
Lifelong Machine Learning with

Deep Streaming Linear Discriminant Analysis

Tyler L. Hayes1 Christopher Kanan1,2,3

1Rochester Institute of Technology 2Paige 3Cornell Tech

tlh6792@rit.edu, kanan@rit.edu

Abstract

When an agent acquires new information, ideally it would

immediately be capable of using that information to under-

stand its environment. This is not possible using conventional

deep neural networks, which suffer from catastrophic forget-

ting when they are incrementally updated, with new knowl-

edge overwriting established representations. A variety of

approaches have been developed that attempt to mitigate

catastrophic forgetting in the incremental batch learning

scenario, where a model learns from a series of large collec-

tions of labeled samples. However, in this setting, inference

is only possible after a batch has been accumulated, which

prohibits many applications. An alternative paradigm is on-

line learning in a single pass through the training dataset on

a resource constrained budget, which is known as streaming

learning. Streaming learning has been much less studied

in the deep learning community. In streaming learning, an

agent learns instances one-by-one and can be tested at any

time, rather than only after learning a large batch. Here,

we revisit streaming linear discriminant analysis, which has

been widely used in the data mining research community. By

combining streaming linear discriminant analysis with deep

learning, we are able to outperform both incremental batch

learning and streaming learning algorithms on both Ima-

geNet ILSVRC-2012 and CORe50, a dataset that involves

learning to classify from temporally ordered samples1.

1. Introduction

For many real-time applications, an agent must be capable

of immediate online learning of each training instance, with-

out the ability to loop through the entire dataset and while

being subject to severe resource constraints. The ability to do

online learning under these constraints from non-stationary

data streams in a single pass is known as streaming learn-

ing [2, 4, 16, 19, 22, 23, 27, 43]. This training paradigm

presents unique challenges to agents including limited ac-

1https://github.com/tyler-hayes/Deep_SLDA

Figure 1: Learning curve for incremental ImageNet. Our

Deep SLDA approach achieves the best final top-5 accuracy,

while running over 100 times faster and using 1,000 times

less memory than the iCaRL and End-to-End models.

cess to computational resources in terms of memory and

compute time and inference must be able to be performed at

any time during training [20].

Deep neural networks (DNNs) are the dominant approach

in computer vision for inferring semantic information from

sensors such as cameras, but conventional DNNs are not

capable of being incrementally updated or learning quickly

from individual instances. Incrementally updating a DNN is

challenging due to the stability-plasticity dilemma [1]. To

learn, a DNN must alter its weights, but altering weights

that are critical for retaining past knowledge can cause for-

getting. When a DNN is incrementally updated with a tem-

poral stream of data that is not independent and identically

distributed (iid), this dilemma typically manifests as catas-

trophic forgetting [37]. Rather than gradually losing the

ability to work well on past information, catastrophic for-

getting refers to how learning only a small amount of new

information can cause the complete loss of ability to operate

on previously learned tasks.

In the past few years, much effort has been directed at
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(a) Incremental Batch Learning (b) Streaming Learning

Figure 2: Streaming learning requires agents to learn sample-by-sample in real time, making it better suited for embedded

applications than incremental batch learning. For example, in our experiments on CORe50, each incremental batch consists of

1,200 samples (2 classes with 600 samples each). For ImageNet, each incremental batch consists of ∼13,000 images (100

classes with ∼1,300 samples each). All examples must be seen by the model multiple times before inference can be performed.

In contrast, for streaming learning, new information can be learned and used immediately. Images are from CORe50.

creating modified DNNs that can be incrementally updated

without catastrophic forgetting. The vast majority of these

systems operate in the incremental batch learning frame-

work [9, 10, 18, 30, 31, 44, 52]. In this setting, the DNN

receives a series of large batches of new labeled samples.

After a batch has been received, the DNN loops over the

batch until it is adequately learned, and then the DNN can

be tested on information in that batch and previous batches.

Most incremental batch learning methods utilize partial re-

hearsal or pseudo-rehearsal [31]. Partial rehearsal involves

storing some examples from each batch in auxiliary memory

and then mixing them with the current batch being learned.

Instead of storing examples, pseudo-rehearsal uses a genera-

tive model to create examples from earlier batches. While

pseudo-rehearsal seems appealing, the generator often has

just as many, if not more, parameters than the DNN used

for inference and continuously generating examples to learn

is computationally expensive. Neither approach is ideal for

a model with limited resources for fast on-device learning.

Cloud computing can avoid this problem, but it can lead to

privacy, security, and latency issues.

Streaming learning has been little studied with DNNs.

Numerous streaming classifiers have been explored in the

data mining community, but these methods have primar-

ily been assessed with low-dimensional data streams and

most are slow to train [19]. Here, we explore the use of

deep Streaming Linear Discriminant Analysis (SLDA) [40]

for training the output layer of a convolutional neural net-

work (CNN) incrementally, which has not been done before.

We validate performance on large-scale image classification

datasets under multiple data orderings that cause catastrophic

forgetting in conventional DNNs. Since SLDA only trains

the output layer of a CNN and does not store any previous

data, it is a lightweight classifier that can be easily deployed

on embedded platforms.

This paper makes the following contributions:

1. We describe the deep SLDA algorithm. We are the first

to use SLDA for the classification of features from a

deep CNN on large-scale image classification datasets.

2. We demonstrate that deep SLDA can surpass state-of-

the-art streaming learning algorithms.

3. Using both incremental ImageNet ILSVRC-2012 and

CORe50, we demonstrate that deep SLDA can exceed

recent methods for doing incremental batch learning,

which is an easier problem, even though these methods

update their hidden layers. Compared to these methods

deep SLDA is over 100 times faster to train and uses

1,000 times less memory.

2. Problem Formulations & Related Work

2.1. Streaming Learning

In incremental batch learning, an agent learns a dataset D
that is broken up into T distinct batches Bt, each of size Nt.

At time t, it only has access to Bt, but it may loop over Bt

multiple times. Testing occurs between batches. Conversely,

in streaming learning, an agent learns examples one at a time

(Nt = 1) in a single pass through the dataset (see Fig. 2).

Mirroring animal learning, the agent can be evaluated at any

point and it cannot loop over any portion of the dataset. In

our setup, we assume the agent is learning to classify an

input with no contextual information about the task.

While much progress has been made in mitigating catas-

trophic forgetting for neural networks in the incremental



batch learning paradigm [9, 10, 18, 30, 31, 44, 52], there

is still a large gap between incremental batch learners and

offline models [31], and much less progress has been made

in the streaming paradigm [23].

2.2. Methods for Incremental Batch Learning

Multiple approaches have been explored for mitigating

forgetting, including regularizing weights to remain close

to their previous values [3, 10, 15, 32, 45, 47, 52], promot-

ing sparse weight updates to mitigate interference [13], and

ensembling multiple classifiers [18], but recently, models

that incorporate rehearsal (i.e., replay) have demonstrated

the most success [9, 23, 30, 31, 34, 39, 44]. Rehearsal

can come in the form of partial rehearsal where an agent

maintains a subset of previous examples that are mixed

with new samples to update the network. Partial rehearsal

has been widely adopted by methods such as iCaRL [44]

and End-to-End Incremental learning [9]. In conjunction

with storing and replaying previous samples, many methods

use a distillation loss [25] to regularize weight updates so

that the network does not drift far from its previous solu-

tion [9, 26, 29, 44, 50].

Instead of storing examples explicitly, pseudo-rehearsal

methods learn to model the distribution of previous training

samples and generate ‘pseudo-examples’ to mix with new

data during updates using a generative model such as an auto-

encoder [30]. While rehearsal methods have demonstrated

success and are widely used, they are memory intensive (i.e.,

storing explicit past samples in the case of rehearsal and

storing an encoder and decoder for pseudo-rehearsal) and

each incremental update requires more compute time due

to the large number of samples. Additionally, generative

models such as auto-encoders and generative adversarial

networks can often be slow and difficult to train.

Although there has been much recent interest in incre-

mental batch learning [9, 10, 30, 31, 44, 52], this setting is

not appropriate for models deployed in real-time environ-

ments. Waiting for a batch of information to accumulate

before inference possibly restricts many applications.

2.3. Methods for Streaming Learning

Streaming learning has been studied since at least

1980 [38], and many popular streaming classifiers come

from the data mining community. Hoeffding Decision

Trees [4, 16, 21, 27, 28] incrementally grow decision trees

over time under the Hoeffding bound theoretical guarantees.

Another widely used method is ensembling multiple clas-

sifiers [5, 6, 48]. However, both Hoeffding Decision Trees

and ensemble methods are slow to train [19], making them

ill-suited choices for many embedded applications operat-

ing in real-time. There have been shallow neural networks

designed for streaming learning, including ARTMAP net-

works [7, 8, 49]; however, ARTMAP is sensitive to the order

in which training data is presented and it is not capable of

representation learning.

Recently, there have been two notable attempts to marry

streaming learning with DNNs: 1) the gradient episodic

memory (GEM) family of algorithms [11, 36] and 2)

ExStream [23]. The GEM family of models use regulariza-

tion to constrain weight updates on new tasks such that the

loss incurred on previously stored training samples can de-

crease, but not increase. While popular, they cannot readily

be used for embedded applications because they require the

task label during inference. If task labels are not provided to

these models during testing, model performance will signifi-

cantly degrade, deeming the models unusable [10, 17, 31].

The second method for updating a DNN in the stream-

ing setting is the ExStream algorithm [23]. Similar to deep

SLDA, ExStream can update only the fully-connected lay-

ers of a CNN. ExStream uses partial rehearsal to combat

forgetting by maintaining a buffer of prototypes for each

class. When it receives a new instance to learn, it stores

that example in its associated class-specific buffer and then,

if the buffer is full, it merges the two closest exemplars in

its buffer. The entire buffer is then used to update the fully-

connected layers with a single iteration of stochastic gradient

descent. While it is one of the only deep streaming classi-

fiers, ExStream still has bottlenecks in terms of memory and

compute due to its rehearsal mechanisms.

Especially relevant to this paper are SLDA [40] and

Streaming Quadratic Discriminant Analysis (SQDA). SLDA

maintains one running mean per class and a shared covari-

ance matrix that can be held fixed, or updated using an online

update. To make predictions, SLDA assigns the label to an

input of the closest Gaussian computed using the running

class means and covariance matrix. Similar to SLDA, SQDA

assumes that each class is normally distributed. However, in-

stead of assuming each class has the same covariance, SQDA

assumes each class has its own covariance, which can be

updated using online estimates. Due to the maintenance of

one covariance matrix per class, SQDA requires more mem-

ory and compute resources as compared to SLDA, making

it less suitable for on-device learning. For example, using

SQDA with embeddings from a ResNet-18 [24] architecture

on a 1,000 class dataset such as ImageNet would require

storing 1,000 covariance matrices of dimension 512×512,

whereas SLDA would only require storing a single 512×512

covariance matrix. Further, it was shown in [33] that the

estimated posterior distribution of LDA is equivalent to the

softmax classifier often used with modern neural networks,

thus motivating the use of SLDA.

3. Deep Streaming LDA

Formally, we incrementally train a CNN yt = F (G (Xt))
in a streaming manner, where Xt is the input image and yt
is the output category. We decompose the network into two



nested functions: G (·) consists of the first J layers of the

CNN (with parameters θG) and F (·) consists of the last

fully-connected layer (with parameters θF ). We assume the

output of G (·) is a vector, which could be produced by pool-

ing across spatial locations of a feature map, flattening the

feature map, etc. Because the filters learned in the early lay-

ers of a CNN vary little across large natural image datasets

and are highly transferable [51], SLDA keeps θG fixed, and

focuses on training F (·) in a streaming manner. We dis-

cuss how G (·) is trained during a base initialization phase

in Sec. 4.3, which is common in recent incremental batch

learning literature [9, 44].

SLDA is an online extension of LDA. It is used in the

data mining community to perform streaming learning from

low-dimensional data streams. We adapt SLDA to train a

linear decoder F (·) for G(·), i.e.,

F (G(Xt)) = Wzt + b , (1)

where zt = G (Xt) ∈ R
d is a vector, K is the total number

of categories and d is the dimensionality of the data with

both weight matrix W ∈ R
K×d and bias vector b ∈ R

K

being updated online.

SLDA stores one mean vector per class µk ∈ R
d with

an associated count ck ∈ R and a single shared covariance

matrix Σ ∈ R
d×d. When a new datapoint (zt, y) arrives, the

mean vector and associated counter are updated as:

µ(k=y,t+1) ←
c(k=y,t)µ(k=y,t) + zt

c(k=y,t) + 1
(2)

c(k=y,t+1) = c(k=y,t) + 1 , (3)

where µ(k=y,t) is the mean vector for class y at time t and

c(k=y,t) is the associated y-th counter.

We use shrinkage regularization to compute the precision

matrix, i.e., Λ = [(1− ε)Σ+ εI]
−1

, where ε = 10−4 is the

shrinkage parameter and I ∈ R
d×d is the identity matrix. We

explore two SLDA variants: 1) using a frozen covariance ma-

trix after base initialization (see Sec. 4.3), and 2) streaming

updates of the covariance matrix. With a frozen covariance

matrix, its inverse is computed only once, but updating it

requires the inverse to be computed before inference.

For the SLDA variant that updates the covariance matrix

online, we use the update from [14], i.e.,

Σt+1 =
tΣt +∆t

t+ 1
, (4)

where ∆t is computed as:

∆t =
t
(

zt − µ(k=y,t)

) (

zt − µ(k=y,t)

)T

t+ 1
. (5)

To compute predictions, we use Eq. 1 and compute wk,

i.e., the rows of W, as:

wk = Λµk (6)

and bk, i.e., the individual elements of b, as:

bk = −
1

2
(µk ·Λµk) , (7)

where · denotes the dot product.

SLDA is resistant to catastrophic forgetting because its

running means for each class are independent, which directly

avoids the stability-plasticity dilemma. While the covariance

matrix can change over time and is sensitive to class ordering,

the changes to it result in, at most, gradual forgetting.

4. Experiments

4.1. Baseline & Comparison Models

We compare SLDA with several baselines under two

paradigms, i.e., those that don’t require task labels and those

that do. Since SLDA does not require task labels, our main

baselines consist of models that operate in this paradigm.

While many recent incremental batch learning methods per-

form multiple loops over a data batch, SLDA is a streaming

method that learns per instance. Despite this advantage for

incremental batch learners, we compare SLDA against sev-

eral recent methods. For all experiments we incrementally

train the ResNet-18 [24] CNN architecture. We assess these

streaming and incremental batch learning methods:

• Deep SLDA – We compare two versions of deep SLDA

for updating the classification layer of a CNN. One ver-

sion uses a covariance matrix that is computed during

base initialization (see Sec. 4.3) and then kept fixed.

The other version uses a covariance matrix that is incre-

mentally updated during streaming learning.

• Fine-Tuning – This is a streaming baseline where the

CNN is fine-tuned sample-by-sample with a single

epoch through the dataset. No buffer is used, and this

approach suffers from catastrophic forgetting [31]. We

compare two versions: 1) update only the output layer

(θF ); and 2) update the entire network (θF and θG).

• ExStream – Like SLDA, ExStream is a streaming

learning algorithm; however, it can only update fully-

connected layers of the network. It maintains prototype

buffers by storing an incoming vector and merging the

two closest vectors in the buffer [23]. After the buffer

is updated, its contents are used to train fully-connected

layers in a network. We use ExStream to train the out-

put layer of the network. It achieved state-of-the-art

performance on the CORe50 [35] streaming dataset.

• iCaRL – iCaRL [44] is a popular incremental batch

learning method designed for incremental class learn-

ing, where each batch must contain two or more cate-

gories, and these classes are not seen in later batches.

Without significant changes, it cannot operate in other

ordering scenarios. To mitigate catastrophic forgetting,

iCaRL stores raw images from earlier batches for partial



rehearsal and uses distillation with these stored exam-

ples to prevent weights from drifting too far from their

previous values. To make predictions, iCaRL uses the

Nearest Class Mean classifier in feature space. iCaRL

updates the entire CNN (θF and θG).

• End-to-End – The End-to-End Incremental Learning

model [9] is an incremental batch learning method that

is a modification of iCaRL. It achieved state-of-the-art

performance on incremental class learning with Ima-

geNet. Rather than a Nearest Class Mean classifier, it

uses the CNN’s output layer. It uses several augmenta-

tion strategies to get more out of its buffer, including

brightness enhancements, contrast normalization, ran-

dom crops, and mirror flips. It has the same limitations

as iCaRL: it cannot do streaming learning and can only

operate in the incremental class batch learning setting.

• Offline – Offline is a model that is trained in an of-

fline, non-streaming manner. It is used to normalize

performance and it serves as an upper bound on an

incremental learner’s performance. We compare two

versions: 1) update θF only, and 2) update θF and θG.

All models use the same offline base CNN initialization

procedure (see Sec. 4.3). Subsequently, ExStream and SLDA

re-start a streaming learning phase from the beginning of

the dataset to train the output layer while keeping remaining

parameters fixed. With the exception of SLDA, we use cross-

entropy classification loss and stochastic gradient descent

with momentum to train the CNN. End-to-End and iCaRL

additionally use distillation for targets. While it would be

interesting to develop a deep SQDA method, maintaining

a full covariance matrix for each class is not feasible for

high-dimensional, many-class scenarios, like ImageNet.

4.1.1 Baselines Requiring Task Labels

As mentioned earlier, the GEM models [11, 36] require a task

label to be provided at test time, which is not compatible with

our main experimental setup, and these labels are typically

not available in embedded applications where streaming

learning would be most useful. Regardless, we provide a

small-scale experiment to compare SLDA against a newer

variant of GEM, Averaged GEM (A-GEM) [11], and several

other recent regularization models in Sec. 4.4.2.

4.2. Datasets, Data Orderings, & Evaluation

We compare the models on the ImageNet ILSVRC-

2012 [46] and CORe50 [35] datasets. ImageNet has over one

million images from the internet of 1,000 object categories.

Following others [9, 44], all ImageNet models start from an

offline base initialization of 100 randomly selected classes,

and then performance is computed every 100 classes on all

classes learned. We use top-5 accuracy for ImageNet.

Although ImageNet contains many categories, it is not

ideal for streaming learning because it does not have tem-

porally ordered video frames, which more closely models

animal perception. To address this, we use the CORe50

dataset. It contains short 15 second video sequences of

an object moving. It has 10 object categories, each with

5 distinct objects, that were recorded under 11 different

environmental conditions (e.g., various backgrounds, out-

doors/indoors, etc.). The videos were originally recorded at

20 fps, but we sample them at 1 fps and use the 128×128

bounding box crops. Due to the smoothness of the videos,

down-sampling the video frame rate is a common practice

with CORe50 [23, 41]. We use the train/test split suggested

in [35], which results in 600 train and 225 test images per

class. Since CORe50 consists of temporally ordered video

sequences, the order in which the data are presented will

affect the final results. For this reason, we explore four dif-

ferent orderings of the dataset as proposed in [23]: 1) iid

where all frames are randomly shuffled, 2) class iid where

all of the frames are shuffled within each class, 3) instance

where videos are temporally organized by object instances,

and 4) class instance where videos are temporally organized

by object instances by class. We evaluate each method on

all test data every 1,200 samples and report metrics in terms

of top-1 accuracy. For CORe50, we run each experiment

with 10 different permutations of each ordering and report

the mean performance across all runs.

Following [23, 31], we measure performance using the

normalized metric:

Ωall =
1

T

T
∑

t=1

αt

αoffline,t
, (8)

where αt is the incremental learner’s performance at time

t and αoffline,t is the optimized offline performance trained

on all data until time t. This approach assumes the offline

model is an approximate upper bound. Ωall makes it easier

to compare performance across datasets and orderings. Usu-

ally Ωall is in the range [0, 1], but if an incremental learner

outperforms the offline baseline, it is possible for Ωall > 1.

4.3. Network Initialization

For the ImageNet experiments, we follow others and ini-

tialize F (·) and G(·) for each model with 100 fixed, but

randomly selected classes [9, 44]. Note that F (·) and G(·)
are only initialized on 100 classes from ImageNet and the re-

maining 900 classes are learned incrementally. For CORe50,

we first initialize F (·) and G(·) with pre-trained ImageNet

weights. We then replace the last fully-connected layer with

a layer containing only 10 output units, and fine-tune F (·)
and G(·) on 1,200 samples from CORe50, where the 1,200

selected samples are dependent on the data ordering, but

fixed across models. Based on the subset of CORe50 that we

use, each class consists of exactly 600 training samples, so

for the class iid and class instance orderings, 1,200 samples



Table 1: Ωall classification results on ImageNet and CORe50. We specify the plastic/updated (plas.) parameters and streaming

(str.) methods. For CORe50, we explore performance across four different ordering schemes and report the average over 10

runs. All models use ResNet-18. The best streaming model for each dataset and ordering is highlighted in bold.

PLAS. STR.

IMAGENET CORE50

ORDERING SCHEME CLS IID IID CLS IID INST CLS INST

Output Layer Only

Fine-Tuning θF Yes 0.146 0.975 0.340 0.916 0.341

ExStream [23] θF Yes 0.569 0.953 0.873 0.933 0.854

SLDA (Fixed Σ) θF Yes 0.748 0.967 0.916 0.943 0.913

SLDA (Plastic Σ) θF Yes 0.752 0.976 0.958 0.963 0.959

Representation Learning

Fine-Tuning θF , θG Yes 0.121 0.923 0.334 0.287 0.334

iCaRL [44] θF , θG No 0.692 - 0.839 - 0.845

End-to-End [9] θF , θG No 0.780 - - - -

Approximate Upper Bounds

Offline (Last layer) θF No 0.853 0.979 0.954 0.966 0.955

Offline θF , θG No 1.000 1.000 1.000 1.000 1.000

corresponds to exactly 2 classes. Note that we use the same

base initialization phase for all models on both ImageNet

and CORe50 for fair comparison. For SLDA, we initialize

the covariance matrix on this same base initialization data

using the Oracle Approximating Shrinkage estimator [12].

4.4. Main Results

For ImageNet, we follow current incremental batch learn-

ing models [9, 44] and report top-5 accuracy after every 100

classes are learned on all previous classes. We use the pre-

trained ResNet-18 model from PyTorch as our final offline

accuracy for normalizing Ωall, which achieves 89.08% top-5

accuracy. For End-to-End, we use numbers provided by the

authors for ImageNet and do not include results for CORe50

since we were not able to run the model ourselves.

For CORe50, we evaluate each model after every 1,200

samples are observed. For CORe50, we report top-1 accu-

racy and normalize Ωall to the offline learner, which achieves

93.62% accuracy at the final time-step of the iid ordering.

The iCaRL and End-to-End incremental batch learning mod-

els are trained on batches of 100 classes at a time for Im-

ageNet and two classes at a time for CORe50, where they

may loop over the batches until they have learned them. This

gives these models a significant advantage over the SLDA

and ExStream streaming models. Parameter settings for all

models are in the Appendix. We report our final Ωall scores

in Table 1 and a forgetting curve for ImageNet is in Fig. 1.

4.4.1 ImageNet Results

Although SLDA cannot train the CNN’s hidden layers, it

outperforms iCaRL overall and ends with a higher accuracy

than End-to-End on ImageNet (see Fig. 1). Updating the

SLDA covariance matrix only yielded marginal improve-

ment (∼0.5%). This is likely a result of the covariance

matrix having good feature representations from being pre-

initialized on 100 classes of ImageNet. The streaming mod-

els without a replay buffer suffer from catastrophic forgetting

and achieve poor overall performance.

4.4.2 CORe50 Results

Results on CORe50 resemble those on ImageNet. SLDA

with a plastic covariance matrix outperforms SLDA with a

fixed covariance matrix, ExStream, iCaRL, and the stream-

ing model without a replay buffer. While updating the co-

variance matrix for SLDA on ImageNet only yielded a small

improvement, for CORe50 it resulted in a large boost in

performance across all four orderings. This is likely due

to the base initialization for ImageNet having 100 classes,

whereas the base initialization for CORe50 only had 1,200

samples, meaning the initial covariance matrix was not rep-

resentative of the entire training set. Remarkably, SLDA

with a plastic covariance matrix performed almost as well as

the full offline learner for the iid ordering, and was close to

the offline performance for the other three orderings. SLDA

with a plastic covariance performed on par with the offline

model that only trained the output layer, demonstrating its

robustness to various orderings. The streaming model with-

out a replay buffer performed well for the iid and instance

orderings where classes are revisited, but performed poorly

for the orderings where classes were visited only once. Al-

though iCaRL is a top performer for ImageNet, ExStream

and both variants of SLDA performed better on the class iid



Table 2: Ωall results for regularization models averaged over

10 runs on CORe50 with and without Task Labels (TL).

CLS IID CLS INST

MODEL TL NO TL TL NO TL

SI [52] 0.895 0.417 0.905 0.416

EWC [32] 0.893 0.413 0.903 0.413

MAS [3] 0.897 0.415 0.905 0.421

RWALK [10] 0.903 0.410 0.912 0.417

A-GEM [11] 0.925 0.417 0.916 0.421

SLDA (Fixed Σ) 0.973 0.916 0.971 0.913

SLDA (Plastic Σ) 0.989 0.958 0.987 0.959

Offline 1.000 1.000 1.000 1.000

and class instance orderings of CORe50.

In our setup, we assume the agent is learning to model

P (C = k|X), where k ∈ C is a class label and X is an input;

however, some algorithms learn to model P (C = k|X, i)
where i is the task label that must be provided with the input.

We compare SLDA against several regularization methods

that require task labels and use constraints to ensure that pa-

rameters do not change too much from their previous values

during incremental training. Namely, we compare against

the Synaptic Intelligence (SI) [52], Elastic Weight Consol-

idation (EWC) [32], Memory Aware Synapses (MAS) [3],

Riemannian Walk for Incremental Learning (RWALK) [10],

and A-GEM [11] approaches both with and without task

labels during inference on both class orderings of CORe50

in Table 2. To obtain results for SLDA and Offline with task

labels, we mask off probabilities pertaining to classes not

seen within a particular batch of data. Since our experiments

with CORe50 require models to learn batches of two classes

at a time, providing task labels during test time reduces

the problem to binary classification, which is much easier

than the 10-way classification problem without task labels.

Regardless, SLDA outperforms all regularization methods

both with and without task labels, even when the covariance

matrix Σ is held fixed, further demonstrating its robustness.

4.5. Additional Experiments and Analysis

Compute. SLDA outperforms ExStream and iCaRL by a

large margin, while running in significantly less time. For

example, ExStream requires 31 hours to run on ImageNet

and iCaRL requires 62 hours, while SLDA with a plastic

covariance matrix only requires 30 minutes on the same

hardware. Less compute is desirable for embedded agents

that must quickly learn and adapt to new information.

Memory. Compared to other methods, SLDA is extremely

memory efficient. SLDA requires only 0.001 GB of storage

for its covariance matrix, making it well-suited for memory

constrained devices. Conventionally, End-to-End and iCaRL

store 20 images per class for ImageNet, which requires 3.011

GB of additional storage beyond the parameters of ResNet-

Figure 3: Final SLDA accuracy on ImageNet as a function

of the number of base initialization classes. We denote

performance of three models at 100 classes, which is the

common initialization approach for ImageNet [9, 44].

18. ExStream stores 20 prototype vectors per class, requiring

0.041 GB of storage.

Base Initialization. SLDA is reliant on robust deep fea-

ture representations in G(·) to achieve high classification

accuracies. These features are thus dependent on the num-

ber of classes included in the base initialization phase and

in Fig. 3, we plot the final top-5 performance of SLDA on

ImageNet as a function of the number of classes used for this

initialization. While using 100 classes for initialization with

ImageNet is the standard approach [9, 44], we find that the

representations learned from only 50 classes provide SLDA

with robust enough features to outperform iCaRL and us-

ing 75 classes allows SLDA to outperform both iCaRL and

End-to-End. These results suggest consideration of whether

incremental representation learning improves performance.

Domain Transfer. Since we use features from pre-

initialized models for our experiments, we were interested

in examining how SLDA behaves when the CNN features

are initialized on different datasets. Specifically, we were

interested in how well SLDA would perform when G(·) was

initialized on ImageNet directly and F (·) was trained on

CORe50 in the streaming setting, i.e., base initialization is

performed only using the ImageNet dataset and does not

include any data from CORe50. We conducted four vari-

ants of the experiment: 1) G(·) was initialized on ImageNet

and Σ was initialized to a matrix of ones, 2) both G(·) and

Σ were initialized on ImageNet, 3) G(·) was initialized on

ImageNet and then fine-tuned on the first 1,200 samples of

CORe50 and Σ was initialized to a matrix of ones, and 4)

G(·) was initialized on ImageNet and then fine-tuned on the

first 1,200 samples of CORe50 and Σ was initialized on the

first 1,200 samples of CORe50, which is consistent with our

main experiments.

Results for this experiment are provided in Table 3. These



Table 3: Ωall classification results for the domain transfer experiment from ImageNet to CORe50 with SLDA using a fixed and

plastic (plas.) covariance matrix (Σ). We indicate the dataset used for base initialization of the SLDA parameters (G and Σ).

IID CLS IID INST CLS INST

BASE INIT. FIXED PLAS. FIXED PLAS. FIXED PLAS. FIXED PLAS.

ImageNet (G) 0.868 0.920 0.926 0.948 0.861 0.924 0.927 0.948

ImageNet (G, Σ) 0.860 0.888 0.909 0.934 0.856 0.892 0.909 0.934

CORe50 (G) 0.963 0.968 0.967 0.970 0.936 0.947 0.963 0.971

CORe50 (G, Σ) 0.967 0.976 0.916 0.958 0.943 0.963 0.913 0.959

results demonstrate that initializing G(·) and Σ on data from

CORe50 yielded the best results for the iid and instance or-

derings, but initializing only G(·) on CORe50 yielded the

best results for both class orderings. However, when G(·)
was initialized on ImageNet and the covariance was plastic,

the largest difference in performance from the CORe50 ini-

tialized model was 5.6% for the iid ordering and the smallest

difference was only 1.0% for the class iid ordering. Interest-

ingly, the SLDA model with a covariance matrix initialized

to ones performed the best for the class orderings. We hy-

pothesize that this is because the covariance matrix does not

overfit to the base classes, as is the case when the model

performs a base initialization phase with the first two classes

of CORe50. Although performing a base initialization phase

with CORe50 often yielded higher results, Table 3 suggests

that SLDA is capable of domain transfer from ImageNet to

CORe50, without requiring a base initialization phase. This

makes SLDA more amenable to applications where a user

already has good feature representations and would like to

immediately begin streaming learning on a different dataset.

5. Discussion & Conclusion

Although SLDA is popular in the data mining community,

it has not recently been used for streaming learning on large

classification datasets. We revisited SLDA and combined it

with a CNN. While our approach is simple, it is extremely

effective, exceeding recent incremental batch learning meth-

ods that loop through the dataset, while being much more

lightweight. SLDA mitigates catastrophic forgetting even

under different data orderings, demonstrating its robustness

and utility for non-stationary data streams that are more real-

istic than iid data streams. Despite only training the output

layer of the network, SLDA outperforms iCaRL by 6% and

over 11% in terms of Ωall on ImageNet and CORe50 re-

spectively. This result is impressive since iCaRL requires

updating the entire network, which uses more computational

time and resources. While our offline results indicate greater

performance is achievable by training the hidden layers after

base initialization, we urge developers of future incremental

learning algorithms to test simply training the output layer

after base initialization to ensure gains are being realized.

While we initialized SLDA using the standard base initial-

ization procedure used by iCaRL and others, the covariance

matrix could instead be initialized using large amounts of

unlabeled imagery (i.e., self-taught learning [42]). This

approach could be used to initialize a model with a good

representation before streaming learning occurs.

If compute and memory are not significant factors, an

interesting future direction would be to combine SLDA with

a rehearsal-based scheme. SLDA could be used for rapid

learning, while key observations are stored for rehearsal. Re-

hearsal could occur when the agent is inactive to update the

entire CNN, rather than only the output layer. The challenges

would be determining whether to use the main network out-

put layer or the SLDA model and how to handle feature drift.

Similar to [41], another future direction could include the

creation of an SLDA model that accounts for the temporal

structure of video data in its update and inference procedures.

Appendix

The offline model uses SGD with momentum=0.9 and

weight decay=1e-4. For ImageNet, we use 90 epochs (batch

size=128) and learning rate of 0.1 decayed by a factor of 10

at 30 and 60 epochs. We use standard data augmentation of

random flips and random resized crops at 224×224 pixels.

For CORe50, we use 40 epochs (batch size=256) and learn-

ing rate of 0.01 decayed by a factor of 10 at 15 and 30 epochs.

For ImageNet, we use the iCaRL parameters from [44], and

for CORe50, we use: exemplars=20 per class, epochs=60,

weight decay=1e-4, batch size=64, learning rate=0.01 de-

cayed by a factor of 5 at 20 and 40 epochs. For ExStream,

we use the offline model parameters and follow iCaRL by

storing 20 exemplars per class. We use the regularization

model implementations/parameters from [11].
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