
StackNet: Stacking feature maps for Continual learning

Jangho Kim∗

Seoul National University

Seoul, Korea

kjh91@snu.ac.kr

Jeesoo Kim∗

Seoul National University

Seoul, Korea

kimjiss0305@snu.ac.kr

Nojun Kwak†

Seoul National University

Seoul, Korea

nojunk@snu.ac.kr

Abstract

Training a neural network for a classification task typi-

cally assumes that the data to train are given from the begin-

ning. However, in the real world, additional data accumulate

gradually and the model requires additional training without

accessing the old training data. This usually leads to the

catastrophic forgetting problem which is inevitable for the

traditional training methodology of neural networks. In this

paper, we propose a continual learning method that is able

to learn additional tasks while retaining the performance of

previously learned tasks by stacking parameters. Composed

of two complementary components, the index module and

the StackNet, our method estimates the index of the corre-

sponding task for an input sample with the index module

and utilizes a particular portion of StackNet with this index.

The StackNet guarantees no degradation in the performance

of the previously learned tasks and the index module shows

high confidence in finding the origin of an input sample.

Compared to the previous work of PackNet, our method is

competitive and highly intuitive.

1. Introduction

The main difference between the human brain and the

machine learning methodology is the ability to evolve. Using

neurophysiological processing principles, human brains can

achieve and organize knowledges throughout their lifespan.

Having the neuroplasticity, human brains can transfer an

activating region of a given function to a different location

or control the creation and destruction of synapses according

to its experiences. Usually, artificial neural network (ANN)

models consist of a finite number of filters. Also, parame-

ters and operations in the ANN do not possess the ability

corresponding to the memory system of human brains. This

structural limit leads to the problem called catastrophic for-

getting, i.e., the newly coming information diverts the model

∗Equal Contribution
†Corresponding Author

from previously learned knowledge. The field of researches

trying to solve this problem is referred to as continual learn-

ing.

Many researches based on the regularization method have

been proposed to solve this problem. [6] and [11] proposed

methods regularizing the output and the feature of the newly

trained model respectively.

To make a single network deal with a large number of

datasets, instead of using all parameters of a single network

for each task, PackNet suggested a model which allocates

the datasets to specific weights of filters [14]. As only the

specialized weights for a particular task are involved in its

classification process, PackNet shows a remarkable result in

multiple tasks. However, the information about from which

task the input comes and which group of weights should

be used must be given in advance. Typically, images do not

contain such prior knowledges and this makes the PackNet

hard to apply in real world situation.

In this paper, we propose a network which efficiently uses

the capacity of the network for continual learning without

degrading the performance of previous tasks. We have built

our method using two complementary components as shown

in Figure 1. The StackNet keeps the knowledge from several

independent tasks. After training the StackNet from the pre-

vious task with a certain amount of parameters, additional

parameters in the convolutional modules are stacked and

trained with the next task. Note that the given capacity of the

StackNet is fixed. StackNet stacks the parameters under the

given capacity as depicted in Figure 2. To infer the newly

coming data, the model utilizes the newly trained filters along

with the previously learned filters, whereas the data from the

old task is inferred only using the previously learned filters.

In order to determine which combination of filters to use, we

adopted a index module which can distinguish the origin of

a given input sample. It can recall the information not only

which group of filters to use but also which group of class la-

bels to use. This endows our method label-expandability. We

suggest the method for the index module, which is generative

adversarial networks (GAN) [3] and report the properties

and performance of this method. Our index module can be



Figure 1. The overall architecture of our method called a StackNet* (Index module + StackNet). Blue arrows depicts the training process for

the new task (Task C) of our method, where Task A and Task B have been already trained. Index module is trained each time a dataset for a

new task is provided and then the StackNet is trained in a standard way such as using the cross-entropy loss. We allow only the trainable

filters (Blue parameters) to be updated. Red arrows shows the inference procedure of our method. Index module finds out the task index J

(Task C) from which the input came and let the StackNet to use the filters specialized for task J (Blue + Orange + Grey). Class labels are

also switched to those of task J .

Figure 2. Under the fixed capacity, a certain amount of parameters

(Grey) are used in training Task A. After training Task A, additional

parameters (Orange) are stacked and trained for Task B. In the same

way, The remaining parameters (blue) are trained for Task C.

combined with any other works such as PackNet or Learning

without forgetting (LwF) [11]. The combined index module

and StackNet can prevent the catastrophic forgetting using

different parameters for different tasks under the constraint

network capacity. The contributions of this paper can be

summarized as the followings:

• Filters in the convolutional layers are allocated to each

task and parameters from the previously learned tasks

are shared among post tasks and used for the initializa-

tion of post tasks parameters, which makes the overall

model compact and efficient.

• After using constraint parameters, attaching parameters

whenever a new dataset is trained allows the model to

be expandable as far as the physical constraints, such

as memory and processing time constraints, allow.

• To identify which portion of convolutional filters should

be used to classify a data, the index module is proposed

with several methodologies.

• The overall method is applicable to multi-task continual

learning whose number of class labels increases over

tasks.

2. Related work

During the past decade, a lot of progress has been made

in numerous fields of machine learning. Image classification

problem has induced various useful architectures [21, 4, 20]

applicable to any other tasks. Many researchers have been

struggling to enhance the performance in object detection

or image segmentation problems leaving many masterpieces

behind [12, 16, 2, 13]. For performance evaluation of the

models above, training and test data are usually separated

within a single task. However, what we call intelligence must

be able to hold the previously-learned knowledge even after

learning new knowledge. In the real situation, the model has

to remember the learned task without seeing the old task

data again.

[11] proposed a method trying to retrain the model by

using the outcomes of the previously learned model as an-

choring targets. When training a new task, a considerably

small learning rate is used to prevent the model from los-

ing the learned knowledge. [6] proposed a method reusing

the trained weights of the learned network. Training a new

target network, the feature representation at the last layer is

enforced to preserve the response of the old network using

L2 regularization. [7] suggested a penalty on the quadratic

distance between the old parameters and the new ones. These

approaches using regularization basically focus on alleviat-

ing the deformation of the original network. Therefore, the

more the new knowledge flows into the model, the more the

performance on the original task degrades. Moreover, the

performance on the new task is not guaranteed to be in its

best state.

Dynamic architectures to overcome the catastrophic for-

getting have been suggested in many researches. [18] pro-

posed a progressive network which grows every time a new

task is given. Features in the previous columns are concate-

nated to the layers of the new column. progressive network

and stacknet seem to be similar such that they can increase



their capacity and can learn more continual tasks. However,

there are many different things. In the progressive network,

each feature is summarized by an additional adapter and

passed to the next task network. Therefore, it is not a typical

form of CNN and they need to train the additional adapter

and increase their capacity with this adapter related specific

task. However, the stacknet utilizes the fixed capacity which

is given. It uses the task index for splitting the given filters

or weights. When the stacknet uses up the given capacity

and comes to train a new task, it can then increase the model

size beyond the given capacity. [14] proposed a model using

the weight pruning method. Leaving the remaining weights

fixed after pruning, the model can solely focus on the task

on interest. Despite of its efficiency and performance, this

method, referred as PackNet, requires the prior knowledge

of a given input. Also, once the model is occupied by several

tasks, no more task is allowed. This restricts the model from

being expandable. Unlike the PackNet, our StackNet sim-

ply stack parameters in the convolutional filters instead of a

cumbersome pruning procedure while allowing the model to

expand further.

In our method, instead of saving all the memory in the

main network and trying to access it directly, the index mod-

ule finds the index of the memory scattered over the main

network where knowledges are well organized inside.

3. Method

We propose a method that efficiently stacks parameters

for continual learning that satisfies three properties as stated

below.

Property 1. The index module offers the index about which

part of the StackNet should be used.

Property 2. The StackNet learns the knowledge on the new

task under the presence of the previously learned knowledge.

Property 3. Index module and StackNet are flexible to the

expansion of the network without the retraining of previous

tasks and as many new tasks can be learned in one network

as physical constraints allow.

3.1. StackNet

We propose an efficient way to allocate the capacity of a

network according to the given tasks. StackNet is a network

that can be separated into several partitions for multi-task

and additional filters can be attached if a new task is given.

It can be applied to many typical networks such as VGG

and ResNet [20, 4]. The only difference with the original

versions of those networks is that it uses different parts of

filters for different tasks. As shown in [10], typical convo-

lutional neural networks (CNN) are capable of maintaining

their performance even when the majority of their parame-

ters are pruned. This implies that filters in a CNN contains a

lot of unnecessary or redundant information. Also, sharing

Figure 3. Trainable parameters WT

k (Orange) and frozen parame-

ters WP
k (Grey) in the StackNet training process. In the training

process, the parameters (Orange), which are trainable parameters

except frozen parameters (Grey), are updated. x denotes the spatial

dimension of filters.

the filters among different tasks inevitably leads to the catas-

trophic forgetting of the network since the parameters trained

by an old task should be replaced with those trained by a

new task. For these reasons, we utilize a network divided

into several parts and refer it as StackNet where each part

takes charge of a particular task.

While training the StackNet with several tasks, each task

uses a different part of the StackNet. For the convenience of

referring which segments of the StackNet are to be activated,

we introduce a filter index IJ for the J -th task. The filter

index IJ defines the range of filters to use for the specific

task J in every layers. For example, if the filter index I1

equals to ten, the first task uses filters from the first to the

tenth filter.

Depicted in Figure 3, IJk denotes the filter index in the

k-th layer corresponding to the task J . This equals to the

number of output channels in the sequent feature map. IPk
denotes the filter index in the k-th layer for the previous task.

As the same principle is applied to the precedent (k − 1)-th

layer, the number of input channels for the filters in the k-th

layer will change likewise. That is, total of IPk filters have

the channel length of IPk−1 when the previous task is under

training. As the new task is given, the length of the filters

become IJk−1 since the filters in the prior layer will deliver

a feature map whose length is IJk−1. Therefore, both the

number of input and output channels increases as the model

grows.

Weight parameters of J -th task in filters of the k-th layer

are referred as WJ
k ∈ Rx×x×IJ

k−1
×IJ

k , where x means the

size of the kernel while WP
k ∈ Rx×x×IP

k−1
×IP

k are the

weight parameters of the previous task. When training the

new task, WJ
k is used for the inference but only the pa-

rameters w ∈ W T
k (W T

k = WJ
k \W

P
k ) are updated while

leaving WP
k fixed. Note that biases in the filters can also

be trained likewise as explained above. The fully connected

layer located just before the linear classifier can be divided

as well into the sections of IJ and IP .

To enhance the performance, slices of trained parameters



Algorithm 1 StackNet Training

Input: WJ , IP , IJ

Output: WJ∗

1: Freeze the WP ⊂WJ using the information IP

2: Initialize the W T with WP and a random noise

3: WJ∗ ← argmin(Lc)

{Update WT using backpropagation}

WP from the old task are duplicated to the newly available

task parameters WT and Gaussian noise is added to them

for the sake of good initialization. Then, the network is

trained in a standard way, e.g., using a cross-entropy loss Lc.

Independent linear classifiers are used for every tasks. This

scheme of StackNet can also be applied to structures using

shortcut connections such as ResNet. The overall training

process is shown in Algorithm 1.

3.2. Index module

Even if the StackNet is well trained separately with sev-

eral tasks, the task index J must be given at the time of

inference. Especially when the class labels expands, this

prior information J is necessary to estimate which group

of class labels to use. In the testing step, existing methods

needs the exact origination of the input data. However in

the real world, a given data for classification normally does

not offer any information about its origination. Therefore,

this prior knowledge should be estimated by an independent

network.

To solve this problem, we introduce the index module

using several different methods, which is able to estimate

the task J of the given input data and inform this to the

StackNet to specify which filters to use.

3.2.1 Generative adversarial networks (GAN)

This method is inspired by the on-line replay method used for

continual learning [19]. We train a task-specific generative

model GJ using a GAN to generate pseudo-samples of task

J . The generator is trained using the adversarial loss as

follows:

min
GJ

max
DJ

V (DJ , GJ ) = Ex∼PJ

data

[log(DJ (x)]+

Ez∼pz(z)[log(1−DJ (GJ (z))].
(1)

Here, DJ is a discriminator for the task J and x is a sample

from the task J .

After generating samples of all tasks, a task-wise binary

classifier BJ is trained to classify whether the given input is

from the task J or not. Note that only the generated samples

are involved for the training of each binary classifier BJ .

This means that positive samples are from the generator GJ

for the task J and negative samples are from all the other

task generators GK (∀K 6= J ).

Table 1. Details of datasets.

Datasets #of Train data #of Test data #of Class

MNIST 60,000 10,000 10

SVHN 73,275 26,032 10

CIFAR-10 50,000 10,000 10

ImageNet-A 64,750 2,500 50

ImageNet-B 64,497 2,500 50

In the testing phase, each classifier produces the proba-

bility of how likely the given unknown input data is from

the task J . The classifier Bi with the highest probability

assumes that the input data is from the task i. index module

can figure out the task J of input data with maximum prob-

ability across the set of classifiers. index module gives this

estimated task index J to the StackNet. The index module

using GAN can be summarized as below:

Initialization: B = {B1, B2, ..., BN}

Training: Bi(x) =

{

1 if x is from Gi

0 if x is from Gj ∀j 6= i

Inference: J = argmax
i

Bi(x)

(2)

4. Experiment

We evaluate our method on several image classification

datasets. First, we verify the effectiveness of our method

with MNIST [9], SVHN [15] and CIFAR-10 [8] which are

widely used to evaluate image classification performance.

Then, we evaluate our method on two subsets of ImageNet

[17] which is a real world image dataset. More details are

summarized in Table. 1.

We compare our method to various methods such as

Learning without forgetting (LwF) and PackNet as well as

networks trained for a single target task which shows the

performance without conducting continual learning.

4.1. Continual learning using basic image classifi­
cation datasets

We have built three experimental scenarios to evaluate

our method using basic image classification datasets. We

compare the performance of learning a consecutive two task

pair among MNIST, SVHN and CIFAR-10 dataset. After

that, we conduct multiple-task continual learning with these

datasets.

4.1.1 Training details

We use the same learning parameters and network architec-

tures suggested in [6] used for ‘Tiny image classification’.

It is composed of three convolutional layers using 5 × 5
kernels with the size of 32, 32 and 64 channels respectively,



three max pooling layers, one fully connected layer with

200 nodes and the last softmax classifier layer producing 10

outputs. ReLU is used as the activation function in all the

experiments. Also an SGD optimizer with a mini-batch size

of 100 has been used for model optimization. When training

the old task, the weight decay and the momentum were set to

0.004 and 0.9 respectively. The learning rate starts from 0.01

and the decay of the learning rate with a factor 0.1 is done

at the time of 20,000 iterations. After 40,000 iterations, the

training is terminated in all the experiments. When training a

new task, LwF, PackNet and StackNet have the same settings

for the old and new task because they need more iterations as

the new parameters are to be trained from the scratch. Note

that PackNet needs additional pruning and finetuning step.

In the new task training of LwF, we start with a learning

rate of 0.0002 and 0.001 which are 0.1 ∼ 0.02 times less

than that of old task for the ‘MNIST to SVHN’ and ‘SVHN

to CIFAR-10’ respectively, as recommended in [11]. The

channel split ratio which determines IJ follows the setting

of PackNet.

In Table 2, the result of ‘StackNet’ shows the performance

of the StackNet only. That is, it assumes that the index mod-

ule never fails and the task index J is always given correctly.

Likewise, LwF and PackNet need prior knowledge of a given

input to know which classifier to use. As there is no structure

like index module in the original paper, The actual com-

parison must be done with ‘StackNet’. On the other hand,

StackNet* shows the performance of the StackNet which

uses the task index J given from the index module.

4.1.2 MNIST→ SVHN

After selecting a subset of SVHN to equalize the number of

training data between MNIST and SVHN, images are resized

to 28 × 28 as in [6]. The ‘single network’ in Table 2 is a

network of full capacity trained using a single dataset. The

column ‘Old’ represents the test accuracy on the previously

learned task and ‘New’ is that of the newly trained task. A

knowledge distillation loss with hyper-parameters of T = 2
and T = 1 [5] is used for LwF.

LwF can control the performance trade-off between the

old and new task by changing the temperature parameter

T . PackNet almost maintains the performance of the single

network for the first task with less than 2% drop in accuracy.

StackNet* outperforms all other methods in the table. Note

that the prior knowledge to select which task is given in all

experiments of other methods. Therefore, StackNet, which

shows the highest in performance, should be compared to

other baseline methods. Nonetheless, our full model, Stack-

Net* also outperforms PackNet, especially on the second

task by around 0.7% even without using the prior knowledge.

Table 2. Mean classification results on the basic datasets (5 runs).

Datasets Methods Old(%) New(%) Avg. (%)

single network (MNIST) 99.49 – –

MNIST single network (SVHN) – 92.82 –

↓ LwF (T = 1) 98.27 86.40 92.34

SVHN LwF (T = 2) 97.33 86.97 92.15

PackNet 99.45 91.49 95.47

StackNet* 99.43 92.20 95.82

StackNet 99.43 92.37 95.90

single network (SVHN) 92.94 – –

SVHN single network (CIFAR) – 79.69 –

↓ LwF (T = 1) 91.76 70.57 81.17

CIFAR-10 LwF (T = 2) 90.19 71.94 81.07

PackNet 92.84 76.78 84.81

StackNet* 90.05 76.62 83.34

StackNet 92.21 76.70 84.46

Datasets Methods MNIST(%) SVHN(%) CIFAR(%) Avg(%)

single network (MNIST) 99.44 – – –

MNIST single network (SVHN) – 92.94 – –

↓ single network (CIFAR) – – 79.69 –

SVHN LwF (T = 1) 95.06 86.80 68.98 83.61

↓ LwF (T = 2) 86.09 85.07 69.63 80.26

CIFAR-10 PackNet 99.38 91.93 66.34 85.88

StackNet* 99.41 89.36 74.93 87.90

StackNet 99.41 91.84 75.02 88.76

4.1.3 SVHN→ CIFAR-10

In this experiment, LwF and PackNet show similar trends as

that of ‘MNIST to SVHN’. Higher temperature (T ) induces

better performance in the new task but a bit of degradation

in average performance still occurs. PackNet experiences

almost no performance degradation. The pruning method

of PackNet acts like a generalization method and helps the

model to maintain its capacity. The average performance of

StackNet is slightly lower than that of PackNet by 0.35%.

However, note that PackNet requires additional finetuning af-

ter the pruning process and takes additional time for training.

On the other hand, StackNet requires no additional pruning

or finetuning precedure and yet retains the performance.

4.1.4 MNIST→ SVHN→ CIFAR-10

Training three or more tasks is unmanageable for the models

using regularization methods. No matter how we change

the temperature (T ), LwF suffers from a drop in average

performance, especially in the third task. Also, even though

the proportion allocated to each task is equivalent between

the PackNet and our methods (StackNet and StackNet*), our

method highly outperforms the PackNet in the third task.

This implies that StackNet is more suitable for multi-task

sequential learning situation.

4.1.5 Multitasks more than three tasks

We also conducted an experiment for 5 tasks to verify ef-

fectiveness on multitasks more than three tasks. We used 5

datasets, cifar10, svhn, KMNIST [1], FashionMNIST [22]

and MNIST. We used ResNet-32 [4]for the base network.

The performance of single networks are 86,95,98,93 and 99



Table 3. Mean classification results for the realistic dataset (2 runs)
datasets Methods Old(%) New(%) Avg. (%)

single network (ImageNet-A) 83.28 – –

ImageNet-A single network (ImageNet-B) – 85.28 –

↓ LwF (T = 1) 82.2 86.72 84.46

ImageNet-B LwF (T = 2) 80.92 86.96 83.94

PackNet 82.16 88.72 85.44

StackNet 83.30 88.66 85.98

respectively. In the same order, the performance of the stack-

net are 83.93,95,91 and 99. As we can see, the results have

a similar tendency compared to the previous experiments.

The accuracy degradation is within the range of 0 3%. Also,

StackNet can handle more than 3 tasks.

4.2. Continual learning using realistic datasets

ImageNet contains images more realistic than other

datasets used in this paper. Higher resolution and complex

backgrounds make the classification even harder. To save

the training time, two subsets of the ImageNet dataset each

having 50 randomly chosen classes have been used for eval-

uation. They are referred to as ImageNet-A and ImageNet-B

respectively in this paper. To show the adaptability of our

method on structures having shortcut connections, ResNet-

50 is used for the experiment. We use the same experimental

setting as in [4] with a batch size of 128. We compare our

StackNet with LwF and PackNet.

Table 3 shows the results on the ImageNet dataset. The

‘Old’ accuracy of all methods slightly dropped from those of

single networks. Like in the ‘SVHN to CIFAR-10’ experi-

ment, PackNet shows a better result than the LwF regardless

of the value of T . The result of StackNet is almost identical

to PackNet with a slight increase in the average accuracy.

PackNet actually utilizes more parameters for each task

than StackNet does. Since the masks force weights with no

influence to be zero and utilize the well trained remaining

weights, PackNet can make good use of the entire network.

However in StackNet, just adding filters gradually without

any other post-processing performs well enough compared

to PackNet. When the model of an initially designed size is

fully occupied by several tasks, StackNet can just add more

filters and train them along with the trained filters while this

is not the case of PackNet. Furthermore, PackNet requires

additional memories to store the masks for all filters in it.

StackNet needs only one integer per layer for each task. For

these reasons, StackNet is far more efficient than the PackNet

with no loss in performance.

4.3. Ablation study on the efficiency of StackNet

As mentioned above, our StackNet appends parameters

whenever a new task is to be trained. In this process, param-

eters learned from previous tasks are utilized altogether and

the parameters which are to be trained newly are initialized

using the existing ones. We conduct experiments to show

Table 4. Performances of the old (MNIST) and new (SVHN) tasks

with different initialization methods: 1) initialization with only

random Gaussian noise and 2) the pretrained parameter added by

random Gaussian noise
Initialization Old(%) New(%) Avg.(%)

Random 99.42 91.67 95.55

Pretrained parameters 99.43 92.37 95.90

the effect of these methods. Experiments are carried out in

‘MNIST to SVHN’ case as a representative.

4.3.1 Initialization with pretrained parameters

To analyse the effectiveness of initialization using pretrained

old task parameters with random Gaussian noise, we com-

pare the accuracy between a model initializing the new pa-

rameters with just a random Gaussian distribution and a

model initializing the new task parameters using the pre-

trained old task parameters with additional random Gaussian

noise. In Table 4, the model initialized by our method obvi-

ously shows higher accuracy on the SVHN task. This result

implies that a good initialization prevents the model from

going through a local minima.

4.3.2 Parameter sharing

We verify the effect of the parameter sharing between the

old task and the new task. The baseline method is a model

where the old parameters are filled with random Gaussian

initialization and no further training is done. The new param-

eters in the model have to learn knowledges from the new

task without the aid of old parameters since they are fixed

from the beginning. On the other hand, the old parameters in

our method is trained by the old task and the new parameters

can make use of these learnt knowledges to learn the new

task. To solely observe the effect of the parameter sharing,

both methods do not use our parameter initialization method

mentioned in the previous section. The task indices I1 and

I2 are {16,16,32} and {18,18,34} respectively. The model

using parameter sharing converges far more faster than the

model with no parameter sharing which is shown in Figure 4.

Also the final error rate of our method is lower than the other.

Increasing the number of indices elevation enhances our

method by 6.38% and the other model by 7.91% as shown

in Table 5. This implies that the parameter sharing improves

the model and allow it to be compact with fewer numbers of

filters.

4.4. Index module

To solely examine the influence of index module on our

method (StackNet*), we have conducted experiments with

the same experimental scenarios in StackNet* for GAN. As

a baseline method for the index module, we adopted a highly



Figure 4. Error rate comparison between sharing the parameters

which learned previous task and random parameters.

Table 5. The performances on the new task while increasing the

filter index of the model using parameter sharing and the model

with random fixed parameters.

#of increasing each index Ours(%) Random(%)

2 80.60 78.10

4 85.31 83.85

6 86.98 86.01

Table 6. Experimental results of the index module on the basic

datasets

Datasets Methods Old(%) New(%) Avg. (%)

MNIST→ GAN 100 99.94 99.97

SVHN Baseline 61.65 97.17 79.41

SVHN→ GAN 97.00 99.90 98.45

CIFAR-10 Baseline 89.39 85.86 87.63

Datasets Methods MNIST(%) SVHN(%) CIFAR(%) Avg(%)

MNIST→ SVHN GAN 100 96.65 99.83 98.83

CIFAR-10 Baseline 52.88 90.89 75.7 73.16

naive method that chooses the task index J according to the

confidence of the StackNet. Inferring each task output from

the StackNet, the output with the highest probability decides

the task index. (e.g, Task index J = argmaxi(Pi) where

Pi is the highest probability of i-th classifier)

In continual learning on MNIST to SVHN and SVHN

to CIFAR-10 datasets, an index module approximates the

results to perfection (See Table 6). The experiment of three

datasets also shows the same trend as the experiments above.

The baseline definitely shows a poor performance also in all

cases, which underlines the necessity of the index module.

The generated samples with GAN are depicted in Figure 5,6

and 7.

4.4.1 Limitation

Generative models usually have difficulties in generating

realistic images with high resolution and there are few re-

searches experimented on ImageNet data. This incompetence

makes the index module hard to be applied to the ImageNet

data. Also, when it comes to dealing with datasets of similar

distribution, the index module may not be working as good

as it is reported in this paper.

(a) Generated samples with the

generator of index module

(b) Real samples

Figure 5. MNIST dataset

(a) Generated samples with the

generator of index module

(b) Real samples

Figure 6. SVHN dataset

(a) Generated samples with the

generator of index module

(b) Real samples

Figure 7. CIFAR-10 dataset

5. Conclusion

In this paper, we have proposed a novel framework which

is able to divide its capacity into several parts and utilize

them according to the given input. Composed of two net-

works, the index module is responsible for memorizing

“where the data came from” while complicated knowledge

such as “what the data is” is engraved to the StackNet. To

the best of our knowledge, our work, index module, is the

first attempt to estimate the origin of data which used to be

assumed as given in the previous works. As well as overcom-

ing the catastrophic forgetting, StackNet allows extra class

labels when training a new dataset and also has expandability

to the network architecture.



Acknowledgments

This work was supported by Next-Generation Information

Computing Development Program through the NRF of Korea

(2017M3C4A7077582).

References

[1] Tarin Clanuwat, Mikel Bober-Irizar, Asanobu Kitamoto, Alex

Lamb, Kazuaki Yamamoto, and David Ha. Deep learning for

classical japanese literature. arXiv preprint arXiv:1812.01718,

2018.

[2] Jifeng Dai, Yi Li, Kaiming He, and Jian Sun. R-fcn: Object

detection via region-based fully convolutional networks. In

Advances in neural information processing systems, pages

379–387, 2016.

[3] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing

Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and

Yoshua Bengio. Generative adversarial nets. In Advances

in neural information processing systems, pages 2672–2680,

2014.

[4] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Deep residual learning for image recognition. In Proceed-

ings of the IEEE conference on computer vision and pattern

recognition, pages 770–778, 2016.

[5] Geoffrey Hinton, Oriol Vinyals, and Jeff Dean. Distill-

ing the knowledge in a neural network. arXiv preprint

arXiv:1503.02531, 2015.

[6] Heechul Jung, Jeongwoo Ju, Minju Jung, and Junmo Kim.

Less-forgetful learning for domain expansion in deep neural

networks. In Thirty-Second AAAI Conference on Artificial

Intelligence, 2018.

[7] James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel

Veness, Guillaume Desjardins, Andrei A Rusu, Kieran Milan,

John Quan, Tiago Ramalho, Agnieszka Grabska-Barwinska,

et al. Overcoming catastrophic forgetting in neural net-

works. Proceedings of the national academy of sciences,

page 201611835, 2017.

[8] Alex Krizhevsky and Geoffrey Hinton. Learning multiple

layers of features from tiny images. Technical report, Citeseer,

2009.

[9] Yann LeCun, Léon Bottou, Yoshua Bengio, and Patrick

Haffner. Gradient-based learning applied to document recog-

nition. Proceedings of the IEEE, 86(11):2278–2324, 1998.

[10] Hao Li, Asim Kadav, Igor Durdanovic, Hanan Samet, and

Hans Peter Graf. Pruning filters for efficient convnets. arXiv

preprint arXiv:1608.08710, 2016.

[11] Zhizhong Li and Derek Hoiem. Learning without forget-

ting. IEEE Transactions on Pattern Analysis and Machine

Intelligence, 2017.

[12] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian

Szegedy, Scott Reed, Cheng-Yang Fu, and Alexander C Berg.

Ssd: Single shot multibox detector. In European conference

on computer vision, pages 21–37. Springer, 2016.

[13] Jonathan Long, Evan Shelhamer, and Trevor Darrell. Fully

convolutional networks for semantic segmentation. In Pro-

ceedings of the IEEE conference on computer vision and

pattern recognition, pages 3431–3440, 2015.

[14] Arun Mallya and Svetlana Lazebnik. Packnet: Adding mul-

tiple tasks to a single network by iterative pruning. In The

IEEE Conference on Computer Vision and Pattern Recogni-

tion (CVPR), June 2018.

[15] Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco,

Bo Wu, and Andrew Y Ng. Reading digits in natural images

with unsupervised feature learning. In NIPS workshop on

deep learning and unsupervised feature learning, volume

2011, page 5, 2011.

[16] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali

Farhadi. You only look once: Unified, real-time object de-

tection. In Proceedings of the IEEE conference on computer

vision and pattern recognition, pages 779–788, 2016.

[17] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, San-

jeev Satheesh, Sean Ma, Zhiheng Huang, Andrej Karpathy,

Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li

Fei-Fei. ImageNet Large Scale Visual Recognition Challenge.

International Journal of Computer Vision (IJCV), 115(3):211–

252, 2015.

[18] Andrei A Rusu, Neil C Rabinowitz, Guillaume Desjardins,

Hubert Soyer, James Kirkpatrick, Koray Kavukcuoglu, Raz-

van Pascanu, and Raia Hadsell. Progressive neural networks.

arXiv preprint arXiv:1606.04671, 2016.

[19] Hanul Shin, Jung Kwon Lee, Jaehong Kim, and Jiwon Kim.

Continual learning with deep generative replay. In Advances

in Neural Information Processing Systems, pages 2990–2999,

2017.

[20] Karen Simonyan and Andrew Zisserman. Very deep convo-

lutional networks for large-scale image recognition. arXiv

preprint arXiv:1409.1556, 2014.

[21] Christian Szegedy, Wei Liu, Yangqing Jia, Pierre Sermanet,

Scott Reed, Dragomir Anguelov, Dumitru Erhan, Vincent

Vanhoucke, and Andrew Rabinovich. Going deeper with

convolutions. In Proceedings of the IEEE conference on

computer vision and pattern recognition, pages 1–9, 2015.

[22] Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist:

a novel image dataset for benchmarking machine learning

algorithms. arXiv preprint arXiv:1708.07747, 2017.


