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Abstract

Meta-learning concerns rapid knowledge acquisition.

One popular approach cast optimisation as a learning prob-

lem and it has been shown that learnt neural optimis-

ers updated base learners more quickly than their hand-

crafted counterparts. In this paper, we learn an optimisa-

tion rule that sparsely updates the learner parameters and

removes redundant weights. We present Masked Meta-SGD

(M2SGD), a neural optimiser which is not only capable

of updating learners quickly, but also capable of removing

83.71% weights for ResNet20s.

We release our codes at https://github.com/

Nic5472K/CLVISION2020_CVPR_M2SGD .

1. Introduction

Meta-learning concerns the idea of learning quickly.

This is a field that has recently seen substantial amount of

advancements – there are many different styles of question

formulations, and a diverse range of approaches in solving

them. In this paper, we follow the learning to learn exper-

imental setup as described in Andrychowicz et al. [1], and

focus on optimisation-based meta-learning approaches.

Learning to learn (L2L) involves two networks, a base

learner and an auxiliary meta-learner. The learner functions

as a classifier for a task such as image recognition, and the

meta-learner is trained to assist the learner to classify bet-

ter. The goal is to design a meta-learner that converges the

learner as quickly as possible.

In their paper, Andrychowicz et al. [1] explored learn-

ing to optimise. Unlike the handcrafted optimisation meth-

ods of SGD [21], momentum [18], ADAM [12], and RM-

Sprop [24], they propose to cast the optimisation algorithm

as a learning task for the meta-learner. The aim for the neu-

ral optimiser meta-learner is to directly learn the rules for

updating learner parameters θt of time t. The neural opti-

(a) Meta-SGD

(b) M2SGD

Figure 1. Meta-SGD vs M2SGD

miser replaces gradient descent which updates θt via

θt+1 = θt − α∇θLt+1(θt) (1)

with learning rate α and gradients of the learner loss with

respect to the parameters ∇θLt+1(θt). Their experiments

showed that neural optimisers updated learner parameters

more rapidly and yielded learners with lower losses.

One particular simple yet successful neural optimiser is

Meta-SGD [15]. The meta-learning target of Meta-SGD

is the learning rates used for updating learner parameters.

Meta-SGD learns a unique learning rate for each parameter

of the learner network. Despite its simplicity, Meta-SGD

has shown to be a successful neural optimiser.

In this present work, we present the Masked Meta-SGD

(M2SGD) as an extension to Meta-SGD. Two new features

are added, and we depict the conceptual differences be-

tween updating a learner F with Meta-SGD and M2SGD

in Figure 1. First, we propose to learn the learning rates

dynamically; and second, to learn a mask to remove redun-



dant weights of the learner. Both features are learnt with a

long short-term memory recurrent neural network (LSTM

RNN) [10]. That is, our proposed M2SGD neural opti-

miser employs an RNN to cast optimisation as a function of

its hidden iterative variables. Together, these two features

remove unimportant connections of the learner and ensure

that only the important weights are being updated.

Current state-of-the-art neural networks possess a large

amount of parameters. This makes them both memory in-

tensive and computationally demanding. To address these

limitations, sparse learning can be used to only learn the

important connections. Han et al. [8] introduced an influen-

tial paradigm which removed redundant weights via a cyclic

training which (1) trains, (2) prunes weights, and (3) re-

trains a dense network. This method is capable of reducing

the total number of VGG-16 [23] parameters by 13 times

while showing no loss in accuracy. However, cyclic training

is itself a computationally expensive operation – it requires

a dense network to be repeatedly pruned and retrained from

the beginning of the training phase.

The masking system of M2SGD removes unimportant

weights as a part of its learnt optimisation algorithm. That

is, M2SGD is capable of finding a small size sub-network

within a dense learner architecture on the fly as it updates the

parameters. M2SGD thus removes the need to retrain the

dense network thereby hastening the weight removal pro-

cedure. Our experiments showed that M2SGDs not only

updated learners quickly, but also removed 83.71% weights

for ResNet20s [9].

2. Preliminaries

Our method proposes a learnt optimisation algorithm

that removes redundant learner weights. This section will

first discuss the seminal paper of Andrychowicz et al. [1]

which introduced the idea to train an RNN as an optimiser.

We will also provide a detail description on the L2L experi-

mental setup. Second, we will introduce its successful sim-

plified method of Meta-SGD [15]. Then, we will discuss

more on sparse learning.

2.1. The LSTM­optimiser

Andrychowicz et al. [1] proposed to conduct meta-

learning via learning to optimise. They trained an RNN

V(φ) as a neural optimiser to update another independent

learner F (θt). Below, we explain the L2L experiment as

described in Andrychowicz et al. with Algorithm 1.

The neural optimiser meta-learner V employs an RNN to

prepare updates gt for the learner parameters θt via

θt+1 = θt + gt+1 and (2)

[gt+1, ht+1] = V
(

X
(V)
t , ht|φ

)

, (3)

Algorithm 1 Training the LSTM-optimiser of [1]

Input:

Learner F with parameter θ ,

LSTM-optimiser V with parameter φ ,

and training dataset DTrain.

Hyper-parameters:

Training-trial Q , training-step S ,

unrolling-instance Ξ , and learning rate ω for V .

1: τ = 0
2: D ← set up dataset

3: φ← random initialisation ⊲ For V
4: for q = 1, Q do ⊲ Updating Q learners

5: θ0 ← random initialisation ⊲ For the qth F

6: for t = 1, S do ⊲ Update for S steps

7: Xt,Yt ← sample batch from DTrain

8: Lt+1(θt)← L
(

F (Xt|θt),Yt
)

⊲ Acquire L
9: τ ← τ + 1

10: Lτ+1(θτ )← Lt+1(θt) ⊲ Record L

11: if τ = Ξ then ⊲ Unroll V

12: L (φ) = E

[

∑Ξ
τ=1 Lτ+1(θτ )

]

⊲ Acquire L

13: φ← φ− ω∇φL (φ) ⊲ Update φ

14: τ = 0 ⊲ Reset records

15: end if

16: X
(V)
t ← ∇θLt+1(θt) ⊲ Prepare the input of V

17: gt+1 ← V(X
(V)
t |φ)⊲ Compute the update to θt

18: θt+1 ← θt + gt ⊲ Update θ

19: end for

20: end for

where X
(V)
t is the input to V and that ht is the hidden

state of the RNN. Parameters of the neural optimiser are

updated along learners parameters but only once every

“unrolling” . Below, the unroll procedure will be explained

in detail, and we will discuss X
(V)
t afterwards.

The neural optimiser learns through updating Q learn-

ers for S steps. The objective loss L of V is dependent on

the objective loss L of F . (Note the differences between the

two Ls.) For every Ξ steps, the neural optimiser “unrolls”

and parameters φ of V are updated based on their respective

gradients to L , which is defined as

L (φ) = E

[

Ξ
∑

τ=1

Lτ+1(θτ )

]

. (4)

While the learner lossLt+1(θt) is dependent on the parame-

ters, Equation (4) shows that the objective of V depends on

the trajectory of the optimisation with Ξ as the maximum

memory bandwidth of the RNN.

In their paper, the RNNs were 2-layer LSTMs [10] and

their inputs X
(V)
t were the learner gradients ∇θLt+1(θt).



The LSTM-optimiser provides coordinate-wise updates to

θt. Each entry is updated only with information of its

own corresponding gradient. In practice, Andrychowicz et

al. [1] pre-processed gradients as two vectors according to

Appendix A. Input X
(V)
t is thus treated as a data of batch

size |θt| and feature size 2. The hidden dimensions of the

LSTMs were 20, and Ξ was dependent on the task at hand.

However, updating large learners with LSTMs incur high

computational complexity. Moreover, it is difficult to in-

terpret the learnt update rules. Fortunately, Li et al. [15]

demonstrated that neural optimisers can be made simple.

2.2. Meta­SGD

Li et al. [15] proposed Meta-SGD to update learner pa-

rameters via

θt+1 = θt − β ⊙∇θLt+1(θt), (5)

where β ∈ R
|θt| and that symbol ⊙ represents the element-

wise product. Learning rates β are the meta-learning target

of Meta-SGD; and they are a constant vector after training.

Meta-SGD hence learns a unique learning rate for every fea-

ture. Compared to the popular LSTM-metalearner [20], it

was shown that this simple method achieved better results

than its complicated counterpart.

There is an important difference between Meta-SGD and

the LSTM-optimiser. Unlike the LSTM-optimiser which

learns to directly prepare for updates gt, Meta-SGD ex-

plicitly utilise the native gradient ∇θLt+1(θt). That is,

the LSTM-optimiser learns to precondition the gradients,

whereas Meta-SGD learns auxiliary components that are

compatible with the gradient descent paradigm.

2.3. Sparse learning

Sparse learning can be used to find small and sparse

sub-networks within a dense architecture. Sparse networks

enjoys multiple benefits from the removal of unimportant

weights. For instance, the reduced size and computational

cost makes it possible for small but powerful networks to be

built on low-resource devices such as mobile phones.

In the early works, LeCun et al. [14] proposed to prune

weights via second-order derivatives, and Ishikawa [11]

modified the loss function to selectively prune weights with

small magnitudes. More recently, Han et al. [8] showed that

the number of parameters in a dense network could be re-

duce by an order of magnitude via the cyclic training of (1)

train, (2) prune smallest weights, and (3) retrain.

However, in the “Lottery Ticket Hypothesis”, Frankle

& Carbin [5] noted that dense networks trained easier be-

cause there were more possible sub-networks which train-

ing might optimise to. Hence instead of pruning the

weights, they masked the smallest weights of the learner

and held them constant during training. They demonstrated

that dense networks could be trained successfully even with

up to 80% of their weights held constant.

As noted in Frankle & Carbin [5], cyclic training trains

a dense learner for multiple times over multiple trials and is

computationally costly. Our proposed M2SGD is a trainable

SGD-like optimiser which learns a mask to nullify unnec-

essary connections in the learner architecture. Hence after

training, the M2SGD simultaneously updates the learner pa-

rameters and applies a mask to remove redundant weights

from the learner. This therefore allows the M2SGD to find a

lightweight sub-network within the dense architecture with-

out the need of retraining, thereby hastening the weight re-

moval procedure.

3. Extensions to Meta-SGD

Meta-SGD [15]

.θt+1 = θt − β ⊙∇θLt+1(θt)

.Dynamic Meta-SGD (DMSGD) [Ours]

.θt+1 = θt + βt+1 ⊙ (−∇θLt+1(θt)), (6)

βt+1 = ReLU(βsta + γ ⊙ β
dyn
t+1 ), (7)

β
dyn
t+1 = tanh(Uβht+1), and (8)

[ht+1, ct+1] = LSTM(∇θL(θt), ht, ct|φ). (9)

.Masked Meta-SGD (M2SGD) [Ours]

.After Dynamic Meta-SGD (6) - (9), apply

θt+1 =θt+1⊙Maskt+1 where (10)

Mask
(j)
t+1 = max(0, sgn(β

(j)
t+1 > ξ)) for (11)

j = 1, . . . , |θt|.

.
Table 1. Extending the Meta-SGD neural optimiser

In this section, we introduce the Dynamic Meta-SGD

(DMSGD) and the Masked Meta-SGD (M2SGD) as ex-

tensions to the existing Meta-SGD [15] neural optimiser

meta-learner. We compare the algorithms side-by-side in

Table 1 and discuss our newly proposed features below.

3.1. The Dynamic Meta­SGD (DMSGD)

The DMSGD neural optimiser is described in Equations

(6) to (9) in Table 1. Similar to Meta-SGD, the sole meta-

learning target is the learning rates βt. As described in Sec-

tion 2.2, the Meta-SGD learning rates are constants after

training. Here, we develop DMSGD as an optimisation al-

gorithm which fine-tunes its own learning rates given the

gradients of the learner parameters. In addition to the ex-

isting static learning rates βsta, DMSGD infers for an ad-



ditional set of dynamic learning rates β
dyn
t with an LSTM.

Variables ht and ct are the hidden states and the cell states of

the LSTM respectively. Vector γ ∈ R
|θt| provides optional

weights for βdyn; and we default γ as a constant vector ~1

unless stated otherwise. We denote tanh as the hyperbolic

tangent function, and ReLU as the rectified linear unit [7].

There are two important notes for the DMSGD. First,

like the LSTM-optimiser introduced in Section 2.1, the

DMSGD employs a coordinate-wise LSTM for inferring

β
dyn
t . Second, the DMSGD provides no update to the jth

element of parameters θt when |βsta(j)

|< |γ(j)β
dyn(j)

t | and

βsta(j)

γ(j)β
dyn(j)

t < 0. Hence the DMSGD is trained to

find and sparsely update the important weights of the learner

while keeping the less important weights as constants.

3.2. The Masked Meta­SGD (M2SGD)

The M2SGD neural optimiser is built on the DMSGD

and further extends Meta-SGD with a masking system as

described in Equations (10) and (11) in Table 1. The mask

is applied after parameters θt are updated; and its purpose

is to nullify weights that are secondary in importance.

In this work, we consider less important weights as those

that are updated with small learning rates. Our conjecture

is based on two reasons. First, learner networks are en-

couraged to have their parameters randomly initialised with

small magnitudes in order to prevent saturation in layer out-

puts [6]. Second, randomly initialised learners are non-

optimal and have low accuracy. Hence following reasons

1 and 2, weights that are not updated with large learning

rates are of low priority to the successful inferential process

of a converged learner. Due to these reasons, we nullify the

weights base on the magnitude of their respective learning

rates βt as shown in Equation (11).

In Equation (11), ξ is a non-negative lower bound for

the learning rates. It represents a threshold for the impor-

tance of the weights. We denote sgn as the sign function.

When ξ = 0, M2SGD nullifies weights that receive no up-

date during training; and when ξ > 0, we nullify both the

non-updated weights and a portion of weights with less sig-

nificant learning rates.

4. L2L image recognition

In this section, we followed Andrychowicz et al. [1] and

employed neural optimisers to update learners for image

recognition. In their paper, Andrychowicz et al. employed

neural optimisers to update small size learners. They up-

dated multiple layer perceptron (MLP) learners for the first

100 iterations, and updated small convolutional learners for

the first 1000 iterations. They demonstrated that neural op-

timisers updated the small learners more rapidly than the

handcrafted optimisation methods of SGD and ADAM.

Andrychowicz et al. focused on introducing the concept

of L2L, but in this present work we focus on performance

verification. Hence, we adapted three changes. First, we up-

dated large learners instead of MLPs. Second, Andrychow-

icz et al. updated MLPs to classify the small size 28×28

greyscale MNIST [13] images, and we selected a more dif-

ficult dataset. Third, instead of updating learners for the first

1000 steps, we updated them until they converged.

4.1. Dataset, learner, and experimental setups

We trained neural optimisers to update ResNet20 [9]

learners for STL10 [3]. The low resource STL10 dataset

consists 5,000 training and 8,000 test RGB colour images in

10 classes on 96×96 pixels; whereas the ResNet20 learner

follows the identical architecture as described in [22] and

has 270K weights.

We trained DMSGDs, M2SGDs, and Meta-SGDs to up-

date ResNet20s in a similar fashion to that in Algorithm 1.

Lines 16 to 18 of the algorithm vary for each neural opti-

miser, and these lines should be substituted with the correct

formulation as documented in Table 1. The minimisation

for the neural optimiser loss L of lines 12 and 13 was per-

formed using ADAM with learning rate 0.001.

Additionally, we set unroll Ξ = 5, learner-trials Q = 1,

and learner-steps S = 100 (, see Algorithm 1). The com-

bination of these hyper-parameters meant that, each neu-

ral optimiser was trained to update 1 learner for 100

steps; and that each neural optimiser memorised 5 con-

tinual steps of the depth of the optimisation trajectory.

After the neural optimisers were trained, we employed

them to update the learners until they converged. De-

spite having the neural optimisers trained only to update

the learners for S = 100 steps, we updated ResNet20s for

4000 iterations. We emphasise that this number (of 4000

steps) was the least amount of iterations for Meta-SGDs to

converge the learners. That is, the setups of this section was

purposely selected to favour the optimisation results for our

rival Meta-SGD neural optimiser.

We also compared our neural optimisers to the classic

SGD. The classic SGD updated the ResNet20 learners with

learning rate 0.001 and with momentum 0.9. We also up-

dated learners with the classic SGD until they converged

(in 7850 steps). These results were included to verify that

neural optimisers converged learners with comparable per-

formance to those that were updated by the classic SGD.

4.2. Results and analysis

After training the neural optimisers, we employed them

to update twenty randomly initialised learners with different

θ0, and our results are summarised in Figures 2 and 3, and

in Table 2. Both figures illustrate the learning curves of

the learner networks while being updated with different op-

timisers. Figure 2 shows the performances of the learn-

ers from initialisation to convergence; whereas Figure 3



shows the leaners being lightly updated for the first 1000
iterations. Table 2 records various statistics, including the

average accuracy of the updated learners, the amount of it-

erations applied to the learners, the total amount of weights

of the yielded learners, and the amount of weight reduction

from the initial dense architecture. We use these results to

address four main findings below.

First, as shown in Figure 2, all neural optimisers up-

dated learners more efficiently than SGDs. We found

that M2SGDs performed comparably to Meta-SGD, while

DMSGDs outperformed all rival optimisers. DMSGDs up-

dated the learners more rapidly, and converged learners to

the least amount of loss.

Second, as shown in Table 2, DMSGDs converged

ResNets20s with the highest accuracy 65.52%. This is

significantly higher than Meta-SGDs’ converged accuracy

60.39% and marginally higher than the classic SGDs’

63.64%. In addition, DMSGDs were able to converge the

learners much faster than SGDs. DMSGDs managed to

converge ResNet20s in 4000 steps of update, while SGDs

required 7850 steps. Furthermore, SGDs were only able to

yield ResNet20s with 59.54% after 4000 steps of updates.

Thus we showed that the learning rates could be learnt to

yield competitive learners via only updating the important

weights.

Third, Table 2 shows that M2SGDs yielded competi-

tive ResNet20s and also removed a significant portion of

weights from the learners. M2SGDs with ξ = 0.2825
removed 83.71% weights for ResNet20s and lowered the

total amount of weights from 270K to 40K. In addition,

M2SGDs converged these learners to 63.53% in 4000 steps,

and matched those that were converged by SGDs to 63.64%

in 7850 steps. This showed that unnecessary learner con-

nections can be successfully detected by the magnitude of

their corresponding learning rates. Furthermore, these pos-

itive results showed that sparse sub-networks can be found

without the need to retrain a dense network. Hence, our

M2SGD neural optimisers updated learners quickly and

also provided efficient weight removal.

Forth, that the final accuracy of the learners are equiva-

lently important to the convergence rate of neural optimis-

ers. Figure 2 shows that Meta-SGDs updated ResNet20s

more rapidly than the classic SGDs; however, Table 2 re-

veals that the final accuracy of their learners were not as

competitive (60.39%) as those that were updated with the

classic SGDs (63.64%). Hence a neural optimiser should

not only be judged by the rate which they converged the

learners, but also with their learners’ converged accuracy.

4.3. Open questions in the original L2L experiment

Here we address three open questions that we have iden-

tified in Andrychowicz et al. [1]’s L2L experiments. Our

aim is to use our results to complement their previous work.
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Figure 2. Loss curve for updating ResNet20s (until convergence)
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Figure 3. Loss curve for updating ResNet20s (first 1000 steps)

Optimiser % Accuracy # Iterations # Weights (% ↓)

SGD 59.54 ± 0.23 4000 270K (- -)

SGD 63.64 ± 0.73 7850 270K (- -)

Meta-SGD [15] 60.39 ± 2.27 4000 270K (- -)

DMSGD [Ours] 65.52 ± 1.22 4000 270K (- -)

M2SGD [Ours]

ξ = 0 65.10 ± 1.17 4000 140K (46.89%)

ξ = 0.1 64.63 ± 1.50 4000 100K (61.31%)

ξ = 0.2825 63.53 ± 0.38 4000 40K (83.71%)

Table 2. Performance details of ResNet20 learners

As mentioned in the opening remarks, Andrychowicz et

al. updated small learners for a short duration. Similar to

Figures 2 and 3, they provided learning curves of differ-

ent optimisers, and showed that neural optimisers updated

learners more rapidly than the hand-designed counterparts.

However, they did not report the accuracy of their learners.

The first open question concerns the efficiency of up-

dating learners with neural optimisers for a long duration.

This is an important question for understanding whether

neural optimisers converged learners to undesirable subop-

timal local minima. To ensure convergence, we extended

the amount of updates from 1000 iterations to 4000 itera-

tions. As we show in Figure 2, neural optimisers updated

the learners nicely for the prolonged duration. There were

no dramatic changes in the slopes and all final losses were



similar. There were thus no obvious training difficulties.

The second open question regards the converged accu-

racy of learners. In their work, Andrychowicz et al. demon-

strated the rapid knowledge acquisition of their neural opti-

misers, but they did not report the accuracy of their learner

networks. As we previously discussed in result 4 of Sec-

tion 4.2, the converged accuracy is as important as the rate

of update; and the two desirable qualities do not necessarily

exist simultaneously.

The last open question regards the compatibility of up-

dating large size learners with neural optimisers. In the orig-

inal work, Andrychowicz et al. updated a single layer MLP

with 20 hidden units. Our ResNet20 learner is an order of

magnitude larger than their MLP, and our results in Table 2

show no difficulties in updating the larger ResNet20.

4.4. More results

We also found a similar pattern of success in updating

MLPs with DMSGDs and M2SGDs. The MLPs were se-

lected to classify Fashion-MNIST [26]. We summarised the

extra results in Appendix B.

5. Related works

Meta-learning

Meta-learning is a large field of study that addresses the

general idea of learning quickly. The concept can be for-

mulated in many different ways. Our work focused on

L2L [1]; and alternatively, one can consider the task of few-

shot learning as described in Vinyals et al. [25]. That task

trains a network which is capable of mapping unlabelled

data to their labels through inferring with a small labelled

support set.

There are three common approaches in meta-learning.

They are the (1) metric-based [25], (2) model-based [16],

and (3) optimisation-based [1] learning. Metric-based

learning aims to learn a network which encodes inputs as

a kernel function for measuring the similarity between sam-

pled data. Model-based learning aims to learn a meta-

learner which produces weights for the learner based on

sampled data. Our work is most aligned with optimisation-

based learning, which we discuss separately below.

There are three sub-classes of optimisation-based meta-

learners. First, Finn et al. [4] proposed the double-loop

MAML optimisation setup. The inner loop finds κ copies of

candidate fast-weights and losses; then the outer loop per-

forms a classic gradient descent which aggregates over the κ

losses. Second, there are neural optimisers which precondi-

tion the gradient like the LSTM-optimiser [1] (see Section

2.1). Park & Oliva [19] showed that the first two classes

can be combined to yield better results. Third, there are

neural optimisers which meta-learn auxiliary components

to update learner parameters with the native gradient. This

includes the LSTM-metalearner [20], Meta-SGD [15], and

our proposed methods of DMSGD and M2SGD.

Sparse learning

As mentioned in Section 2, early techniques prune

weights through second-order derivatives [14] and heuris-

tics [11]. Whereas recent works, including network com-

pression [2, 17], follow the paradigmatic prune-and-retrain

cyclic training of Han et al. [8]. The work of Frankle &

Carbin [5] found that dense networks could also be updated

while holding redundant weights as constants. However,

most of these approaches are computationally costly due to

the need to repeatedly retrain dense networks.

Comparison

In this paper, we showed that it was possible to conduct

weight removal via meta-learning. Our proposed M2SGD

neural optimiser learns a direct rule to sparsely update

learner parameters while simultaneously removing redun-

dant weights with a masking system. M2SGDs do not re-

quire the learners to be retrained and thus hastens the weight

removal procedure.

The DMSGD method shares some similarities to the Lot-

tery Ticket Hypothesis of Frankle & Carbin [5]. Instead

of removing the less important weights, DMSGDs learn to

provide them with no updates and thus indirectly keeping

them as constants.

The M2SGD is more closely related to the early sparse

learning works of [14] and does not remove weights base

on the weights’ magnitudes. Instead, we influenced the

weights through the magnitudes of the learning rates. We

considered weights that were associated with small learn-

ing rates as parameters that were secondary in importance.

This is because that they were not required to be config-

ured quickly for successful network inferences. The mask-

ing system of M2SGD is designed to nullify weights with

small learning rates.

6. Discussion

This paper introduced DMSGD and M2SGD as ex-

tensions to the optimisation-based Meta-SGD [15] met-

alearner. Our proposed methods added two new fea-

tures. First we inferred for dynamic learning rates with an

LSTM [10]; and second, we added a masking system to nul-

lify weights that were considered secondary in importance.

On the L2L [1] task for classifying STL10 [3] images,

our neural optimisers updated ResNet20s [9] more rapidly

than Meta-SGDs, converged ResNet20s to lower losses, up-

dated ResNet20s with better accuracy, and removed 83.71%

weights from the dense ResNet20 architecture.
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A. Gradient pre-processing

This appendix documents the gradient pre-processing

used in Andrychowicz et al. [1]. We reiterate the following

content for the completeness of this paper, and to highlight

the size of the input dimension of the LSTM-optimiser in

Section 2. The original content can be found on page 11 of

[1] under “A Gradient preprocessing”.

Andrychowicz et al. proposed to pre-process the neural

optimiser’s input gradient ∇θLt+1(θt). We will simplify

∇θLt+1(θt) as ∇ in this appendix. The pre-processing

scheme is given as

∇(j) →

{ (

log(|∇|)
p

, sgn(∇)
)

if |∇| ≥ e−p,

(−1, ep∇) otherwise



and pre-processes each element of the gradient ∇(j) for

j = 1 . . . |θt| as a pair of values. The hyper-parameter p is

defaulted as 10 in all of their and in all of our experiments.

Andrychowicz et al. devised this scheme to ensure that

the magnitudes of every dimension is on the same order.

They mentioned that this is necessary because neural net-

works, and including neural optimisers “naturally disregard

small variations in input signals and concentrate on bigger

input values”. In addition, hyper-parameter p > 0 controls

how small gradients are disregarded.

B. More L2L experiments for MLPs

This appendix addresses additional L2L experiments for

MLPs. Similar to Section 4, we employed classic SGDs,

Meta-SGDs, DMSGDs, and M2SGDs to update the MLPs.

The MLP learners were tasked to classifying images of the

Fashion-MNIST [26] dataset.

As noted in Section 4.1, Andrychowicz et al. [1] up-

dated MLPs on the MNIST dataset. Here, we employ neu-

ral optimisers to update MLPs, but on a slightly more diffi-

cult dataset. First, the MNIST dataset [13] contains 60,000

training and 10,000 test images in 10 classes of 28×28

greyscale handwritten digits. On the other hand, Fashion-

MNIST is a slightly more difficult dataset crafted simial-

rly to MNIST. FashionMNIST consists 60,000 training and

10,000 test grayscale images of 10 classes of fashion items

on 28×28 pixels.

Our MLP learners were simple. They consisted one lin-

ear layer followed by a ReLU activation, and one softmax

layer. The linear layer received all Fashion-MNIST im-

ages as vectors of pixels. Thus, the input dimension was

784(= 28 × 28), and we set the hidden size to 32. The

MLP leaner had 25.4K parameters.

All hyper-parameteric setup follow that in Section 4.1;

hence we will not reiterate them here. After training the

neural optimisers, we employed them to update the MLP

learners until convergence (for 10000 iterations); and also

updated the MLP learners with classic SGDs until conver-

gence (for 37500 iterations). We summarised the results in

Figures 4 and 5, and in Table 3.

Figures 4 and 5 plot the first 5000 and 1000 steps of

the learner loss curves respectively. We found that all neu-

ral optimisers updated the MLPs more rapidly than SGDs.

Furthermore, we found that both DMSGDs and M2SGDs

outperformed Meta-SGDs.

We found a similar pattern of successes to Section 4 in

Table 3. Again, DMSGDs converged the learners with the

highest accuracy (85.37%). Those converged MLPs that

were updated by M2SGDs with ξ = 0.2 enjoyed a similar

level of accuracy (83.81%) to those that were updated
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Figure 4. Loss curve (first 5000 steps) for Fashion-MNIST
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Figure 5. Loss curve (first 1000 steps) for Fashion-MNIST

Optimiser % Accuracy # Iterations # Weights (% ↓)

SGD 82.72 ± 0.55 37500 25.4K (- -)

Meta-SGD [15] 85.06 ± 0.72 10000 25.4K (- -)

DMSGD [Ours] 85.37 ± 0.55 10000 25.4K (- -)

M2SGD [Ours]

ξ = 0 84.80 ± 0.35 10000 13.0K (49.00%)

ξ = 0.1 84.46 ± 0.43 10000 9.9K (60.68%)

ξ = 0.2 83.81 ± 0.76 10000 7.8K (68.94%)

Table 3. Performance details of MLP learners

by the classic SGDs (82.72%), but also had 68.94% less

parameters.


