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Abstract

Training a neural network for a classification task typi-
cally assumes that the data to train are given from the begin-
ning. However, in the real world, additional data accumulate
gradually and the model requires additional training without
accessing the old training data. This usually leads to the
catastrophic forgetting problem which is inevitable for the
traditional training methodology of neural networks. In this
paper;, we propose a continual learning method that is able
to learn additional tasks while retaining the performance of
previously learned tasks by stacking parameters. Composed
of two complementary components, the index module and
the StackNet, our method estimates the index of the corre-
sponding task for an input sample with the index module
and utilizes a particular portion of StackNet with this index.
The StackNet guarantees no degradation in the performance
of the previously learned tasks and the index module shows
high confidence in finding the origin of an input sample.
Compared to the previous work of PackNet, our method is
competitive and highly intuitive.

1. Introduction

The main difference between the human brain and the
machine learning methodology is the ability to evolve. Using
neurophysiological processing principles, human brains can
achieve and organize knowledges throughout their lifespan.
Having the neuroplasticity, human brains can transfer an
activating region of a given function to a different location
or control the creation and destruction of synapses according
to its experiences. Usually, artificial neural network (ANN)
models consist of a finite number of filters. Also, parame-
ters and operations in the ANN do not possess the ability
corresponding to the memory system of human brains. This
structural limit leads to the problem called catastrophic for-
getting, i.e., the newly coming information diverts the model
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from previously learned knowledge. The field of researches
trying to solve this problem is referred to as continual learn-
ing.

Many researches based on the regularization method have
been proposed to solve this problem. [6] and [11] proposed
methods regularizing the output and the feature of the newly
trained model respectively.

To make a single network deal with a large number of
datasets, instead of using all parameters of a single network
for each task, PackNet suggested a model which allocates
the datasets to specific weights of filters [14]. As only the
specialized weights for a particular task are involved in its
classification process, PackNet shows a remarkable result in
multiple tasks. However, the information about from which
task the input comes and which group of weights should
be used must be given in advance. Typically, images do not
contain such prior knowledges and this makes the PackNet
hard to apply in real world situation.

In this paper, we propose a network which efficiently uses
the capacity of the network for continual learning without
degrading the performance of previous tasks. We have built
our method using two complementary components as shown
in Figure 1. The StackNet keeps the knowledge from several
independent tasks. After training the StackNet from the pre-
vious task with a certain amount of parameters, additional
parameters in the convolutional modules are stacked and
trained with the next task. Note that the given capacity of the
StackNet is fixed. StackNet stacks the parameters under the
given capacity as depicted in Figure 2. To infer the newly
coming data, the model utilizes the newly trained filters along
with the previously learned filters, whereas the data from the
old task is inferred only using the previously learned filters.
In order to determine which combination of filters to use, we
adopted a index module which can distinguish the origin of
a given input sample. It can recall the information not only
which group of filters to use but also which group of class la-
bels to use. This endows our method label-expandability. We
suggest the method for the index module, which is generative
adversarial networks (GAN) [3] and report the properties
and performance of this method. Our index module can be
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Figure 1. The overall architecture of our method called a StackNet* (Index module + StackNet). Blue arrows depicts the training process for
the new task (Task C) of our method, where Task A and Task B have been already trained. Index module is trained each time a dataset for a
new task is provided and then the StackNet is trained in a standard way such as using the cross-entropy loss. We allow only the trainable
filters (Blue parameters) to be updated. Red arrows shows the inference procedure of our method. Index module finds out the task index J
(Task C) from which the input came and let the StackNet to use the filters specialized for task 7 (Blue + Orange + Grey). Class labels are
also switched to those of task 7.
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:fi ) @/ ﬁ During the past decade, a lot of progress has been made

in numerous fields of machine learning. Image classification
problem has induced various useful architectures [21, 4, 20]
applicable to any other tasks. Many researchers have been

[4'*./:‘/ 1

< Parameters of the k-th layer filters >

Figure 2. Under the fixed capacity, a certain amount of parameters ¢ line h th " in obiect detecti
(Grey) are used in training Task A. After training Task A, additional struggling to enhance the performance in object detection

parameters (Orange) are stacked and trained for Task B. In the same or image segmentation problems leaving many masterpieces
way, The remaining parameters (blue) are trained for Task C. behind [12, 16, 2, 13]. For performance evaluation of the
models above, training and test data are usually separated
within a single task. However, what we call intelligence must

combined with any other works such as PackNet or Learning be able to hold the previously-learned knowledge even after

without forgetting (LwF) [11]. The combined index module learning new knowledge. In the real situation, the model has

and StackNet can prevent the catastrophic forgetting using to remember the learned task without seeing the old task
different parameters for different tasks under the constraint data again.

network capacity. The contributions of this paper can be [11] proposed a method trying to retrain the model by

summarized as the followings: using the outcomes of the previously learned model as an-

choring targets. When training a new task, a considerably

e Filters in the convolutional layers are allocated to each small learning rate is used to prevent the model from los-

task and parameters from the previously learned tasks ing the learned knowledge. [6] proposed a method reusing

are shared among post tasks and used for the initializa- the trained weights of the learned network. Training a new

tion of post tasks parameters, which makes the overall target network, the feature representation at the last layer is

model compact and efficient. enforced to preserve the response of the old network using

L regularization. [7] suggested a penalty on the quadratic

e After using constraint parameters, attaching parameters distance between the old parameters and the new ones. These

whenever a new dataset is trained allows the model to approaches using regularization basically focus on alleviat-

be expandable as far as the physical constraints, such ing the deformation of the original network. Therefore, the

as memory and processing time constraints, allow. more the new knowledge flows into the model, the more the

performance on the original task degrades. Moreover, the

e To identify which portion of convolutional filters should performance on the new task is not guaranteed to be in its

be used to classify a data, the index module is proposed best state.

with several methodologies. Dynamic architectures to overcome the catastrophic for-

getting have been suggested in many researches. [18] pro-

e The overall method is applicable to multi-task continual posed a progressive network which grows every time a new

learning whose number of class labels increases over task is given. Features in the previous columns are concate-

tasks. nated to the layers of the new column. progressive network

and stacknet seem to be similar such that they can increase



their capacity and can learn more continual tasks. However,
there are many different things. In the progressive network,
each feature is summarized by an additional adapter and
passed to the next task network. Therefore, it is not a typical
form of CNN and they need to train the additional adapter
and increase their capacity with this adapter related specific
task. However, the stacknet utilizes the fixed capacity which
is given. It uses the task index for splitting the given filters
or weights. When the stacknet uses up the given capacity
and comes to train a new task, it can then increase the model
size beyond the given capacity. [14] proposed a model using
the weight pruning method. Leaving the remaining weights
fixed after pruning, the model can solely focus on the task
on interest. Despite of its efficiency and performance, this
method, referred as PackNet, requires the prior knowledge
of a given input. Also, once the model is occupied by several
tasks, no more task is allowed. This restricts the model from
being expandable. Unlike the PackNet, our StackNet sim-
ply stack parameters in the convolutional filters instead of a
cumbersome pruning procedure while allowing the model to
expand further.

In our method, instead of saving all the memory in the
main network and trying to access it directly, the index mod-
ule finds the index of the memory scattered over the main
network where knowledges are well organized inside.

3. Method

We propose a method that efficiently stacks parameters
for continual learning that satisfies three properties as stated
below.

Property 1. The index module offers the index about which
part of the StackNet should be used.

Property 2. The StackNet learns the knowledge on the new
task under the presence of the previously learned knowledge.
Property 3. Index module and StackNet are flexible to the
expansion of the network without the retraining of previous
tasks and as many new tasks can be learned in one network
as physical constraints allow.

3.1. StackNet

We propose an efficient way to allocate the capacity of a
network according to the given tasks. StackNet is a network
that can be separated into several partitions for multi-task
and additional filters can be attached if a new task is given.
It can be applied to many typical networks such as VGG
and ResNet [20, 4]. The only difference with the original
versions of those networks is that it uses different parts of
filters for different tasks. As shown in [10], typical convo-
lutional neural networks (CNN) are capable of maintaining
their performance even when the majority of their parame-
ters are pruned. This implies that filters in a CNN contains a
lot of unnecessary or redundant information. Also, sharing
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Figure 3. Trainable parameters W} (Orange) and frozen parame-
ters W (Grey) in the StackNet training process. In the training
process, the parameters (Orange), which are trainable parameters
except frozen parameters (Grey), are updated. « denotes the spatial
dimension of filters.

the filters among different tasks inevitably leads to the catas-
trophic forgetting of the network since the parameters trained
by an old task should be replaced with those trained by a
new task. For these reasons, we utilize a network divided
into several parts and refer it as StackNet where each part
takes charge of a particular task.

While training the StackNet with several tasks, each task
uses a different part of the StackNet. For the convenience of
referring which segments of the StackNet are to be activated,
we introduce a filter index I for the J-th task. The filter
index IV defines the range of filters to use for the specific
task J in every layers. For example, if the filter index I*
equals to ten, the first task uses filters from the first to the
tenth filter.

Depicted in Figure 3, [ ];7 denotes the filter index in the
k-th layer corresponding to the task 7. This equals to the
number of output channels in the sequent feature map. 1 ,f
denotes the filter index in the k-th layer for the previous task.
As the same principle is applied to the precedent (K — 1)-th
layer, the number of input channels for the filters in the k-th
layer will change likewise. That is, total of I} filters have
the channel length of I]” | when the previous task is under
training. As the new task is given, the length of the filters
become I ,;7_1 since the filters in the prior layer will deliver
a feature map whose length is ,;,7_1. Therefore, both the
number of input and output channels increases as the model
Srows.

Weight parameters of [7-th task in filters of the k-th layer
are referred as W/ € Ro*®* %I where 2 means the

size of the kernel while W] € R¥o XTI are the
weight parameters of the previous task. When training the
new task, W,{ is used for the inference but only the pa-
rameters w € W,Z— (W,Z— = W,g \ W,zj ) are updated while
leaving W) fixed. Note that biases in the filters can also
be trained likewise as explained above. The fully connected
layer located just before the linear classifier can be divided
as well into the sections of 17 and I”.

To enhance the performance, slices of trained parameters



Algorithm 1 StackNet Training
Input: W7 1P 17
Output: WJ*
1: Freeze the W? C WY using the information 17
2: Initialize the W7 with W7 and a random noise
3: WI* < argmin(L,)
{Update W7 using backpropagation}

WP from the old task are duplicated to the newly available
task parameters W7 and Gaussian noise is added to them
for the sake of good initialization. Then, the network is
trained in a standard way, e.g., using a cross-entropy loss L..
Independent linear classifiers are used for every tasks. This
scheme of StackNet can also be applied to structures using
shortcut connections such as ResNet. The overall training
process is shown in Algorithm 1.

3.2. Index module

Even if the StackNet is well trained separately with sev-
eral tasks, the task index [J must be given at the time of
inference. Especially when the class labels expands, this
prior information 7 is necessary to estimate which group
of class labels to use. In the testing step, existing methods
needs the exact origination of the input data. However in
the real world, a given data for classification normally does
not offer any information about its origination. Therefore,
this prior knowledge should be estimated by an independent
network.

To solve this problem, we introduce the index module
using several different methods, which is able to estimate
the task 7 of the given input data and inform this to the
StackNet to specify which filters to use.

3.2.1 Generative adversarial networks (GAN)

This method is inspired by the on-line replay method used for
continual learning [19]. We train a task-specific generative
model G 7 using a GAN to generate pseudo-samples of task
J. The generator is trained using the adversarial loss as
follows:

minmaxV(Dy,Gy) =E, ps [log(Dy(x)]+
Gj Dj data (1)
Eenp.(»[log(l = Dy (Gy(2))].

Here, D 7 is a discriminator for the task 7 and z is a sample
from the task 7.

After generating samples of all tasks, a task-wise binary
classifier B 7 is trained to classify whether the given input is
from the task 7 or not. Note that only the generated samples
are involved for the training of each binary classifier B ;.
This means that positive samples are from the generator G 7
for the task J and negative samples are from all the other
task generators G (VK # J).

Table 1. Details of datasets.

Datasets #of Train data  #of Test data  #of Class ‘
MNIST 60,000 10,000 10
SVHN 73,275 26,032 10
CIFAR-10 50,000 10,000 10
ImageNet-A 64,750 2,500 50
ImageNet-B 64,497 2,500 50

In the testing phase, each classifier produces the proba-
bility of how likely the given unknown input data is from
the task J. The classifier B; with the highest probability
assumes that the input data is from the task . index module
can figure out the task 7 of input data with maximum prob-
ability across the set of classifiers. index module gives this
estimated task index J to the StackNet. The index module
using GAN can be summarized as below:

Initialization: B ={B,Bs,...,By}

1 ifzisfrom G;

Training: B, () =
raining: B () {0 ifzisfrom G, Vj £i 2

Inference: J = argmax B;(z)

4. Experiment

We evaluate our method on several image classification
datasets. First, we verify the effectiveness of our method
with MNIST [9], SVHN [15] and CIFAR-10 [8] which are
widely used to evaluate image classification performance.
Then, we evaluate our method on two subsets of ImageNet
[17] which is a real world image dataset. More details are
summarized in Table. 1.

We compare our method to various methods such as
Learning without forgetting (LwF) and PackNet as well as
networks trained for a single target task which shows the
performance without conducting continual learning.

4.1. Continual learning using basic image classifi-
cation datasets

We have built three experimental scenarios to evaluate
our method using basic image classification datasets. We
compare the performance of learning a consecutive two task
pair among MNIST, SVHN and CIFAR-10 dataset. After
that, we conduct multiple-task continual learning with these
datasets.

4.1.1 Training details

We use the same learning parameters and network architec-
tures suggested in [6] used for ‘Tiny image classification’.
It is composed of three convolutional layers using 5 x 5
kernels with the size of 32, 32 and 64 channels respectively,



three max pooling layers, one fully connected layer with
200 nodes and the last softmax classifier layer producing 10
outputs. ReLLU is used as the activation function in all the
experiments. Also an SGD optimizer with a mini-batch size
of 100 has been used for model optimization. When training
the old task, the weight decay and the momentum were set to
0.004 and 0.9 respectively. The learning rate starts from 0.01
and the decay of the learning rate with a factor 0.1 is done
at the time of 20,000 iterations. After 40,000 iterations, the
training is terminated in all the experiments. When training a
new task, LwF, PackNet and StackNet have the same settings
for the old and new task because they need more iterations as
the new parameters are to be trained from the scratch. Note
that PackNet needs additional pruning and finetuning step.
In the new task training of LwF, we start with a learning
rate of 0.0002 and 0.001 which are 0.1 ~ 0.02 times less
than that of old task for the ‘MNIST to SVHN’ and ‘SVHN
to CIFAR-10’ respectively, as recommended in [11]. The
channel split ratio which determines I follows the setting
of PackNet.

In Table 2, the result of ‘StackNet’ shows the performance
of the StackNet only. That is, it assumes that the index mod-
ule never fails and the task index 7 is always given correctly.
Likewise, LWF and PackNet need prior knowledge of a given
input to know which classifier to use. As there is no structure
like index module in the original paper, The actual com-
parison must be done with ‘StackNet’. On the other hand,
StackNet* shows the performance of the StackNet which
uses the task index J given from the index module.

4.1.2 MNIST — SVHN

After selecting a subset of SVHN to equalize the number of
training data between MNIST and SVHN, images are resized
to 28 x 28 as in [6]. The ‘single network’ in Table 2 is a
network of full capacity trained using a single dataset. The
column ‘Old’ represents the test accuracy on the previously
learned task and ‘New’ is that of the newly trained task. A
knowledge distillation loss with hyper-parameters of 7' = 2
and T' =1 [5] is used for LwF.

LwF can control the performance trade-off between the
old and new task by changing the temperature parameter
T'. PackNet almost maintains the performance of the single
network for the first task with less than 2% drop in accuracy.
StackNet* outperforms all other methods in the table. Note
that the prior knowledge to select which task is given in all
experiments of other methods. Therefore, StackNet, which
shows the highest in performance, should be compared to
other baseline methods. Nonetheless, our full model, Stack-
Net* also outperforms PackNet, especially on the second
task by around 0.7% even without using the prior knowledge.

Table 2. Mean classification results on the basic datasets (5 runs).

Datasets Methods Old(%) New(%) Avg. (%) |
single network (MNIST)  99.49 - -
MNIST single network (SVHN) - 92.82 -
1 LwF (T =1) 98.27 86.40 92.34
SVHN LwF (T =2) 97.33 86.97 92.15
PackNet 99.45 91.49 95.47
StackNet* 99.43 92.20 95.82
StackNet 99.43 92.37 95.90
single network (SVHN) 92.94 - -
SVHN single network (CIFAR) - 79.69 -
J LwF (T =1) 91.76 70.57 81.17
CIFAR-10 LwF (T =2) 90.19 71.94 81.07
PackNet 92.84 76.78 84.81
StackNet* 90.05 76.62 83.34
StackNet 92.21 76.70 84.46
Datasets Methods MNIST(%) SVHN(%) CIFAR(%) Avg(%)
single network (MNIST) 99.44 - - -
MNIST single network (SVHN) - 92.94 - -
1 single network (CIFAR) - - 79.69 -
SVHN LwF (T =1) 95.06 86.80 68.98 83.61
1 LwF (T =2) 86.09 85.07 69.63 80.26
CIFAR-10 PackNet 99.38 91.93 66.34 85.88
StackNet* 99.41 89.36 74.93 87.90
StackNet 99.41 91.84 75.02 88.76

4.1.3 SVHN — CIFAR-10

In this experiment, LwF and PackNet show similar trends as
that of ‘MNIST to SVHN’. Higher temperature (7") induces
better performance in the new task but a bit of degradation
in average performance still occurs. PackNet experiences
almost no performance degradation. The pruning method
of PackNet acts like a generalization method and helps the
model to maintain its capacity. The average performance of
StackNet is slightly lower than that of PackNet by 0.35%.
However, note that PackNet requires additional finetuning af-
ter the pruning process and takes additional time for training.
On the other hand, StackNet requires no additional pruning
or finetuning precedure and yet retains the performance.

4.1.4 MNIST — SVHN — CIFAR-10

Training three or more tasks is unmanageable for the models
using regularization methods. No matter how we change
the temperature (7'), LWF suffers from a drop in average
performance, especially in the third task. Also, even though
the proportion allocated to each task is equivalent between
the PackNet and our methods (StackNet and StackNet*), our
method highly outperforms the PackNet in the third task.
This implies that StackNet is more suitable for multi-task
sequential learning situation.

4.1.5 Multitasks more than three tasks

We also conducted an experiment for 5 tasks to verify ef-
fectiveness on multitasks more than three tasks. We used 5
datasets, cifar10, svhn, KMNIST [1], FashionMNIST [22]
and MNIST. We used ResNet-32 [4]for the base network.
The performance of single networks are 86,95,98,93 and 99



Table 3. Mean classification results for the realistic dataset (2 runs)

datasets Methods Old(%) New(%) Avg. (%)
single network (ImageNet-A) ~ 83.28 - -
ImageNet-A || single network (ImageNet-B) - 85.28 -
b LwF (T'=1) 822 86.72 84.46
ImageNet-B LwF (T =2) 80.92 86.96 83.94
PackNet 82.16 88.72 85.44
StackNet 83.30 88.66 85.98

respectively. In the same order, the performance of the stack-
net are 83.93,95,91 and 99. As we can see, the results have
a similar tendency compared to the previous experiments.
The accuracy degradation is within the range of 0 3%. Also,
StackNet can handle more than 3 tasks.

4.2. Continual learning using realistic datasets

ImageNet contains images more realistic than other
datasets used in this paper. Higher resolution and complex
backgrounds make the classification even harder. To save
the training time, two subsets of the ImageNet dataset each
having 50 randomly chosen classes have been used for eval-
uation. They are referred to as ImageNet-A and ImageNet-B
respectively in this paper. To show the adaptability of our
method on structures having shortcut connections, ResNet-
50 is used for the experiment. We use the same experimental
setting as in [4] with a batch size of 128. We compare our
StackNet with LwF and PackNet.

Table 3 shows the results on the ImageNet dataset. The
‘Old’ accuracy of all methods slightly dropped from those of
single networks. Like in the ‘SVHN to CIFAR-10’ experi-
ment, PackNet shows a better result than the LwF regardless
of the value of 7'. The result of StackNet is almost identical
to PackNet with a slight increase in the average accuracy.

PackNet actually utilizes more parameters for each task
than StackNet does. Since the masks force weights with no
influence to be zero and utilize the well trained remaining
weights, PackNet can make good use of the entire network.
However in StackNet, just adding filters gradually without
any other post-processing performs well enough compared
to PackNet. When the model of an initially designed size is
fully occupied by several tasks, StackNet can just add more
filters and train them along with the trained filters while this
is not the case of PackNet. Furthermore, PackNet requires
additional memories to store the masks for all filters in it.
StackNet needs only one integer per layer for each task. For
these reasons, StackNet is far more efficient than the PackNet
with no loss in performance.

4.3. Ablation study on the efficiency of StackNet

As mentioned above, our StackNet appends parameters
whenever a new task is to be trained. In this process, param-
eters learned from previous tasks are utilized altogether and
the parameters which are to be trained newly are initialized
using the existing ones. We conduct experiments to show

Table 4. Performances of the old (MNIST) and new (SVHN) tasks
with different initialization methods: 1) initialization with only
random Gaussian noise and 2) the pretrained parameter added by

random Gaussian noise
Initialization Old(%) New(%) Avg.(%)
Random 99.42 91.67 95.55
Pretrained parameters 99.43 92.37 95.90

the effect of these methods. Experiments are carried out in
‘MNIST to SVHN’ case as a representative.

4.3.1 Initialization with pretrained parameters

To analyse the effectiveness of initialization using pretrained
old task parameters with random Gaussian noise, we com-
pare the accuracy between a model initializing the new pa-
rameters with just a random Gaussian distribution and a
model initializing the new task parameters using the pre-
trained old task parameters with additional random Gaussian
noise. In Table 4, the model initialized by our method obvi-
ously shows higher accuracy on the SVHN task. This result
implies that a good initialization prevents the model from
going through a local minima.

4.3.2 Parameter sharing

We verify the effect of the parameter sharing between the
old task and the new task. The baseline method is a model
where the old parameters are filled with random Gaussian
initialization and no further training is done. The new param-
eters in the model have to learn knowledges from the new
task without the aid of old parameters since they are fixed
from the beginning. On the other hand, the old parameters in
our method is trained by the old task and the new parameters
can make use of these learnt knowledges to learn the new
task. To solely observe the effect of the parameter sharing,
both methods do not use our parameter initialization method
mentioned in the previous section. The task indices I and
I? are {16,16,32} and {18,18,34} respectively. The model
using parameter sharing converges far more faster than the
model with no parameter sharing which is shown in Figure 4.
Also the final error rate of our method is lower than the other.
Increasing the number of indices elevation enhances our
method by 6.38% and the other model by 7.91% as shown
in Table 5. This implies that the parameter sharing improves
the model and allow it to be compact with fewer numbers of
filters.

4.4. Index module

To solely examine the influence of index module on our
method (StackNet*), we have conducted experiments with
the same experimental scenarios in StackNet* for GAN. As
a baseline method for the index module, we adopted a highly
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Figure 4. Error rate comparison between sharing the parameters
which learned previous task and random parameters.

Table 5. The performances on the new task while increasing the
filter index of the model using parameter sharing and the model
with random fixed parameters.

#of increasing each index || Ours(%) Random(%)
2 80.60 78.10
4 85.31 83.85
6 86.98 86.01

Table 6. Experimental results of the index module on the basic

datasets
Datasets Methods Old(%) New(%) Avg. (%) ‘
MNIST— GAN 100 99.94 99.97
SVHN Baseline  61.65 97.17 79.41
SVHN— GAN 97.00 99.90 98.45
CIFAR-10 || Baseline  89.39 85.86 87.63
Datasets Methods MNIST(%) SVHN(%) CIFAR(%) Avg(%) |
MNIST— SVHN || GAN 100 96.65 99.83 98.83
CIFAR-10 Baseline  52.88 90.89 75.7 73.16 ‘

naive method that chooses the task index [J according to the
confidence of the StackNet. Inferring each task output from
the StackNet, the output with the highest probability decides
the task index. (e.g, Task index J = argmax,(P;) where
P; is the highest probability of ¢-th classifier)

In continual learning on MNIST to SVHN and SVHN
to CIFAR-10 datasets, an index module approximates the
results to perfection (See Table 6). The experiment of three
datasets also shows the same trend as the experiments above.
The baseline definitely shows a poor performance also in all
cases, which underlines the necessity of the index module.
The generated samples with GAN are depicted in Figure 5,6
and 7.

4.4.1 Limitation

Generative models usually have difficulties in generating
realistic images with high resolution and there are few re-
searches experimented on ImageNet data. This incompetence
makes the index module hard to be applied to the ImageNet
data. Also, when it comes to dealing with datasets of similar
distribution, the index module may not be working as good
as it is reported in this paper.
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Figure 5. MNIST dataset
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Figure 6. SVHN dataset
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Figure 7. CIFAR-10 dataset

5. Conclusion

In this paper, we have proposed a novel framework which
is able to divide its capacity into several parts and utilize
them according to the given input. Composed of two net-
works, the index module is responsible for memorizing

“where the data came from” while complicated knowledge

such as “what the data is” is engraved to the StackNet. To
the best of our knowledge, our work, index module, is the
first attempt to estimate the origin of data which used to be
assumed as given in the previous works. As well as overcom-
ing the catastrophic forgetting, StackNet allows extra class
labels when training a new dataset and also has expandability
to the network architecture.
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