
Generative Feature Replay For Class-Incremental Learning

Xialei Liu1,∗, Chenshen Wu1,∗, Mikel Menta1, Luis Herranz1, Bogdan Raducanu1,

Andrew D. Bagdanov2, Shangling Jui3, Joost van de Weijer1

1 Computer Vision Center, Universitat Autonoma de Barcelona, Barcelona, Spain
2 Media Integration and Communication Center, University of Florence, Florence, Italy

3 Huawei Kirin Solution, Shanghai, China

{xialei,chenshen,mkmenta,lherranz,bogdan,joost}@cvc.uab.es,

andrew.bagdanov@unifi.it , jui.shangling@huawei.com

Abstract

Humans are capable of learning new tasks without for-

getting previous ones, while neural networks fail due to

catastrophic forgetting between new and previously-learned

tasks. We consider a class-incremental setting which means

that the task-ID is unknown at inference time. The imbal-

ance between old and new classes typically results in a bias

of the network towards the newest ones. This imbalance

problem can either be addressed by storing exemplars from

previous tasks, or by using image replay methods. However,

the latter can only be applied to toy datasets since image

generation for complex datasets is a hard problem.

We propose a solution to the imbalance problem based

on generative feature replay which does not require any ex-

emplars. To do this, we split the network into two parts:

a feature extractor and a classifier. To prevent forget-

ting, we combine generative feature replay in the classifier

with feature distillation in the feature extractor. Through

feature generation, our method reduces the complexity of

generative replay and prevents the imbalance problem.

Our approach is computationally efficient and scalable to

large datasets. Experiments confirm that our approach

achieves state-of-the-art results on CIFAR-100 and Ima-

geNet, while requiring only a fraction of the storage needed

for exemplar-based continual learning. Code available at

https://github.com/xialeiliu/GFR-IL.

1. Introduction

Humans and animals are capable of continually acquir-

ing and updating knowledge throughout their lifetime. The

ability to accommodate new knowledge while retaining pre-

viously learned knowledge is referred to as incremental or

continual learning, which is essential to building scalable

∗Both authors contributed equally.

Generative image replay
Proposed

(Generative feature replay
& Feature distillation)

Trainable

Frozen

Distillation lossCurrent task pathway

Previous tasks pathway

Figure 1. Comparison of generative image replay and the proposed

generative feature replay. Instead of replaying images x the pro-

posed method uses a generator G to replay features u. To prevent

forgetting in the feature extractor F we apply feature distillation.

Feature replay allows us to train classifiers H which do not suffer

from the imbalance problem common to class-incremental meth-

ods. Furthermore, feature generation is significantly easier than

image generation and can be applied to complex datasets.

and reusable artificially intelligent systems. Current deep

neural networks have achieved impressive performance on

many benchmarks, comparable or even better than humans

(e.g. image classification [13]). However, when trained

for new tasks, these networks almost completely forget the

previous ones due to the problem of catastrophic forget-

ting [31] between the new and previously-learned tasks.

To overcome catastrophic forgetting several approaches,

inspired in part by biological systems, have been pro-

posed. The first category of approaches use regulariz-

ers that limit the plasticity of the network while training

1

on new tasks so the network remains stable on previous

ones [1, 19, 23, 24, 56]. Another type of approach involves

dynamically increasing the capacity of the network to ac-

commodate new tasks [21, 44], often combined with task-

dependent masks on the weights [28, 29] or activations [45]

to reduce the chance of catastrophic forgetting.

A third category of approaches relies on memory replay,

i.e. replaying samples of previous tasks while learning with

the samples of the current task. These samples could be

real ones (’exemplars’), like in [4, 25, 41] in which we re-

fer to the process as ’rehearsal’ or could be synthethic ones

obtained through generative mechanisms, in which case

we refer to the process as ’pseudo-rehearsal’ [43, 46, 49].

Incremental learning methods are typically evaluated and

designed for a particular testing scenario [48]. Task-

incremental learning considers the case where the task ID

is given at inference time [25, 29, 45]. Class-incremental

learning considers the more difficult scenario in which the

task ID is unknown at testing time [14, 41, 50].

Recently, research attention has shifted from task-

incremental to class-incremental learning. The main ad-

ditional challenge, which class-incremental methods have

to address, is balancing the different classifier heads. The

imbalance problem occurs because during training of the

current task there is none or only limited data available

from previous tasks, which biases the classifier towards the

most recently learned task. Various solutions to this prob-

lem have been proposed. iCarL[41] stores a fixed budget

of exemplars from previous tasks in a way that exemplars

approximate the mean of classes in the feature space. The

nearest-mean classifier is used for inference. Wu et al. [50]

found that the last fully-connected layer has a strong bias

towards new classes, and corrected the bias with a linear

model estimated from exemplars. Hou et al. [14] replace the

softmax with a cosine similarity-based loss, which, com-

bined with exemplars, addresses the imbalance problem.

All these methods have in common that they require stor-

age of exemplars. However, for many applications – espe-

cially due to privacy concerns or storage restrictions – it is

not possible to store any exemplars from previous tasks.

The only methods which successfully addresses the im-

balance problem without requiring any exemplars are meth-

ods performing generative replay [46, 49]. These meth-

ods train a generator continuously to generate samples of

previous tasks, and therefore prevent the imbalance prob-

lem. Thus, these methods report excellent results for class-

incremental learning. However, they have one major draw-

back: the generator should accurately generate images from

previous task distributions. For small data sets like MNIST

and CIFAR-10 this is feasible, however, for larger datasets

with more classes and larger images (like CIFAR-100 and

ImageNet) these methods yield unsatisfactory results.

In this paper, we propose a novel approach based on gen-

erative feature replay to overcome catastrophic forgetting in

class-incremental continual learning. Our approach is mo-

tivated by the fact that image generation is a complex pro-

cess when the number of images is limited or the number of

classes is high. Therefore, instead of image generation we

adopt feature generation which is considerably easier than

accurately generating images. We split networks into two

parts: a feature extractor and a classifier. To prevent forget-

ting in the entire network, we combine generative feature

replay (in the classifier) with feature distillation on the fea-

ture extractor. To summarize, our contributions are:

• We design a hybrid model for class-incremental learn-

ing which combines generative feature replay at the

classifier level and distillation in the feature extractor.

• We provide visualization and analysis based on Canon-

ical Correlation Analysis (CCA) of how and where net-

works forget in order to offer better insight.

• We outperform other methods which do not use exem-

plars by a large margin on the ImageNet and CIFAR-

100 datasets. Notably, we also outperform methods

using exemplars for most of the evaluated settings. Ad-

ditionally, we show that our method is computationally

efficient and scalable to large datasets.

2. Related Work

2.1. Continual learning

Continual learning can be divided into three main cate-

gories as follows (more details in the surveys [7, 36]):

Regularization-based methods. A first family of tech-

niques is based on regularization. They estimate the rele-

vance of each network parameter and penalize those param-

eters which show significant change when switching from

one task to another. The difference between these methods

lies on how the penalization is computed. For instance, the

EWC approach in [19, 24], weights network parameters us-

ing an approximation of the diagonal of the Fisher Informa-

tion Matrix (FIM). In [56], the importance weights are com-

puted online. They keep track of how much the loss changes

due to a change in a specific parameter and accumulate this

information during training. A similar approach is followed

in [1], but here, instead of considering the changes in the

loss, they focus on the changes on activations. This way,

parameter relevance is learned in an unsupervised manner.

Instead of regularizing weights, [15, 23] align the predic-

tions using the data from the current task.

Architecture-based methods. A second family of methods

to prevent catastrophic forgetting produce modifications in

a network’s morphology by growing a sub-network for each

task, either logically or physically [21, 44]. Piggyback [28]

and Packnet [29] and learn a separate mask for each task,

while HAT [45] and Ternary Feature Masks [30] learn a

mask on the activations instead of for each parameter.

Rehearsal-based methods. The third and last family of

methods to prevent catastrophic forgetting are rehearsal-

based. Existing approaches use two strategies: either store

a small number of training samples from previous tasks

or use a generative mechanism to sample synthetic data

from previously learned distributions. In the first cate-

gory, iCaRL [41] stores a subset of real data (called ex-

emplars). For a given memory budget, the number of ex-

emplars stored should decrease when the number of classes

increases, which inevitably leads to a decrease in perfor-

mance. A similar approach is pursued in [25], but the gra-

dients of previous tasks are preserved. An improved ver-

sion of this approach overcomes some efficiency issues [5].

In [14] the authors propose two losses called the less-forget

constraint and inter-class separation to prevent forgetting.

The less-forget constraint minimizes the cosine distance be-

tween the features extracted by the original and new mod-

els. The inter-class separation separates the old classes from

the new ones with the stored exemplars used as anchors.

In [50, 2], a bias correction layer to correct the output of the

original fully-connected layer is introduced to address the

data imbalance between the old and new categories. In [38],

they propose to store activations for replay and a slow-down

learning at all the layers below the replay layer.

Methods in the second category do not store any exem-

plars, but introduce a generative mechanism to sample data

from. In [46], memory replay is implemented with an un-

conditional GAN, where an auxiliary classifier is required

in order to determine which class the generated samples be-

long to. An improved version of this approach was intro-

duced in [49], where they use a class-conditional GAN to

generate synthetic data. In contrast, FearNet [17] uses a

generative autoencoder for memory replay and [53] gen-

erates intermediate features. Using the class statistics from

the encoder, synthetic data for previous tasks is generated

based on the mean and covariance matrix. The main limita-

tion of this approach is the assumption of a Gaussian distri-

bution of the data and the reliance on pretrained models.

2.2. Generative adversarial networks

Generative adversarial networks (GANs) [11] are able

to generate realistic and sharp images conditioned on ob-

ject categories [12, 39], text [42, 57], another image (image

translation) [18, 58] and style transfer [10]. In the context

of continual learning, they were successfully been used for

memory replay, by generating synthetic samples from pre-

vious tasks [49]. Here we are going to analyze the GANs

limitations and argue why GANs for feature generation are

preferable over image generation.

Adversarial image generation. Although GANs achieved

impressive performance recently, in order to generate high-

resolution images [3, 16], they are not immune to common

GAN problems such as stability (solutions are available at a

high computational costs) and the need for a large training

set of real images. Additionally, the generation of high-

resolution images does not guarantee that they are able to

capture a large enough variety of visual concepts with a

good discriminative power [6]. Only recently, the authors

in [27] proposed to uses high resolution images.

However, they are not yet sufficient to generate high

quality images for the downstream tasks, for instance train-

ing a deep neural network classifier. In the case of few-shot

and zero-shot learning, only few samples or no sample are

existing to train the GANs, which results in even more chal-

lenges to generate useful images.

Adversarial feature generation. Recently, feature gener-

ation has appeared as an alternative to image generation,

especially for the cases of few-shot learning, demonstrating

superior performance. In [51], they propose a GAN archi-

tecture with a classifier on top of the generator, in order

to generate features that are better suited for classification.

The same idea is further improved in [52], where they com-

bine a better feature generator by combining the strength

of a VAE and a GAN. In the current work, we use adver-

sarial feature generation for memory replay in a continual

learning framework. As demonstrated in [51, 52], feature

generation has achieved superior performance compared to

image generation for zero-shot and few-shot learning.

3. Forgetting in feature extractor and classifier

In this section, we take a closer look at how forgetting

occurs at different levels in a CNN.

3.1. Class­incremental learning

Classification model and task. We consider classification

tasks learned from a dataset D = {(xi, yi)}
N

i=1, where

xi ∈ X is the ith image, yi ∈ C is the corresponding

label (from a vocabulary of K classes) and N is the size

of the dataset. The classifier network has the form ỹ =
M (x; θ, V) = H (F (x; θ) ;V) , where we explicitly dis-

tinguish between feature extractor F (x; θ), parametrized

by θ, and classifier H (u;V) = A (V u), where V is a

matrix projecting the output of the feature extractor u to

the class scores (in the following we omit parameters θ

and V), and A is the softmax function that normalizes the

scores to class probabilities. During training we minimize

the cross-entropy loss between true labels and predictions

LCE (D) = −ΣN
i=1yi · log ỹi, where yi is the one-hot rep-

resentation of class label yi ∈ C.

Continual learning. We consider the continual learning

setting where T classification tasks are learned indepen-

dently and in sequence from the corresponding datasets

D1, . . . ,Dt, . . . ,DT . The resulting model Mt after learning

Finetuning

B
lo

ck
 1

B
lo

ck
 2

B
lo

ck
 3

B
lo

ck
 4

C
la

ss
if

.
(l

o
g

it
s)

t=1

t=2

t=4

t=3

t=2

t=4

t=3

t=4

t=3

Ta
sk

 1

fe
a

tu
re

co
rr

e
la

ti
o

n

Ta
sk

 2

fe
a

tu
re

co
rr

e
la

ti
o

n

Ta
sk

 3

fe
a

tu
re

co
rr

e
la

ti
o

n

B
lo

ck
 1

B
lo

ck
 2

B
lo

ck
 3

B
lo

ck
 4

C
la

ss
if

.
(l

o
g

it
s)

Learning without
Forgetting Feature distillation

B
lo

ck
 1

B
lo

ck
 2

B
lo

ck
 3

B
lo

ck
 4

C
la

ss
if

.
(l

o
g

it
s)

Generative image
replay

B
lo

ck
 1

B
lo

ck
 2

B
lo

ck
 3

B
lo

ck
 4

C
la

ss
if

.
(l

o
g

it
s)

Feature distillation &
generative feature replay

B
lo

ck
 1

B
lo

ck
 2

B
lo

ck
 3

B
lo

ck
 4

C
la

ss
if

.
(l

o
g

it
s)

Figure 2. Canonical Correlation Analysis (CCA) similarity of different continual learning methods performed on equally distributed 4-task

scenario on CIFAR-100. The vertical axis shows the evolution over time of the correlation for given task activations. The horizontal axis

shows correlation at different layers of the network.

task t has feature extractor Ft and classifier Ht . We assume

that the classes in each task are disjoint, i.e. Ct
⋂

Ct′ = ∅ for

all t′ 6= t. Ideally, after learning task t, the model can per-

form inference on all tasks t′ ≤ t (i.e. it remembers current

and previous tasks). We consider class-incremental learn-

ing in this work, where task-ID is unknown and it requires

predictions over all the classes learned so far.

3.2. Forgetting analysis of various methods

Fine-tuning. In Figure 2 (far left) we illustrate the effect of

continual learning (via simply fine-tuning the network on

new tasks) on features extracted at different layers of the

network. Forgetting is measured using Canonical Correla-

tion Analysis (CCA) similarity∗ between the features ex-

tracted for task t′ ≤ t by model Mt and the optimal model

Mt′ (i.e. trained at time t′ with Dt′). Earlier features remain

fairly correlated, while the correlation decreases progres-

sively with increasing layer depth. This suggests that for-

getting in higher-level features is more pronounced, since

they become progressively more task-specific, while lower

features are more generic.

Learning without forgetting. A popular method to pre-

vent forgetting is Learning without Forgetting (LwF) [23],

which keeps a copy of the model Mt−1 before learning

the new task and distills its predicted probabilities into the

new model Mt (which may otherwise suffer interference

from the current task t). In particular, LwF uses a modified

cross-entropy loss over each head of previous tasks given

∗CCA similarity computes the similarity between distributed repre-

sentations even when they are not aligned. This is important, since learning

new tasks may change how different patterns are distributed in the repre-

sentation. We use SVCCA [40] which first removes noise using singular

value decomposition (SVD).

by LLwF (Xt) = −Ex∼Xt
Σt−1

j=1ỹ
t−1,j · log ỹt,j .

Note that the probabilities ỹt−1,j and ỹt,j are always

estimated with current input samples x ∈ Xt, since data

from previous tasks is not available. Since tasks are dif-

ferent, there is a distribution shift in the visual domain (i.e.

ỹt−1,j if extracted from x ∈ Xt−1 instead of x ∈ Xt),

which can reduce the effectiveness of distillation when the

domain shift from Xt−1 to Xt is large. Figure 2 shows how

LwF helps to increase the CCA similarity for previous tasks

at the classifier, effectively alleviating forgetting and main-

taining higher accuracy for previous tasks than fine tuning.

However, the correlation at middle and lower-level layers in

the feature extractor remains similar or lower to the case of

fine tuning. This may be caused by the fact that the distil-

lation constraint on the probabilities is too loose to enforce

correlation in intermediate features.

Generative image replay. The lack of training images for

previous tasks in continual learning has been addressed with

a generator of images from previous tasks and using them

during the training of current and future tasks [34, 35, 46,

49]. We consider conditional GAN with Projection Dis-

criminator [33], which can control the class of generated

images. At time t, the image generator samples images

x̂ = Gt−1 (c, z) where c is the desired class and z is a

random latent vector sampled from a simple distribution

(typically a normalized Gaussian). These generated images

are combined with current data in an augmented dataset

D′
t = {(x̂i, yi)}

NR

i=1∪Dt, where x̂i = Gt−1(yi, zi) and NR

is the number of replayed images for previous tasks (typi-

cally distributed uniformly across tasks and classes).

Generative image replay, while appealing, has numerous

limitations in practice. First, real images are high dimen-

sional representations and the image distribution of a partic-

"hawk"
"tabby"

"Siamese"
...

Training feature
generator for task

"beagle"
"tabby"

"Siamese"
...

"hawk"
"albatross"

...

Learning task
(preventing forgetting tasks)

Learning task
(preventing forgetting tasks)

Data task (birds) Data task (dogs)Trainable

Frozen

Cross-entropy loss

Distillation loss

Current task pathway

Previous tasks pathway

"tabby"
"Siamese"

...

"hawk"

Network initialization

Figure 3. Proposed framework. Distillation and feature generation are used during training to prevent forgetting previous tasks. Once the

task is learned, the feature generator is updated with adversarial training and distillation to prevent forgetting in the generator.

ular task lies in a narrow yet very complex manifold. This

complexity requires deep generators with many parameters

and are computationally expensive, difficult to train, and of-

ten highly dependent on initialization [26]. Training these

models requires large amounts of images, which is rarely

the case in continual learning. Even with enough training

images, the quality of the generated images is often unsat-

isfactory as training data for the classifier, since they may

not capture relevant discriminative features. Figure 2 shows

the CCA similarity for class-conditional GAN. It shows a

similar pattern to LwF and fine tuning with the similarity

decreasing especially in intermediate layers.

4. Feature distillation and generative feature

replay

In the previous analysis of forgetting in neural networks,

we saw that generative image replay yields unsatisfactory

results when applied to datasets that are difficult to generate

(like CIFAR-100). We also observed that feature distilla-

tion prevents forgetting in the feature extractor. Therefore,

to obtain the advantage of replay methods, which do not

have the imbalance problem arising from multiple classifi-

cation heads, we propose feature replay as an alternative to

image replay. We combine feature distillation and feature

replay in a hybrid model that is effective and efficient. (see

Figure 1 right). Specifically, we use distillation at the output

of the feature extractor in order to prevent forgetting in the

feature extractor, and use feature replay of the same features

to prevent forgetting in the classifier and to circumvent the

classifier imbalance problem. Note that feature distillation

has also been used in other applications [32, 47, 55].

Our framework consists of three modules: feature ex-

tractor, classifier, and feature generator. To prevent forget-

ting we also keep a copy of the feature extractor, classifier

and feature generator from the previous set of tasks. Fig-

Algorithm 1 : Class-incremental task learning.

Input: Sequence D1, . . . ,DT , where Dt = (Xt, Ct).
Require: Feature extractor F0, Classifier H0,

Generator G0. All trained end-to-end.

for t = 1, . . . , T
if t = 1

Step 1: Train F1 and H1 with D1.

Step 2: Train G1 with u1 = F1(xi), ∀xi ∈ D1.

else

Step 3: Train Ft and Ht with Dt and generated

features ût′ = Gt−1(Ct′ , z), where Ct′ is

all previous classes.

Step 4: Train Gt with ut = Ft(xi), ∀xi ∈ D1 and

ût′ = Gt−1(Ct′ , z)
end for

ure 3 illustrates continual learning in our framework. The

classifier Ht and feature extractor Ft for task t are implic-

itly initialized with Ht−1 and Ft−1 (which we duplicate and

freeze) and trained using feature replay and feature distilla-

tion. When the feature extractor and classifier are trained,

we then freeze them and then train the feature generator Gt.

A detailed algorithm is given in Algorithm 1.

4.1. Feature generator

To prevent forgetting in the classifier we train a feature

generator Gt to model the conditional distribution of fea-

tures pu (u|c) as û = Gt (c, z), and sample from it when

learning future tasks. We consider two variants: Gaussian

class prototypes, conditional GAN with replay alignment.

Gaussian class prototypes. We represent each class

c of a task t as a simple Gaussian distribution

Gt(c, z) = N (u;µ
(c)
t ,Σ

(c)
t), where N (·; ·, ·) is a Gaus-

sian distribution whose parameters are estimated using

{ui = Ft (xi) , ∀ (xi, yi) ∈ Dt, yi = c}. This variant has

the advantage of compactness and efficient sampling.

Conditional GAN with replay alignment. To generate

more complex distributions and share parameters across

classes and tasks, we propose to generate the feature extrac-

tor distribution with GANs. We use the Wasserstein GAN

and adapt it to feature generation and continual learning us-

ing the following losses (between learning tasks t and t+1):

LWGAN
Dt

(Xt) = +Ez∼pz,c∈Ct
[Dt (c,Gt (c, z))] (1)

−Eu∼Dt
[Dt (c, Ft (x))]

LWGAN
Gt

(Xt) = −Ez∼pz,c∈Ct
[Dt (c,Gt (c, z))] . (2)

A replay alignment loss LRA
Gt

is also added:

LRA
Gt

= Σt−1
j=1Σc∈Cj

Ez∼pz

[

‖Gt (c, z)−Gt−1 (c, z)‖
2
2

]

.

(3)

which can be seen as a type of distillation [49]. This replay

alignment loss encourages the current generator Gt to re-

play exactly the same features as Gt−1 when conditioned on

a given previous class c and a given latent vector z. We use

a discriminator Dt during the adversarial training, which al-

ternates updates of Dt and Gt (i.e. minDt
LWGAN
Dt

(Xt) and

minGt
LWGAN
Gt

(Xt) + LRA
Gt

, respectively).

4.2. Feature extractor with feature distillation

We prevent forgetting in Ft by distilling the features ex-

tracted by Ft−1 via the following L2 loss:

LFD
Ft

(Xt) = Ex∼Xt
[‖Ft (x)− Ft−1 (x)‖2] . (4)

Note that there are no separate losses for each head (like

in [23]) because the feature u = F (x) is shared among

tasks. Also, the loss can be applied on any feature (e.g.

tensors). Note in Fig. 2 (center) how the CCA similarity of

our approach compared to LwF increases, which indicates

that there is less forgetting.

4.3. Algorithm of class­incremental learning

We are interested in a single head architecture that pro-

vides well-calibrated, task-agnostic predictions, which nat-

urally arises if all tasks are learned jointly when all data is

available. In our case we extend the last linear layer Vt−1

to Vt by increasing its size to accommodate the new classes

Ct. The softmax is also extended to this new size. During

training we combine the available real data for the current

task (fed to Ft) with generated features for previous tasks

{(ûi, yi)}
NR

i=1. Since we only train a linear layer with fea-

tures, this process is efficient.

Figure 2 (far right) shows that our method preserves sim-

ilar representations for previous tasks at all layers, includ-

ing the classifier. Our combination of distillation and replay

maintains higher accuracy across all tasks, effectively ad-

dressing the problems of forgetting and task aggregation.

5. Experimental results

We report experiments evaluating the performance of our

approach compared to baselines and the state-of-the-art.

Datasets. We evaluate performance on ImageNet [8] and

CIFAR-100 [20]. ImageNet-Subset contains the first 100

classes in ImageNet in a fixed, random order. We resize

ImageNet images to 256×256, randomly sample 224×224

crops during training, and use the center crop during testing.

CIFAR-100 images are padded with 4 pixels, from which

32×32 crops are randomly sampled. The original center

crop is used for testing. Random horizontal flipping is used

as data augmentation for both datasets.

Training. We use Pytorch as our framework [37]. For

CIFAR-100, we modify the ResNet-18 network to use 3×3

kernels for the first convolutional layer and train the model

from scratch†. We train each classification task for 201

epochs and GANs for 501 epochs. For ImageNet, we use

ResNet-18 and also train the model from scratch. We train

each classification task for 101 epochs and GANs for 201

epochs. The Adam optimizer is used in all experiments,

and the learning rate for classification and GANs are 1e-

3 and 1e-4, respectively. The classes for both datasets are

arranged in a fixed random order as in [14, 41]. The coeffi-

cient of distillation loss is set to 1.

Evaluation. The first evaluation metric is the average over-

all accuracy as in [14, 41]. It is computed as the average ac-

curacy of all tasks up to the current task. The second evalua-

tion metric is the average forgetting measure as in [4]. It de-

fines forgetting for a specific task as the difference between

the maximum accuracy achieved on that task throughout

the learning process and the accuracy the model currently

achieves for it. The average forgetting is computed by aver-

aging the forgetting for all tasks up to the current one. More

evaluation metrics can be found in [9, 22]

5.1. Class­incremental learning experiments

We first compare our approach with other methods on

ImageNet-Subset and CIFAR-100. We use half of the

classes from each dataset as the first task and split the re-

maining classes in 5, 10 and 25 tasks with equally dis-

tributed classes (as also done in [14]). In figures and ta-

bles “Ours Gaussian” indicates our method with Gaussian

replay and “Ours” indicates our method with generative fea-

ture replay. We compare our approach with several meth-

ods: LwF [23], EWC [19], MAS [1], iCaRL [41] and Re-

balance [14]. iCaRL-CNN uses a softmax classifier while

iCaRL-NME uses the nearest mean classifier. The first three

methods are trained without exemplars and iCaRL and Re-

balance store 20 samples per class. For the first three meth-

ods, we train a multi-head network, where each task has

†This network setting was also used for the computation of Figure 2.

50 60 70 80 90 100
Number of classes

10

20

30

40

50

60

70

80

To
p

1
Ac

cu
ra

cy

iCaRL-CNN
iCaRL-NME
Rebalance
LwF
EWC
MAS
Finetuning
Ours
Ours Gaussian

50 60 70 80 90 100
Number of classes

10

20

30

40

50

60

70

80

To
p

1
Ac

cu
ra

cy

50 60 70 80 90 100
Number of classes

0

20

40

60

80

To
p

1
Ac

cu
ra

cy

50 60 70 80 90 100
Number of classes

0

10

20

30

40

50

60

70

80

Fo
rg

et
in

g

iCaRL-CNN
iCaRL-NME
Rebalance
LwF
EWC
MAS
Finetuning
Ours
Ours Gaussian

50 60 70 80 90 100
Number of classes

0

20

40

60

80
Fo

rg
et

in
g

50 60 70 80 90 100
Number of classes

0

20

40

60

80

Fo
rg

et
in

g

Figure 4. Comparison in the average accuracy (Top) and the average forgetting (Bottom) with various methods on ImageNet-Subset. The

first task has the half number of classes, and the remaining classes are divided into 5, 10, 25 tasks respectively. The lines with symbols are

methods without using any exemplars, and without symbols are methods with 2000 exemplars. (Joint Training: 77.6)

Table 1. Memory use comparison between exemplar-based meth-

ods, generative image replay (MeRGAN), and Ours.
Method Datasets Image Size Exemplar ResNet-18 GAN

Exemplar-based

CIFAR-100 32x32x3 2000 (6.2 Mb) 42.8 Mb ∗ –

ImageNet-100 256x256x3 2000 (375 Mb) 45 Mb –

ImageNet-1000 256x256x3 20000 (3.8 Gb) 45 Mb –

MeRGAN – – – 45 Mb 8.5 Mb

Ours – – – 45 Mb 4.5 Mb

a separate head since they will not work with single-head

when there are no exemplars. We simply pick the maximum

probability across all heads as the chosen output.

Comparative analysis on ImageNet-Subset. We re-

port the average accuracy and the average forgetting on

ImageNet-Subset in Figure 4. It is clear that using exem-

plars for iCaRL and Rebalance is superior to most meth-

ods without exemplars, such as LwF, MAS and EWC. Our

method with Gaussian replay performs similarly to iCaRL-

NME and much better than iCaRL-NME in the 5 and 10

task setting. Surprisingly, it outperforms both iCaRL-CNN

and iCaRL-NME by a large margin in the 25-task setting.

By using GANs for replay, our method shows significant

improvement compared to Gaussian replay and outperforms

the state-of-the-art method Rebalance by a large margin.

The gain increases with increasing number of tasks. It

achieves the best results in all settings in terms of both aver-

age accuracy and forgetting. It is important to note that for

our methods we do not need to store any exemplars from

previous tasks and generated features are dynamically com-

bined with current data. A comparison with other methods

on ImageNet-1000 is in the supplementary material.

Comparative analysis on CIFAR-100. Results for

CIFAR-100 are shown in Figure 5. Our method with gener-

ative feature generation outperforms iCaRL, LwF, MAS and

EWC by a large margin and achieves comparable results as

Rebalance in the case of 5 and 10 tasks. We achieve slightly

worse results in the 25-task setting compared to Rebalance,

which might be because features from low resolution im-

ages are not as good as those learned from ImageNet. In

contrast, for both iCaRL and Rebalance, 2000 exemplars in

total must be stored. It is interesting that our method with

Gaussian replay performs quite well compared to iCaRL,

but slightly worse than Rebalance.

5.2. Comparison of storage requirements

In Table 1 we compare the memory usage of exemplar-

based methods iCaRL [41] and Rebalance [14], the gener-

ative image replay method MeRGAN [49], and our gener-

ative feature replay. Exemplar methods normally store 20

images per class (from ImageNet or CIFAR-100), and the

memory needed thus increases dramatically from 6.2MB to

375MB for 100 classes. Our approach, however, requires

only a constant memory of 4.5MB for the generator and

discriminator. For 256×256×3 images, our model is equiv-

alent to only 24 total exemplars. Note that it is hard for

exemplar-based methods to learn with only 24 exemplars.

50 60 70 80 90 100
Number of classes

10

20

30

40

50

60

70

80

Ac
cu

ra
cy

iCaRL-CNN
iCaRL-NME
Rebalance
LwF
EWC
MAS
Finetuning
Ours
Ours Gaussian

50 60 70 80 90 100
Number of classes

10

20

30

40

50

60

70

80

Ac
cu

ra
cy

50 60 70 80 90 100
Number of classes

0

10

20

30

40

50

60

70

80

Ac
cu

ra
cy

50 60 70 80 90 100
Number of classes

0

10

20

30

40

50

60

Fo
rg

et
in

g

iCaRL-CNN
iCaRL-NME
Rebalance
LwF
EWC
MAS
Finetuning
Ours
Ours Gaussian

50 60 70 80 90 100
Number of classes

0

10

20

30

40

50

60

70

Fo
rg

et
in

g

50 60 70 80 90 100
Number of classes

0

10

20

30

40

50

60

70

Fo
rg

et
in

g

Figure 5. Comparison in the average accuracy (Top) and the average forgetting (Bottom) with various methods on CIFAR-100. The lines

with symbols are methods without using any exemplars, and without symbols are methods with 2000 exemplars. (Joint Training: 72.0)

For larger numbers of classes such as full ImageNet-1000,

it takes 3.8GB to store 20 samples per class. MeRGAN re-

quires 8.5MB of memory, which is almost double the mem-

ory usage of ours. However, MeRGAN has difficulty gen-

erating realistic images for both CIFAR-100 and ImageNet

and therefore obtains inferior results.

5.3. Generation of features at different levels

For our ablation study we use CIFAR-100 with 4 tasks

with an equal number of classes. In Table 2 we look for the

best depth of features to apply replay and distillation. We

found that replaying at shallower depth results in dramati-

cally lower performance. This is probably caused by: (1)

the complexity of generating convolutional and lower-level

features compared to the generation of linear high-level fea-

tures from Block 4 (Ours); and (2) the difficulty of keeping

the head parameters unbiased towards the last trained task

when moving replay down in the network.

6. Conclusions

We proposed a novel continual learning method that

combines generative feature replay and feature distillation.

We showed that it is computationally efficient and scalable

to large datasets. Our analysis via CCA shows how catas-

trophic forgetting manifests at different layers. The strength

of our approach relies on the fact that the distribution of

high-level features is significantly simpler than the distribu-

tion at the pixel level and therefore can be effectively mod-

Table 2. Ablation study of replaying different features on CIFAR-

100 for the 4-task scenario. For generative image replay, we use

MeRGAN [49], Blocks 1, 2, and 3 are the features after the corre-

sponding residual block in ResNet. Block 4 is the high-level linear

features for our method. Average accuracy of all tasks is reported.

T1 T2 T3 T4

Image (MeRGAN) 82.4 37.7 17.8 9.7

Block 1

80.7

41.6 26.5 20.1

Block 2 41.0 26.5 20.0

Block 3 51.1 37.0 26.6

Block 4 (Ours) 57.6 48.2 41.5

eled with simpler generators and trained on limited samples.

We perform experiments on the ImageNet and CIFAR-100

datasets. We outperform other methods without exemplars

by a large margin. Notably, we also outperform storage-

intensive methods based on exemplars in several settings,

while the overhead of our feature generator is small com-

pared to the storage requirements for exemplars. For future

work, we are especially interested in extending the theory

to feature replay for continual learning of embeddings [54].

Acknowledgement We acknowledge the support from

Huawei Kirin Solution, the Industrial Doctorate Grant

2016 DI 039 of the Generalitat de Catalunya, the EU

Project CybSpeed MSCA-RISE-2017-777720, EU’s Hori-

zon 2020 programme under the Marie Sklodowska-Curie

grant agreement No.6655919 and the Spanish project

RTI2018-102285-A-I00.

References

[1] Rahaf Aljundi, Francesca Babiloni, Mohamed Elhoseiny,

Marcus Rohrbach, and Tinne Tuytelaars. Memory aware

synapses: Learning what (not) to forget. In ECCV, pages

139–154, 2018. 2, 6

[2] Eden Belouadah and Adrian Popescu. Il2m: Class incremen-

tal learning with dual memory. In ICCV, pages 583–592,

2019. 3

[3] Andrew Brock, Jeff Donahuey, and Karen Simonyan. Large

scale GAN training for high fidelity natural image synthesis.

In ICLR, 2019. 3

[4] Arslan Chaudhry, Puneet K Dokania, Thalaiyasingam Ajan-

than, and Philip HS Torr. Riemannian walk for incremen-

tal learning: Understanding forgetting and intransigence. In

ECCV, pages 532–547, 2018. 2, 6

[5] Arslan Chaudhry, Marc’Aurelio Ranzato, Marcus Rohrbach,

and Mohamed Elhoseiny. Efficient lifelong learning with A-

GEM. In ICLR, 2019. 3

[6] Zihang Dai, Zhilin Yang, Fan Yang, William W. Cohen, and

Ruslan Salakhutdinov. Good semi-supervised learning that

requires a bad GAN. In NeurIPS, 2017. 3

[7] Matthias De Lange, Rahaf Aljundi, Marc Masana, Sarah

Parisot, Xu Jia, Ales Leonardis, Gregory Slabaugh, and

Tinne Tuytelaars. Continual learning: A comparative study

on how to defy forgetting in classification tasks. arXiv

preprint arXiv:1909.08383, 2019. 2

[8] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei.

ImageNet: A Large-Scale Hierarchical Image Database. In

CVPR, 2009. 6

[9] Natalia Dı́az-Rodrı́guez, Vincenzo Lomonaco, David Filliat,

and Davide Maltoni. Don’t forget, there is more than for-

getting: new metrics for continual learning. arXiv preprint

arXiv:1810.13166, 2018. 6

[10] Vincent Dumoulin, Jonathon Shlens, and Manjunath Kudlur.

A learned representation for artistic style. In ICLR, 2017. 3

[11] Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing

Xu, David Warde-Farley, Sherjil Ozair, Aaron Courville, and

Yoshua Bengio. Generative adversarial nets. In NeurIPS,

pages 2672–2680, 2014. 3

[12] Guillermo L Grinblat, Lucas C Uzal, and Pablo M Granitto.

Class-splitting generative adversarial networks. arXiv

preprint arXiv:1709.07359, 2017. 3

[13] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun.

Delving deep into rectifiers: Surpassing human-level perfor-

mance on imagenet classification. In ICCV, pages 1026–

1034, 2015. 1

[14] Saihui Hou, Xinyu Pan, Chen Change Loy, Zilei Wang, and

Dahua Lin. Learning a unified classifier incrementally via

rebalancing. In CVPR, pages 831–839, 2019. 2, 3, 6, 7

[15] Heechul Jung, Jeongwoo Ju, Minju Jung, and Junmo Kim.

Less-forgetful learning for domain expansion in deep neural

networks. In AAAI, 2018. 2

[16] Tero Karras, Timo Aila, Samuli Laine, and Jaakko Lehtinen.

Progressive growing of GANs for improved quality, stability,

and variation. In ICLR, 2018. 3

[17] Ronald Kemker and Christopher Kanan. Fearnet: Brain-

inspired model for incremental learning. ICLR, 2018. 3

[18] Taeksoo Kim, Moonsu Cha, Hyunsoo Kim, Jungkwon Lee,

and Jiwon Kim. Learning to discover cross-domain relations

with generative adversarial networks. In ICML, pages 1857–

1865, 2017. 3

[19] James Kirkpatrick, Razvan Pascanu, Neil Rabinowitz, Joel

Veness, Guillaume Desjardins, Andrei A Rusu, Kieran

Milan, John Quan, Tiago Ramalho, Agnieszka Grabska-

Barwinska, et al. Overcoming catastrophic forgetting in neu-

ral networks. pnas, page 201611835, 2017. 2, 6

[20] Alex Krizhevsky and Geoffrey Hinton. Learning multiple

layers of features from tiny images. Technical report, Cite-

seer, 2009. 6

[21] Jeongtae Lee, Jaehong Yun, Sungju Hwang, and Eunho

Yang. Lifelong learning with dynamically expandable net-

works. In ICLR, 2018. 2

[22] Timothée Lesort, Vincenzo Lomonaco, Andrei Stoian, Da-

vide Maltoni, David Filliat, and Natalia Dı́az-Rodrı́guez.

Continual learning for robotics: Definition, framework,

learning strategies, opportunities and challenges. Informa-

tion Fusion, 58:52–68, 2020. 6

[23] Zhizhong Li and Derek Hoiem. Learning without forgetting.

pami, 40(12):2935–2947, 2018. 2, 4, 6

[24] Xialei Liu, Marc Masana, Luis Herranz, Joost Van de Weijer,

Antonio M Lopez, and Andrew D Bagdanov. Rotate your

networks: Better weight consolidation and less catastrophic

forgetting. In ICPR, 2018. 2

[25] David Lopez-Paz and Marc’Aurelio Ranzato. Gradient

episodic memory for continual learning. In NeurIPS, pages

6467–6476, 2017. 2, 3

[26] Mario Lucic, Karol Kurach, Marcin Michalski, Sylvain

Gelly, and Olivier Bousquet. Are GANs created equal. A

Large-Scale Study. ArXiv e-prints, 2(4), 2017. 5

[27] Mario Lucic, Michael Tschannen, Marvin Ritter, Xiaohua

Zhai, Olivier Bachem, and Sylvain Gelly. High-fidelity im-

age generationwith fewer labels. In ICML, 2019. 3

[28] Arun Mallya, Dillon Davis, and Svetlana Lazebnik. Piggy-

back: Adapting a single network to multiple tasks by learn-

ing to mask weights. In ECCV, pages 67–82, 2018. 2

[29] Arun Mallya and Svetlana Lazebnik. Packnet: Adding mul-

tiple tasks to a single network by iterative pruning. In CVPR,

pages 7765–7773, 2018. 2

[30] Marc Masana, Tinne Tuytelaars, and Joost van de Weijer.

Ternary feature masks: continual learning without any for-

getting. arXiv preprint arXiv:2001.08714, 2020. 3

[31] Michael McCloskey and Neal J Cohen. Catastrophic inter-

ference in connectionist networks: The sequential learning

problem. In Psychology of learning and motivation, vol-

ume 24, pages 109–165. Elsevier, 1989. 1

[32] Umberto Michieli and Pietro Zanuttigh. Incremental learn-

ing techniques for semantic segmentation. In ICCV Work-

shops, pages 0–0, 2019. 5

[33] Takeru Miyato and Masanori Koyama. cGANs with projec-

tion discriminator. arXiv preprint arXiv:1802.05637, 2018.

4

[34] Cuong V Nguyen, Yingzhen Li, Thang D Bui, and Richard E

Turner. Variational continual learning. In ICLR, 2018. 4

[35] Oleksiy Ostapenko, Mihai Puscas, Tassilo Klein, Patrick

Jähnichen, and Moin Nabi. Learning to remember: A synap-

tic plasticity driven framework for continual learning. In

CVPR, 2019. 4

[36] German I Parisi, Ronald Kemker, Jose L Part, Christopher

Kanan, and Stefan Wermter. Continual lifelong learning with

neural networks: A review. Neural Networks, 2019. 2

[37] Adam Paszke, Sam Gross, Soumith Chintala, Gregory

Chanan, Edward Yang, Zachary DeVito, Zeming Lin, Al-

ban Desmaison, Luca Antiga, and Adam Lerer. Automatic

differentiation in PyTorch. In NeurIPS Autodiff Workshop,

2017. 6

[38] Lorenzo Pellegrini, Gabrile Graffieti, Vincenzo Lomonaco,

and Davide Maltoni. Latent replay for real-time continual

learning. arXiv preprint arXiv:1912.01100, 2019. 3

[39] Guim Perarnau, Joost van de Weijer, Bogdan Raducanu, and

Jose M Álvarez. Invertible conditional GANs for image edit-

ing. In NeurIPS 2016 Workshop on Adversarial Training,

2016. 3

[40] Maithra Raghu, Justin Gilmer, Jason Yosinski, and Jascha

Sohl-Dickstein. Svcca: Singular vector canonical correlation

analysis for deep learning dynamics and interpretability. In

NeurIPS, pages 6076–6085, 2017. 4

[41] Sylvestre-Alvise Rebuffi, Alexander Kolesnikov, Georg

Sperl, and Christoph H Lampert. icarl: Incremental classi-

fier and representation learning. In CVPR, pages 5533–5542.

IEEE, 2017. 2, 3, 6, 7

[42] Scott Reed, Zeynep Akata, Xinchen Yan, Lajanugen Lo-

geswaran, Bernt Schiele, and Honglak Lee. Generative ad-

versarial text to image synthesis. In ICML, pages 1060–1069,

2016. 3

[43] Anthony Robins. Catastrophic forgetting, rehearsal and

pseudorehearsal. Connection Science, 7(2):123–146, 1995.

2

[44] Andrei A Rusu, Neil C Rabinowitz, Guillaume Desjardins,

Hubert Soyer, James Kirkpatrick, Koray Kavukcuoglu, Raz-

van Pascanu, and Raia Hadsell. Progressive neural networks.

arXiv preprint arXiv:1606.04671, 2016. 2

[45] Joan Serra, Didac Suris, Marius Miron, and Alexandros

Karatzoglou. Overcoming catastrophic forgetting with hard

attention to the task. In ICML, pages 4555–4564, 2018. 2, 3

[46] Hanul Shin, Jung Kwon Lee, Jaehong Kim, and Jiwon Kim.

Continual learning with deep generative replay. In NeurIPS,

pages 2990–2999, 2017. 2, 3, 4

[47] Frederick Tung and Greg Mori. Similarity-preserving knowl-

edge distillation. In Proceedings of the IEEE International

Conference on Computer Vision, pages 1365–1374, 2019. 5

[48] Gido M van de Ven and Andreas S Tolias. Three scenar-

ios for continual learning. arXiv preprint arXiv:1904.07734,

2019. 2

[49] Chenshen Wu, Luis Herranz, Xialei Liu, Yaxing Wang, Joost

van de Weijer, and Bogdan Raducanu. Memory replay

GANs: learning to generate images from new categories

without forgetting. In NeurIPS, 2018. 2, 3, 4, 6, 7, 8

[50] Yue Wu, Yinpeng Chen, Lijuan Wang, Yuancheng Ye,

Zicheng Liu, Yandong Guo, and Yun Fu. Large scale in-

cremental learning. In CVPR, pages 374–382, 2019. 2, 3

[51] Yongqin Xian, Tobias Lorenz, Bernt Schiele, and Zeynep

Akata. Feature generating networks for zero-shot learning.

In CVPR, pages 5542–5551, 2018. 3

[52] Yongqin Xian, Saurabh Sharma, Bernt Schiele, and Zeynep

Akata. f-VAEGAN-D2: A feature generating framework for

any-shot learning. In CVPR, 2019. 3

[53] Ye Xiang, Ying Fu, Pan Ji, and Hua Huang. Incremental

learning using conditional adversarial networks. In ICCV,

pages 6619–6628, 2019. 3

[54] Lu Yu, Bartłomiej Twardowski, Xialei Liu, Luis Herranz,

Kai Wang, Yongmei Cheng, Shangling Jui, and Joost van de

Weijer. Semantic drift compensation for class-incremental

learning. In Proceedings of the IEEE Conference on Com-

puter Vision and Pattern Recognition, 2020. 8

[55] Lu Yu, Vacit Oguz Yazici, Xialei Liu, Joost van de Weijer,

Yongmei Cheng, and Arnau Ramisa. Learning metrics from

teachers: Compact networks for image embedding. In Pro-

ceedings of the IEEE Conference on Computer Vision and

Pattern Recognition, pages 2907–2916, 2019. 5

[56] Friedemann Zenke, Ben Poole, and Surya Ganguli. Contin-

ual learning through synaptic intelligence. In ICML, pages

3987–3995. JMLR. org, 2017. 2

[57] Han Zhang, Tao Xu, Hongsheng Li, Shaoting Zhang, Xialei

Huang, Xiaogang Wang, and Dimitris Metaxas. Stackgan:

Text to photo-realistic image synthesis with stacked genera-

tive adversarial networks. In ICCV, pages 5908–5916, 2017.

3

[58] Jun-Yan Zhu, Taesung Park, Phillip Isola, and Alexei A.

Efros. Unpaired image-to-image translation using cycle-

consistent adversarial networks. In ICCV, pages 2242–2251,

2017. 3

