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Abstract

There is a growing demand for an intelligent system
to continually learn knowledge from a data stream. Con-
tinual learning requires both the preservation of previous
knowledge (i.e., avoiding catastrophic forgetting) and the
acquisition of new knowledge. Different from previous
works that focus only on model adaptation (e.g., regular-
ization, network expansion, memory rehearsal, etc.), we
propose a novel training scheme named acquisitive learn-
ing (AL), which emphasizes both the knowledge inheritance
and knowledge acquisition. AL starts from an elaborately
selected model with pre-trained knowledge (the inherited
model) and then adapts it to new data using segmented
training. The selection is achieved by injecting random
noise to various inherited models for better model robust-
ness, which promises higher accuracy in further knowledge
acquisition. The approach is validated by the visualization
of the loss landscape and quantitative roughness measure-
ment. The combination of the selective inherited model and
knowledge acquisition reduces catastrophic forgetting by
10X on the CIFAR-100 dataset.

1. Introduction

Deep neural networks have been widely used in numer-
ous applications such as image classification [ 10, 14], object
detection [4, 12], nature language processing [1, 27], etc.
Among them, emerging applications such as self-driving
cars, drones, and robots are required to deal with much more
dynamic and complicated tasks in real-time. One necessary
attribute for such emerging applications is known as contin-
ual learning [9, 13, 21], which requires the system to con-
tinually acquire new knowledge from a data stream and to
preserve previously acquired knowledge.

Previous works have proposed different techniques to
satisfy the aforementioned needs, aiming to mitigate catas-
trophic forgetting, i.e. the learning of new tasks causes over-
writing or interfering in model weights. These approaches
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(a) Conventional continual learning: incrementally learn one class after
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(b) The flow of acquisitive learning emphasizes both the importance of
knowledge inheritance and knowledge acquisition.
Figure 1. The training flow of (a) conventional continual learn-
ing, which starts learning each task from scratch; (b) the proposed
acquisitive learning, which acquires new knowledge based on an
inherited model.

start learning sequential tasks from a fresh, randomly ini-
tialized model, as shown in Figure la. However, various
extents of catastrophic forgetting still exist [26] and thus,
severe accuracy drop on previous tasks is often observed.
On the contrary to artificial intelligent systems, biolog-
ical intelligent systems adapt to new knowledge based on
an inherited model in specific neurophysiological struc-
tures, which is selected through a long and careful evolu-
tion process [25, 8, 19]. This observation is presented by
the Moravec’s paradox [ 19] (tasks humans find complex are
easy to teach Al, while simple and sensorimotor skills come
instinctively to humans). To some extent, the intelligence in
nature may be determined more by the long-term genetics
and inheritance rather than the short-term adaptation [25].
Inspired by the Moravec’s paradox, we propose a novel
training scheme named acquisitive learning (AL), as shown



in Figure 1b. AL emphasizes the importance of both knowl-
edge inheritance and acquisition: the majority of knowledge
is first pre-trained and preserved in the inherited model,
and then the model is adapted to the new incoming tasks
(the acquisition). Through experiments, we further con-
firm the vital correlation between the robustness of the in-
herited model and its acquisition capacity on new knowl-
edge. Accordingly, we propose a noise-based approach to
evaluate and select the inherited model with better robust-
ness. Such an approach is validated by visualizing the loss
landscape [| 1] and measuring the roughness of the land-
scape with quadratic linear regression. For knowledge ac-
quisition, we use segmented training technique proposed
by [2], which freezes important parameters for the previ-
ously learned tasks, and only trains the secondary param-
eters to acquire new knowledge. During this learning pro-
cess, a tiny amount of fixed-size memory data is used to
help preserve previous knowledge.

2. Related work

The conventional approach of continual learning starts
from a set of randomly initialized network parameters O,
and each incoming new task updates entire © or partial ©.
Regularization approaches [9, 13] constrain weight update
by adding a regularization term in the loss function. Pa-
rameter isolation approaches [16, 17] allocate a subset of
weights for previous tasks and prune the rest to learn new
data. Segmented training approach [2] freezes important
weights to preserve learned knowledge and keeps the sec-
ondary weights to learn new tasks. Network expansion ap-
proaches [24, 22] grow new branches or parameters to in-
clude new knowledge. Memory replay approaches [21, 15]
train the model with a small subset of previously seen data.
However, as the network is not inheriting any prior knowl-
edge, each new task easily shifts the weight distribution,
causing catastrophic forgetting.

3. Methodology

In Section 3.1 to 3.2, we describe how we prepare candi-
date models by pre-training and freezing important weights,
then use the noise-based approach to evaluate model robust-
ness. Section 3.3 describes evaluation of this approach by
landscape visualization and a proposed roughness measure-
ment. After the inherited model is prepared and carefully
selected, we leverage the techniques in progressive seg-
mented training (PST) [2] to infuse new knowledge into the
inherited model, which is described in Section 3.4.

3.1. Preparation of the inherited models

Acquisitive learning first trains the network with a few
classes of data (these data will not appear as new tasks in
future online learning), and then sorts filters (in convolu-

tional layers) and neurons (in fully-connected layers) based
on a score that has been proven in [18, 2]:

The score is used to measure how important a unit is to
the loss function. For a filter ©¢ € RT>K*K in Jayer I, the
score is mathematically described as:

ALOF) =T K v K |"ﬁ§?:§3>o°’m”|, (1)
where 2EQ52i0) ¢ the gradient of the loss function with

e
respect to the parameter ©;"""".

For a neuron @; e R jp layer [, the score is mathe-
matically described as:
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According to this importance score, filters or neurons
are sorted and the top S ones in each layer are frozen (i.e.,
do not update in future training iterations) in the inherited
model, while the rest are kept to acquire new knowledge
later. We follow the same setting in [2] for 3: it should be
roughly proportional to the amount of the inherited knowl-
edge.

3.2. Noise injection

After several candidate models are prepared, we use
noise injection to evaluate the model robustness. For each
layer [ in a neural network, we apply noise as below:

0,=06,+a-n, 3

where O; is the noise-free weight tensor in the /-th layer,
« is a constant scaling coefficient, and n; is the noise ten-
sor of the [-th layer that follows normal distribution n; ~
N(0,07) (oy is the standard deviation of ;).

Noise injection methods have been used in other applica-
tions such as adversarial attack [6], where noise is treated as
a trainable parameter during training. In our work, we per-
form a one-shot injection of noise to the candidate models.
A drop in testing accuracy is observed for the model with
noisy tensor O as compared to the model with ©. Based on
this accuracy drop, we are able to monitor the robustness
of the inherited model: with noise of the same o injected,
model that has a larger accuracy drop is considered less ro-
bust and vice versa. The intuition behind this claim is that a
more robust model has a higher tolerance to disturbance.

3.3. Evaluation of the landscape roughness

We further use a visualization tool [11] to visualize the
landscape of the loss function and validate the aforemen-
tioned noise-based selection approach. A model with a
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Figure 2. Landscape visualization of the loss function and the roughness measurement for 6 models. A model (e.g. DenseNet-121) with a
flatter landscape and a lower roughness measurement is considered to be more robust, and vice versa.

more rough landscape has worse robustness than the one
with a flatter landscape [11]. Meanwhile, we propose a
quantitative metric to calculate the roughness of the land-
scape. We fit the three-dimension matrix extracted from vi-
sualization tools with quadratic linear regression:
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where x, y are the coordinates of the three-dimension ma-
trix, and z is the loss function. Then we obtain the mean
square error (MSE), the fitting error of the above regression,
to represent the roughness. A landscape with a smaller MSE
(i.e. the roughness measurement) is considered to be flatter.

3.4. Knowledge acquisition

Following the above approaches, we prepare and select
a robust model as the inherited model. Then we use the im-
portance sampling and memory balancing techniques pro-
posed in PST [2] to infuse new knowledge from a data
stream into the inherited model. PST identifies and freezes
important filters/neurons for a learned task, and leaves the
secondary filters/neurons to learn future new tasks. The
memory set is a tiny set (< 1% as compared to a full dataset)
of uniformly and randomly sampled data from all the previ-
ously learned classes. With PST techniques, the acquisitive
learning scheme is able to continually acquire new knowl-
edge based on an inherited model. It is worth mentioning
that the techniques to consolidate inherited knowledge and
to acquire new knowledge are flexible. In this work, we
have focused further on the AL scheme.

4. Experimental results

The experiments are performed with PyTorch [20] on
one NVIDIA GeForce RTX 2080 platform. We use stochas-
tic gradient descent with a momentum of 0.9 and a weight
decay of 0.0005. For each experiment, we run multiple
times and report the average accuracy.

Datasets and network: we first train a subset of classes
to produce the inherited model, and then we treat the unseen
classes as new tasks. The balanced memory set contains 200
and 20 images for each class for CIFAR-10 and CIFAR-
100, respectively, so that the total memory size is bounded
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Figure 3. After injecting noise with the same «, more accuracy
drop is observed for less robust models, and vice versa. This rank-
ing is consistent with that from the landscape visualization and
roughness measurement shown in Figure 2.

within 2,000 images for both datasets, aligning with previ-
ous works [21, 2]. The network structures of VGG-16 [23],
ResNets [5], DenseNet [7] used in the following experiment
are standard structures following [11].

Evaluation protocol: we use single-head evaluation,
which is considered to be more realistic and challenging as
compared to multi-head evaluation [3]. ‘Accuracy of the in-
herited model’ refers to the testing accuracy of (s — 1)-class
classifier if the inherited knowledge is {X*,..., X*71}.
‘Accuracy on the new task’ refers to the testing accuracy
of (t — s + 1)-class classifier for input data {X*,..., X*}
as new observations. ‘Overall accuracy’ refers to the test-
ing accuracy of ¢-class classifier on all the data seen so far.
‘Accuracy forgetting’ refers to the accuracy drop from the
accuracy of the inherited model to overall accuracy.

4.1. Robustness of the inherited model

After the preparation of several candidate models, we
inject noise to each model following Equation 3 with o =
0.01, 0.05, 0.1, 0.5 and 1.0, and document the accuracy
drop caused by this disturbance in Figure 3. For example,
with noise of & = 1.0 injected, ResNet-56 without shortcuts
(ResNet-56-NS) drops 70.9% in accuracy, while DenseNet-
121 drops 15.4% in accuracy. Thus, we consider the for-
mer model is worse than the latter one in model robustness.
Such a claim is verified by the landscape of the loss func-
tion [11] and their corresponding roughness in Figure 2:
VGG-16, ResNet-20, ResNet-56, and DenseNet-121 have
relatively flat landscapes and lower roughness; ResNet-20
without shortcuts (ResNet-20-NS) and ResNet-56 without



Accuracy of the | Accuracy on
Model inherited model | the new task | AAccuracy
(9 classes) (1 class)
ResNet-56-NS 79.0% 59.7% 19.3%
ResNet-20-NS 90.1% 81.0% 9.1%
ResNet-20 91.5% 85.1% 6.4%
ResNet-56 92.3% 86.0% 6.3%
VGG-16 92.7% 86.5% 6.2%
DenseNet-121 93.5% 88.3% 5.2%

Table 1. Acquisition capacity for different models. ‘9+1’ exper-
iment with CIFAR-10 dataset is presented here. The ranking of
acquisition capacity is consistent with the robustness shown in Fig-
ure 3.
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Figure 4. The learning curves for ‘9+1’ experiment on CIFAR-10
dataset. Since ResNet-56 has better robustness than ResNet-56-
NS, its accuracy drop after learning a new task is less.

shortcuts (ResNet-56-NS) have relatively sharp landscapes
and higher roughness.

We observe that the more robust the inherited model
is, the better knowledge acquisition is. For the models
shown in Figures 2 and 3, we perform ‘9+1’ experiments
on CIFAR-10 dataset, where ‘O+1’ means that 9 classes
are pre-trained and deployed in the inherited model and 1
class is learned as the new acquisition. Table | presents
the pre-trained accuracy on 9 classes and the accuracy on
the new class, and the corresponding drop in accuracy,
i.e. Aaccuracy. AAccuracy reveals the generalization
ability of the pre-trained model on new observations, i.e.
the acquisition capacity of the inherited model. The lower
Aaccuracy is, the better acquisition capacity is. We further
focus on two models, ResNet-56 and ResNet-56-NS, and
plot their learning curve in Figure 4. ResNet-56-NS has
worse acquisition capacity on the new task than ResNet-
56. These results indicate that the quality of the inherited
model, particularly its model robustness, is a vital factor in
knowledge acquisition.

4.2. Amount of the inherited knowledge

We mimic different amounts of inherited knowledge us-
ing different numbers of pre-trained classes. In Figure 5,
‘X+Y’ means that X classes are pre-trained in the inherited
model and Y classes need to be acquired. There is no over-
lap between X and Y. For instance, the accuracy forgetting
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Figure 5. Accuracy drop is minimized with the an increasing
amount of knowledge in the inherited model.
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Figure 6. The comparison of overall accuracy between conven-
tional continual learning and the proposed acquisitive learning
when incrementally learning 10 classes in a sequence on CIFAR-
100. ‘IS0’ means that AL starts training from an inherited model
that is pre-trained on 50 classes, and so on.

after learning 10 new classes is 40.5% for ‘10+10’ case but
only 7.7% for ‘90+10’ case. The more knowledge embed-
ded in the inherited model, the less forgetting in acquisition.
Such a trend gradually saturates.

4.3. Learning from a data stream with AL

We design experiments to verify the efficacy of acquisi-
tive learning when learning in a data stream. To align with
previous works, we use ResNet-20 as the learning model
here, although it is not the most robust model according to
Section 4.1. In Figure 6, we simulate conventional con-
tinual learning approaches [9, 13] that starts learning from
scratch and learns each task (10 classes from CIFAR-100) in
a sequence. The overall single-head accuracy of the conven-
tional approaches are plotted in gray. Finetuning denotes
the simulation that the network trained on previous tasks is
directly fine-tuned by new tasks, without strategies to pre-
vent catastrophic forgetting. LwF.MC denotes the method
that uses LwF [13] but is evaluated with multi-class single-
head classification. EWC denotes the approach proposed
in [9]. Without inheritance means that we start the train-
ing from a randomly initialized model and acquire 10 new
classes using importance sampling and memory balancing.

On the other hand, by assuming inherited knowledge
contains much more classes than new observations, we pre-
pare the inherited models (following Section 3.1) with 50
to 90 pre-trained classes from CIFAR-100 dataset and then



incrementally train the model (following Section 3.4) with
10 new classes from the rest of the dataset. /3 is set as 0.5
for the inherited model in ‘I50" experiment, and similarly,
0.9 for the inherited model in ‘190’ experiment. The over-
all single-head accuracy of the AL is plotted in color. For
CIFAR-100, the conventional scheme forgets 61.0%-76.0%
accuracy after learning 100 classes, while acquisitive learn-
ing limits the accuracy drop to 7.1% in the best case, reduc-
ing the accuracy forgetting by ~10x.

5. Conclusion

In this paper, we propose acquisitive learning that em-
phasizes the importance of both knowledge inheritance and
knowledge acquisition. We validate that the robustness of
the inherited model is strongly related to knowledge acqui-
sition and thus, the inherited model should be carefully se-
lected. We further propose to inject noise to select the most
robust inherited model and validate it by landscape visual-
ization and roughness measurement. With extensive exper-
iments, we demonstrate that the combination of the above
steps reduces accuracy drop by 10x on CIFAR-100 dataset.
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