracted from the optical flow; Cx,Cy,Area

denote the coordinates of the center of the bounding box

and the area of the bounding box from the object detector;

and p(C1), . . . , p(Cn) are the class probabilities for the de-

tected object. Hence, at any given time t, with n denoting

the number of possible classes, the dimensionality of the

feature vector is given by m = n+ 7.

3.5. Anomaly Detection

We aim to detect anomalies in streaming videos with

minimal detection delays while satisfying a desired false

alarm rate. Specifically for video surveillance, we can

safely hypothesize that any anomalous event would per-

sist for an unknown period of time. This makes the prob-

lem suitable for a sequential anomaly detection framework

[2]. However, since we have no prior knowledge about the

anomalous event that might occur in a video, traditional

parametric algorithms which require probabilistic models

and data for both nominal and anomalous cases cannot be

used directly. Thus, we propose the following nonparamet-

ric sequential anomaly detection algorithm.

Training: Given a set of N training videos

V , {vi : i = 1, 2, . . . , N} consisting of P frames in

total, we leverage the deep learning module of our pro-

posed detector to extract M feature vectors FM = {F i}
for M detected objects in total such that M ≥ P . We

assume that the training data does not include any anoma-

lies. These M vectors correspond to M points in the

nominal data space, distributed according to an unknown

complex probability distribution. Our goal here is to learn a

nonparametric description of the nominal data distribution.

We propose to use the Euclidean k nearest neighbor (kNN)

distance, which captures the local interactions between

nominal data points, to figure out a nominal data pattern due

to its attractive traits, such as analyzability, interpretability,

and computational efficiency [4, 12]. We hypothesize that

given the informativeness of extracted motion, location,

and appearance features, anomalous instances are expected

to lie further away from the nominal manifold defined by

FM . That is, the kNN distance of anomalous instances

with respect to the nominal data points in FM will be

statistically higher as compared to the kNN distances of

nominal data points. The training procedure of our detector

is given as follows:

1. Randomly partition the nominal dataset FM into two

sets FM1 and FM2 such that M = M1 +M2.

2. Then, for each point F i in FM1 , we compute the kNN

distance di with respect to the points in set FM2 .

3. For a significance level α, e.g., 0.05, the (1−α)th per-

centile dα of kNN distances {d1, . . . , dM1
} is used as a

baseline statistic for computing the anomaly evidence

of test instances.

Testing: During the testing phase, for each object i de-

tected at time t, the deep learning module constructs the fea-

ture vector F i
t and computes the kNN distance dit with re-

spect to the training instances in FM2 . The proposed algo-

rithm then computes the instantaneous frame-level anomaly

evidence δt:

δt = (max
i

{dit})
m
− dm

α
, (2)

where m is the dimensionality of feature vector F i
t . Finally,

following a CUSUM-like procedure [2] we update the run-



ning decision statistic st as

st = max{st−1 + δt, 0}, s0 = 0. (3)

For nominal data, δt typically gets negative values, hence

the decision statistic st hovers around zero; whereas for

anomalous data δt is expected to take positive values, and

successive positive values of δt will make st grow. We de-

cide that a video frame is anomalous if the decision statistic

st exceeds the threshold h. After st exceeds h, we perform

some fine tuning to better label video frames as nominal

or anomalous. Specifically, we find the frame st started

to grow, i.e., the last time st = 0 before detection, say

τstart. Then, we also determine the frame st stops increas-

ing and keeps decreasing for n, e.g., 5, consecutive frames,

say τend. Finally, we label the frames between τstart and

τend as anomalous, and continue testing for new anomalies

with frame τend + 1 by resetting sτend
= 0.

Continual Learning: During testing, if the test statistic

st at time t is zero, i.e, the feature vector F i
t is considered

nominal, then the feature vector is included in the second

nominal training set FM2 . When the statistic st crosses the

threshold h, an alarm is raised, signaling that the sequence

of frames from τstart to t have never occurred before in the

training data. At this point, we propose a human-in-the-loop

approach in which a human expert labels false alarms from

time to time. If it is labeled as a false alarm, all vectors {F i
τ
}

between τstart and t are added to FM2 so as to prevent sim-

ilar future false alarms. Thanks to the kNN-based decision

rule, such a sequential update enables the proposed frame-

work to continually learn on recent data without the need

for retraining from scratch, as opposed to the deep neural

network-based decision rules.

3.6. Computational Complexity

In this section we analyze the computational complexity

of the sequential anomaly detection module, as well as the

average running time of the deep learning module.

Sequential Anomaly Detection: The training phase

of the proposed anomaly detection algorithm requires the

computation of kNN distance for each point in FM1 with

respect to each point in FM2 . Therefore, the time complex-

ity of training phase is given by O(M1M2m). The space

complexity of the training phase is O(M2m) since M2 data

instances need to be saved for the testing phase. In the test-

ing phase, since we compute the kNN distances of a sin-

gle point to all data points in FM2 , the time complexity is

O(M2m). On the other hand, deep learning-based meth-

ods need to be retrained from scratch to avoid catastrophic

forgetting, which would require them to store the old data

as well as the new data. The space complexity of the deep

learning-based methods would be O(abM2) where a× b is

the resolution of the video, which is typically much larger

than m. Needles to say, the time complexity of retraining a

deep learning-based detector is huge.

Deep Learning Module: The YOLO object detector re-

quires about 12 milliseconds to process a single image. This

translates to about 83.33 frames per second. Flownet 2 is

able to process about 40 frames per second. Accounting for

the sequential anomaly detection pipeline, the entire frame-

work would approximately be able to process 32 frames

per second. Hence, the proposed framework can process

a surveillance video stream in real-time. We also report the

running time for other methods such as 11 fps in [16] and

25 fps in [23]. The running time can be further improved

by using a faster object detector such as YOLOv3-Tiny or

a better GPU system. All tests are performed on NVIDIA

GeForce RTX 2070 with 8 GB RAM and Intel i7-8700k

CPU.

4. Experiments

4.1. Datasets

We first evaluate our proposed method on three publicly

available benchmark video anomaly data sets, namely the

CUHK avenue dataset [26], the UCSD pedestrian dataset

[29], and the ShanghaiTech campus dataset [28]. Their

training data consists of nominal events only. We present

some examples of nominal and anomalous frames in Figure

2.

UCSD Ped2: The UCSD pedestrian data consists of 16

training and 12 test videos, each with a resolution of 240

x 360. All the anomalous events are caused due to vehi-

cles such as bicycles, skateboarders and wheelchairs cross-

ing pedestrian areas.

Avenue: The CUHK avenue dataset contains 16 training

and 21 test videos with a frame resolution of 360 x 640. The

anomalous behaviour is represented by people throwing ob-

jects, loitering and running.

ShanghaiTech: The ShanghaiTech Campus dataset is

one of the largest and most challenging datasets available

for anomaly detection in videos. It consists of 330 training

and 107 test videos from 13 different scenes, which sets it

apart from the other available datasets. The resolution for

each video frame is 480 x 856.

4.2. Benchmark Algorithms

In the context of video anomaly detection, to the best of

our knowledge, there is no benchmark algorithm designed

for continual learning. Hence, in Table 1, we compare our

proposed algorithm with the state-of-the-art deep learning-

based methods, as well as methods based on hand-crafted

features: MPPCA [18], MPPC + SFA [29], Del et al. [10],

Conv-AE [13], ConvLSTM-AE [27], Growing Gas [41],

Stacked RNN [28], Deep Generic [14], GANs [32], Liu et

al. [23], Sultani et al. [40]. A popular metric used for com-



Figure 2. Examples of nominal and anomalous frames in the UCSD Ped2, CUHK Avenue and ShanghaiTech datasets. Anomalous events

are shown with red box.

parison in the anomaly detection literature is the Area under

the Curve (AuC) curve. Higher AuC values indicate better

performance for an anomaly detection system. Following

the existing works [7, 16, 23], we use the commonly used

frame-level AuC metric for performance evaluation.

4.3. Impact of Sequential Anomaly Detection

To demonstrate the importance of sequential anomaly

detection in videos, we implement a nonsequential version

of our algorithm by applying a threshold to the instanta-

neous anomaly evidence δt, given in (2), which is similar to

the approach employed by many recent works [23, 40, 16].

As Figure 3 shows, instantaneous anomaly evidence is more

prone to false alarms than the sequential statistic of the pro-

posed framework since it only considers the noisy evidence

available at the current time to decide. Whereas, the pro-

posed sequential statistic handles noisy evidence by inte-

grating recent evidence over time.

4.4. Impact of Optical Flow

In Figure 4, we present the optical flow statistics for the

first test video of the UCSD dataset. Here, the anomaly per-

tains to a person using a bike on a pedestrian path, which

is previously unseen in the training data. It is clearly visi-

ble that there is a significant shift in the optical flow statis-

tics, especially in skewness and kurtosis. This is due to the

higher speed of a bike as compared to a person walking.

Also, this shows the efficacy of optical flow in detecting

motion-based anomalies.

4.5. Results

Benchmark Results: To show the general performance

of the proposed algorithm, not necessarily with continual

learning, we compare our results to a wide range of methods

in Table 1 in terms of the commonly used frame-level AuC

metric. Recently, [16] showed significant gains over the rest

Figure 3. The advantage of sequential anomaly detection over

single-shot detection in terms of controlling false alarms.

of the methods. However, their methodology of computing

the AuC gives them an unfair advantage as they calculate

the AuC for each video in a dataset, and then average them

as the AuC of the dataset, as opposed to the other works

which concatenate all the videos first and then determine

the AuC as the datasets score.

As shown in Table 1, we are able to outperform the ex-

isting results in the CUHK Avenue and UCSD datasets,

and achieve competitive performance in the ShanghaiTech

dataset. We should note here that our reported result in the

ShanghaiTech dataset is based on online decision making

without seeing future video frames. A common technique



Figure 4. Optical flow statistics for the motion-based anomaly in

the first test video of the UCSD Dataset.

Methodology CUHK Avenue UCSD Ped 2 ShanghaiTech

Conv-AE [13] 80.0 85.0 60.9

ConvLSTM-AE[27] 77.0 88.1 -

Stacked RNN[28] 81.7 92.2 68.0

GANs [32] - 88.4 -

Liu et al. [23] 85.1 95.4 72.8

Sultani et al. [40] - - 71.5

Ours 86.4 97.8 71.62

Table 1. AuC result comparison on three datasets.

used by several recent works such as [23, 16] is to normal-

ize the computed statistic for each test video independently

using the future frames. However, this methodology can-

not be implemented in an online (real-time) system as it re-

quires prior knowledge about the minimum and maximum

values the statistic might take.

Continual Learning Results: Due to the lack of exist-

ing benchmark datasets for continual learning in surveil-

lance videos, we first slightly modify the original UCSD

dataset, where a person riding a bike is considered as

anomalous, and assume that it is considered as a nominal

behavior. Our goal here is to compare the continual learning

capability for video surveillance of the proposed and state-

of-the-art algorithms and see how well they adapt to new

patterns. Initially, the proposed algorithm raises an alarm

when it detects a bike in the testing data. Using the hu-

man supervision approach proposed in Section 3, the rele-

vant frames are labelled as nominal and added to the train-

ing set. In Figure 5, it is seen that the proposed algorithm

clearly outperforms the state-of-the-art algorithms [16, 23]

in terms of continual learning performance. More impor-

tantly, as shown in Table 2, it achieves this superior perfor-

mance by quickly updating its training with the new sam-

ples in a few seconds while the state-of-the-art algorithms

need to retrain on the entire dataset for several hours to pre-

vent catastrophic forgetting. Furthermore, it is important to

note that the proposed algorithm is able to achieve a rela-

tively high AuC score using only a few samples, demon-

strating its few-shot learning ability.

Ours Liu et al. [23] Ionescu et al. [16]

Update Time 10 sec 4.8 hrs 2.5 hrs

Table 2. Time required to update the model for each batch of new

samples.
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Liu et al.

Ionescu et al.

Figure 5. Comparison of the proposed and the state-of-the-art al-

gorithms Liu et al. [23] and Ionescu et al. [16] in terms of contin-

ual learning capability. The proposed algorithm is able to quickly

train with new samples and significantly outperform both of the

methods.

Real-Time Surveillance Results: Even though ex-

isting datasets such as ShanghaiTech, CUHK Avenue,

and UCSD provide a good baseline for comparing video

surveillance frameworks, they lack some critical aspects.

Firstly, they have an underlying assumption that all nomi-

nal events/behaviors are covered by the training data, which

might not be the case in a realistic implementation. Sec-

ondly, there is an absence of temporal continuity in the test

videos, i.e., most videos are only a few minutes long and

there is no specific temporal relation between different test

videos. Moreover, external factors such as brightness and

weather conditions that affect the quality of the images are

also absent in the available datasets. Hence, we also eval-

uate our proposed algorithm on a publicly available CCTV

surveillance feed1. The entire feed is of 8 hours and 23 min-

1The entire surveillance feed is available here:

https://www.youtube.com/watch?v=Xyj-7WrEhQwt=3460s



Figure 6. The visualization of different causes for false alarm in the surveillance feed dataset. In the first case, the person stands in the

middle of the street, which causes an alarm as this behavior was previously unseen in the training data. Similarly, in the second case, a

change in the weather causes the street sign to move. In the third case, the appearance of multiple cars at the same time causes a shift in

the distribution of the optical flow. Finally, in the fourth case a bike is detected, which was not previously seen in the training data.

utes and continuously monitors a street. To make the prob-

lem more challenging we initially train only on 10 minutes

of data and then continually update our model as more in-

stances become available.
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Ours (Continual Learning)

Ours (w/o Continual Learning)

Rain
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Figure 7. Continual learning ability of the proposed algorithm. As-

suming an arbitrary constant threshold, we observe that the algo-

rithm is able to quickly learn new nominal behaviors, and thus re-

duce the false alarm rate as compared to the same algorithm which

does not continually update the learned model.

In Figure 7, we demonstrate the continual learning per-

formance of the proposed algorithm through reduced num-

ber of false alarms after receiving some new nominal la-

bels. It should be noted that our goal here is to emphasize

the continual learning ability of our algorithm, rather than

showing the general detection performance. Each segment

here corresponds to 20,000 frames. After each segment,

a human roughly labels the false positive events. In this

case, to reduce the computational complexity and examine

the few-shot learning ability of the proposed algorithm, we

only consider 20% of all false positive events for updating

the model. Although the number of frames might seem a

lot, it roughly translates to 10 seconds of streaming video

data, so it can still be considered as few-shot learning in

video analysis. We observe that even with relatively small

updates, the false alarm rate is significantly lower as com-

pared to the same algorithm where we do not update the

model continuously. This proves that the proposed algo-

rithm is able to learn meaningful information from recent

data using only few samples, and is able to incrementally

update the model without accessing the previous training

data.

5. Conclusion and Future Work

For video anomaly detection, we presented an contin-

ual learning algorithm which consists of a transfer learning-

based feature extraction module and a statistical decision

making module. The first module efficiently minimizes

the training complexity and extracts motion, location, and

appearance features. The second module is a sequential

anomaly detector which is able to incrementally update the

learned model within seconds using newly available nomi-

nal labels. Through experiments on publicly available data,

we showed that the proposed detector significantly outper-

forms the state-of-the-art algorithms in terms of any-shot

learning of new nominal patterns. The continual learning

capacity of the proposed algorithm is illustrated on a real-

time surveillance stream, as well as a popular benchmark

dataset.

The ability to continually learn and adapt to new scenar-

ios would significantly improve the current video surveil-

lance capabilities. In future, we aim to evolve our frame-

work to work well in more challenging scenarios such as

dynamic weather conditions, rotating security cameras and

complex temporal relationships. Furthermore, we plan to

extend the proposed continual learning framework to new

anomalous labels, and other video processing tasks such as

online object and action recognition.
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