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Abstract

Robotic vision is a field where continual learning can play
a significant role. An embodied agent operating in a complex
environment subject to frequent and unpredictable changes
is required to learn and adapt continuously. In the context
of object recognition, for example, a robot should be able to
learn (without forgetting) objects of never before seen classes
as well as improving its recognition capabilities as new in-
stances of already known classes are discovered. Ideally,
continual learning should be triggered by the availability
of short videos of single objects and performed on-line on
on-board hardware with fine-grained updates. In this paper,
we introduce a novel continual learning protocol based on
the CORe50 benchmark and propose two rehearsal-free con-
tinual learning techniques, CWR* and ARI ¥, that can learn
effectively even in the challenging case of nearly 400 small
non-i.i.d. incremental batches. In particular, our experi-
ments show that AR1* can outperform other state-of-the-art
rehearsal-free techniques by more than 15% accuracy in
some cases, with a very light and constant computational
and memory overhead across training batches.

1. Introduction

Consolidating and preserving past memories while being
able to learn new concepts and skills is a well-known chal-
lenge for both artificial and biological learning systems, gen-
erally acknowledged as the plasticity-stability dilemma [23].
In particular, gradient-based architectures are often skewed
towards plasticity and prone to catastrophic forgetting when
learning over a stream of non-stationary data [4, 32, 12].
A simple solution to deal with this issue would be storing
all the data, and cyclically re-train the entire model from
scratch [11]. However, this approach is rather impractical
when learning from high-dimensional streaming data, es-
pecially in highly constrained computational platforms and
embedded systems [15, 34].

In recent years, a number of continual learning (CL)
strategies have been proposed for deep architectures based
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Figure 1: Example images of the 50 objects in CORe50, the con-
tinual learning video benchmark used in this paper. Each column
denotes one of the 10 categories. Classification experiments in this
paper are object-based, so each object corresponds to a class.

on regularization, architectural or rehearsal approaches
[24, 17, 2]. Most of the proposals target a Multi-Task
(MT) setting where a sequence of independent and tasks
are encountered over time. However, for many practical
applications, such as natural object recognition, a Single-
Incremental-Task (SIT) setting may appear more appropriate
[22]. In the SIT setting, we can distinguish three different
cases, based on the training batches composition:

1. New Instances (NI): new training patterns of the same
classes become available in subsequent batches with
new poses and environment conditions (illumination,
background, occlusions, etc.).

2. New Classes (NC): new training patterns belonging to
different, previously unseen, classes become available
in subsequent batches. This is also known as class-
incremental learning.

3. New Instances and Classes (NIC): new training pat-
terns belonging to both known and new classes become
available in subsequent training batches. To the best
of our knowledge, almost no study explicitly addresses
the NIC scenario, which we deem as the most natural
setting for many applications such as robotics vision,
where: i) a large number of small non-i.i.d. training



batches are encountered over time; ii) training batches
may contain objects already seen before as well as com-
pletely new objects.

Although some researchers pointed out that reducing the
size of training batches makes continual learning more chal-
lenging [22, 5, 30], we still do not know what is the lower
bound for the size of training batches and if it is actually
feasible to train a system by gradient descent with very small
non-i.i.d. incremental batches each containing few images
of a single class. It is well known that stochastic gradient
descent (SGD) works well with large and i.i.d. mini-batches,
but this assumption is difficult to meet. Let us consider a
robot that is learning to recognize some objects shown by an
operator (one at the time). In an ideal application, when a
new object is shown, the robot acquires a short video and im-
mediately updates its knowledge to become able to recognize
the new object. The frames extracted from the video would
constitute one or more small mini-batches containing highly
correlated patterns from a single class: a rather challeng-
ing setting to face with standard SGD-based optimization
techniques.

Some rehearsal-based techniques have been proposed in
order to mitigate this problem: by maintaining some repre-
sentative patterns from past experiences, new frames can be
interleaved with past ones in each mini-batch. However, this
involves extra memory (to store the past data) and computa-
tion (due to an higher number of forward/backward steps):
in this work we ask ourselves weather continual learning
over small non-i.i.d. batches is feasible without rehearsal.

The contributions of this paper can be summarized as
follows:

e we propose two rehearsal-free continual learning strate-
gies, CWR* and AR1%#, as extensions of the CWR+ and
ARI strategies originally proposed for the NC scenario
in [22], making them agnostic to the batches composi-
tion.

e we show that replacing Batch Normalization with Batch
Renormalization [8] allows SGD to continually learn
even in the challenging case of very small and non i.i.d.
batches.

e we introduce two different approaches, namely depth-
wise layer freezing and weight constraining by learning
rate modulation aimed at reducing storage/computation
of existing continual learning techniques without hin-
dering accuracy.

e we design and openly release at https://
vlomonaco.github.io/core50 anew NIC pro-
tocol based on CORe50 [18] to explicitly address non-
i.i.d continual learning scenarios (with 79, 196 and 391
training batches). To the best of our knowledge, this
is one of the first attempts to scale continual learning

techniques over hundreds of small training batches with
real-world highly correlated images.

e we run several experiments to evaluate the proposed
strategies (CWR* and AR1%*) and to compare them
with two baselines and three state-of-the-art rehearsal-
free approaches (such as EWC [14], LWF [16] and
DSLDA [6]), also in terms of computation and memory
efficiency.

2. Continual Learning Strategies

In [22] it was showed that a simple approach like CWR+,
where the fully connected layer is implemented as a double
memory, is quite effective to control forgetting in the SIT -
NC scenario. However, after the first training batch, CWR+
freezes all the layers except the last one, thus losing the
benefit of an incremental adaptation of the underlying rep-
resentation. AR1 [22] was then proposed to extend CWR+
by enabling end-to-end continual training throughout the
entire network; to this purpose the Synaptic Intelligence [36]
regularization approach (similar to EWC [14]) is adopted
to constrain the change of critical weights. In the following
subsections we:

1. adapt CWR+ to the NIC scenario, thus making it able
to reload past weights for already known classes and
to adapt them with weighted contributions from differ-
ent batches. As AR1 incorporates CWR+ in its main
algorithm, this modification will result in two continual
learning strategies hereby denoted as CWR* and AR1*
(Section 2.1).

2. show that in a complex scenario with small and non
i.i.d. batches, Batch Normalization layers thwart the
continual learning process and replacing them with
Batch Renormalization [8] can effectively tackle this
problem (Section 2.2).

3. propose a selective weight freeze for the CNN models
adopting Depth-Wise Separable Convolutions (Section
2.3).

4. reduce the computational and storage complexity of
ARI (and in general of EWC like approaches), by intro-
ducing an alternative way to implement weights update
starting from the Fisher matrix (Section 2.4).

While 1. is specific to CWRH+, 2., 3. and 4. can be applied
to several other CL approaches as well.

2.1. From CWR+ to CWR*

CWR+, whose pseudo-code is reported in Algorithm 2
of [22] and in the supplementary materials of this work,
maintains two sets of weights for the output classification
layer: cw are the consolidated weights used for inference and
tw the temporary weights used for training; cw are initialized



to 0 before the first batch and then iteratively updated, while
tw are reset to 0 before each training batch.

In Algorithm 1, we propose an extension of CWR+ called
CWR* which works both under NC and NIC update type; in
particular, under NIC the coming batches include patterns
of both new and already encountered classes. For already
known classes, instead of resetting weights to 0, we reload
the consolidated weights (see line 7). Furthermore, in the
consolidation step (line 13) a weighted sum is now used: the
first term represents the weight of the past and the second
term is the contribution from the current training batch. The
weight wpast; used for the first term is proportional to the
ratio & 'z;t]’ , where past; is the total number of patterns of
class j encountered in past batches whereas cur; is their
count in the current batch. In case of a large number of small
non-i.i.d. training batches, the weight for the most recent
batches may be too low thus hindering the learning process.
In order to avoid this, a square root is used in order to smooth
the final value of wpast;.

Algorithm 1 CWR* pseudocode: © are the class-shared parame-
ters of the representation layers; the notation cw(j] / tw[j] is used
to denote the groups of consolidated / temporary weights corre-
sponding to class j. Note that this version continues to work under
NC, which is seen here a special case of NIC; in fact, since in NC
the classes in the current batch were never encountered before, the
step at line 7 loads O values for classes in B; because cw; were ini-
tialized to 0 and in the consolidation step (line 13) wpast; values
are always 0.

1: procedure CWR*

2: cw=0

3 past =0

4: init © random or from pre-trained model (e.g. on ImageNet)

5 for each training batch B;:

6 expand output layer with neurons for the new classes in B;
never seen before

cwlj], ifclassjin B;

T twlj] = 0, otherwise
8: train the model with SGD on the s; classes of B;:
9: if B; = By learn both © and tw
10: else learn tw while keeping © fixed
11: for each class j in B;:
12: wpast; = 4/ i‘j;tj , where cur; is the number of patterns

of class j in B;
cw(j]-wpast;+(tw[j]—avg(tw))

13: Cw[j] = wpastj+1
14: pastj = pastj + cur;
15: test the model by using © and cw

2.2. Replacing Batch Normalization with Batch
Renormalization

Batch Normalization (BN) [9] is widely used in modern
deep neural networks to control internal covariate shift thus
making learning faster and more robust. In BN the mini-
batch moments (i.e., mean i, and variance U?m;) are used

to normalize the input values z; as:
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where € is a small constant added for numerical stability, and
the normalization is per-channel. However, if mini-batches
are small and/or non i.i.d. the mini-batch moments are not
stable and BN can fail. A natural solution to reduce the mo-
ment fluctuations would be replacing ji,,p, 02, with global
values u, o computed as moving averages over an initial
(large-enough) training batch. After all, this is the standard
approach when switching from training to inference. How-
ever, as argued in [9], using moving averages to perform the
normalization during training does not produce the desired
effects since gradient optimization and the normalization
counteract each other, possibly leading the model to diverge.

Batch Renormalization (BRN) was proposed in [&] to
deal with small and non i.i.d. mini-batches. In BRN the
normalization takes place as follows:

)
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where 1, o are computed as moving averages during training.
By expanding 7 and d in the equation 2, we obtain z; =
i which clearly highlights the dependency on the global
moments. A further step is suggested in [8] to clip r in
[, "mas) and d in [~dimaz, dmaz). 1t is worth noting
that when » = 1 and d = 0, then BRN=BN; hence, by
properly setting 7,4, and d,,q.. the behavior of BRN can
be moved from a pure BN to a more stable normalization
based on global statistics. In practice, the author of [8]
recommend to perform an initial stage by keeping 7,4, = 1,
dmaz = 0 in order to stabilize the moving averages u, o
and then progressively increasing 7,4, and d,,4, to 3 and
5, respectively.

Continual learning over small batches is an emblematic
case of small and non i.i.d. minibatches. For example, in
NICv2-391 (introduced in Section 3) each training batch
includes 300 patterns from a single class, and even using
a mini-batch size of 300 (the full batch) patterns remain
strongly correlated. Our first attempts to learn continuously
over a so long sequence of one-class batches were totally
unsatisfactory. Even for the most accurate strategies (e.g.,
AR1#) accuracy slightly increased in the first batches from
13% to 15% but then remained steady and lower than 16-
17%. We initially though that the reason were the single-
class mini-batches, making the problem a sort of one-class
classification with no negative examples. However, upon
replacement of BN with BRN and a proper parametrization,
we were able to continuously learn over small batches with
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Figure 2: Continual Learning on CORe50, SIT — NI scenario. In
the NI scenario all the 50 classes are discovered in the first batch
and successive training batches provide new instances of the already
known classes; however, since past instances are not retained, the
incremental process is prone to forgetting. In this experiment a
MobileNet (pre-trained on ImageNet) is incrementally tuned (naive
strategy) over 8 batches with different weight freeze strategies.
Each curve is averaged over 10 runs where the batch order is
randomly permuted.

unexpected efficacy (see Section 4 for optimal parametriza-
tion and results).

2.3. Depthwise Layer Freezing

Depth-Wise Separable Convolutions (DWSC) are quite
popular nowadays in many successful CNN architectures
such as MobileNet [7, 33], Xception [3], EfficientNet [35].
Classical filters in CNN are shaped as 3D volumes. For
example, a 5x5x32 filter spans a spatial neighborhood of
5x5 along 32 feature maps; on the contrary, in DWSC we
first perform 32 5x5x 1 spatial convolutions (an indepen-
dent convolution on each feature maps) and then combine
results with a 1 x1x32 filter working as a feature map pooler.
Advantages in terms of computation and weight reduction
have been pointed out by several researchers.

Inspired by previous finding with Hierarchical Temporal
Memories [31, 21] where gradient descent by HSR only
affects coincidence pooling, here we propose to fine-tune
DWSC architectures by freezing depthwise spatial filters and
leaving pointwise poolers free to learn. We speculate that
modifying a spatial filter (i.e. the way a local neighborhood
is processed) can be detrimental in terms of forgetting during
continual learning, because it alters the semantics of what
upper layers have already learned; on the other hand, feature
map pooling, which can be seen as a way to promote feature
invariance, is less prone to concept drifts.

A simple experiment is illustrated in figure 2, where a
MobileNet is incrementally fine-tuned along the 8 learning

batches of CORe50, SIT — NI scenario [18]. Here, no spe-
cific measure is put in place to control forgetting except early
stopping the gradient descent after 1 epoch (naive strategy).
The four curves denote the classification accuracy when: i)
all the weights are tuned; ii) weights of depthwise convolu-
tion layers are frozen; iii) weights of pointwise convolution
layers are frozen; iv) weights of all convolution layers are
frozen. Note that weights of fully connected layers (e.g.
output layer) are never frozen. The proposed strategy (case
ii) achieves the best result and, with respect to a full tuning,
allows skipping some gradient computations and can reduce
the amount of memory used to store weight associated data’.
The complementary strategy (case iii) is the worst one, thus
confirming that altering spatial filters has a strong impact in
terms of forgetting.

2.4. Weight Constraining by Learning Rate Modu-
lation

The Elastic Weight Consolidation (EWC) approach [14]
tries to control forgetting by selectively constraining the
model weights which are deemed to be important for the
previous tasks. To this purpose, in a classification approach,
a regularization term is added to the conventional cross-
entropy loss, where the weights 8, of the model are pulled
back to their optimal value §; with a strength £}, proportional
to their importance for the past:

A
L= Leposs() + 5 - ;Fk G/ R )

Synaptic Intelligence (SI) [36] is a lightweight variant of
EWC where, instead of updating the Fisher matrix F' at the
end of each batch?, F}, are obtained by integrating the loss
over the weight trajectories exploiting information already
available during gradient descent. For both approaches, the
weight update rule corresponding to equation 4 is:

8Lcrass ()

O =0k —1n- 6,

=0 F- (0 —0;) (5
where 7 is the learning rate. This equation has two draw-
backs. Firstly, the value of A must be carefully calibrated:
in fact, if its value is too high the optimal value of some
parameters could be overshoot, leading to divergence (see
discussion in Section 2 of [22]). Secondly, two copies of
all model weights must be maintained to store both 6 and
0}, leading to double memory consumption for each weight.

'In per-weight adaptive learning rate methods (such as Adam [13]) extra
values (i.e. running averages) need to be stored for each “free” weight.
Further, if a regularization method based on Fisher matrix is used (such as
EWC [14]) we need to store the optimal value for previous tasks and the
Fisher value for each weight.

2In this paper, for the EWC and AR1 implementations we use a single
Fisher matrix updated over time, following the approach described in [22].
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Figure 3: Classes encountered over time in the first run of NIC (left) and NICv2-79 (right). Each row denotes a class; colors are used to
group the 50 classes in the 10 categories. Each column denotes a training batch. A colored block in a (row, column) cell is used to indicate
that at least one training session of the row class is present in the column batch. Each row contains a maximum of 8 colored blocks, because
each class has 8 training sessions in the training set (the remaining 3 sessions are left out for the test set). The red-framed cells denote the
first introduction of a class. Gray vertical bands highlight batches where at least one class is seen for the first time. Class presentation
ordering for the first run of NICv2-196 and NICv2-391 is also reported in the additional materials of [19].

To overcome the above problems, we propose to replace the
update rule of equation 5 with:

.
maz g

. 8Lcross ()
00,

where max  is the maximum value for weight importance
(we clip to max the F}, values larger than maz ). Basi-
cally, the learning rate is reduced to O (i.e., complete freez-
ing) for weights of highest importance (¥}, = maxp) and
maintained to 7 for weights whose F}, = 0. It is worth not-
ing that these two updated rules work differently: the former
still moves weights with high F}, in direction opposite to the
gradient and then makes a step in direction of the past (op-
timal) values; the latter tends to completely freeze weights
with high F},. However, in our experiments with AR1 the
two approaches lead to similar results, and therefore the
second one is preferable since it solves the aforementioned
drawbacks.

0, =0 —n-(1— 6)

3. CORe50 NICv2

COReS50 [18] was specifically designed as an object
recognition video benchmark for continual learning. It con-
sists of 164,866 128 x 128 images of 50 domestic objects
belonging to 10 categories (see Figure 1); for each object the
dataset includes 11 video sessions (~300 frames recorded
with a Kinect 2 at 20 fps) characterized by relevant variations
in terms of lighting, background, pose and occlusions. The
egocentric vision of hand-held objects allows emulating a
scenario where a robot has to incrementally learn to recog-
nize objects while manipulating them. Objects are presented
to the robot by a human operator who can also provide the

labels, thus enabling a supervised classification (such an
applicative scenario is well described in [28, 26, 27]).

A NIC protocol was initially introduced for CORe50 [ 18]
where the first training batch contains 10 classes (~3,000
images) and each of the subsequent 78 incremental batches
includes about 1,500 images of 5 classes. However, as shown
in Figure 3 (left), the random generation procedure used in
[18] produced a sequence where almost all the classes are
introduced in the first 10-15 batches making this protocol
very close to an NI scenario.

To make the benchmark more challenging and closer
to a real application where new objects can be discovered
also later in time, we propose a new three-way protocol
(denoted as NICv2) where classes first introduction is more
balanced over the training batches (see Figure 3, right) and
the batch size is progressively reduced, leading to a higher
number of fine-grained updates (see Table 1). In particular,
in NICv2-391 each of the 390 incremental batches includes
only one training session (~300 images) of a single class.
The pseudo-code used to generate the NICv2 protocol is
reported in Algorithm 3 of the additional materials of [19].

The test set used for NICv2 is the default test set shared
by all the CORe50 protocols [18]; it includes 3 sessions for
each class, with null intersection with training batches. Ac-
tually, in order to speed up the large number of evaluations
(which requires one evaluation after each training batch, re-
peated for 10 runs) we sub-sampled the test set by selecting
1 frame every second (from the original 20 fps). Because
of the high correlation among successive frames in the se-
quences, such a strong sub-sampling is not reducing the test
set variability and the accuracy results on the original and
the down sampled version are very close. We made avail-



Table 1: Batch number and composition in NIC and NICv2.

Protocol # batches Initial batch Incremental Batches
# Classes #Images # Classes # Images
NIC 79 10 3,000 5 1,500
NICv2-79 79 10 3,000 5 1,500
NICv2-196 196 10 3,000 2 600
NICv2-391 391 10 3,000 1 300

able at https://vlomonaco.github.io/core50
all the file lists of the new NICv2 protocols along with the
down-sampled test set.

4. Experimental Results

We run several experiments on CORe50 NICv2, to val-
idate the approaches introduced in Section 2 and to com-
pare them with a naive baseline and three state-of-the-art
rehearsal-free approaches. In particular, for all the experi-
ments, the following techniques have been considered:

o CWR*: the extension of CWR+ introduced in Section
2.

e ARI*: the approach introduced in [22], here imple-
mented by replacing CWR+ with CWR* and by adopt-
ing the weight constraining by learning rate modulation
introduced in Section 2.4.

e Naive: a baseline technique where we simply continue
gradient descent along the training batches and the only
measure to control forgetting is early stopping.

e EWC and LWF: the techniques originally introduced in
[14] and [16] and adapted to continual learning in SIT
scenario as detailed in [22].

e DSLDA: the strategy recently proposed in [0], where an
on-line extension of the Linear Discriminant Analysis
(LDA) classifier [29] is trained on the top of a fixed deep
learning feature extractor. DSLDA obtained state-of-
the art accuracy on CORe50 (10 categories setting) [6],
even outperforming rehearsal based techniques such as
ICARL [30] and ExStream [5].

e Cumulative: this is a sort of upper bound in terms of
accuracy because the model is trained on the union of
the current batch and all the past data.

For all the experiments we used a MobileNet v1 [7] with:
width multiplier = 1, resolution multiplier = 0.5
(input 128 x 128), pre-trained on ImageNet. MobileNet
architectures provide a good tradeoff in terms of accu-
racy/efficiency and, in our opinion, are well suited for porting
continual learning at the edge.

For all the above techniques the MobileNet v1 architec-
ture was modified by replacing the 27 Batch Normalization

layers with corresponding Batch Renormalization layers and
using (for training) a mini-batch size of 128 patterns. We
used Batch Renormalization implementation for Caffe [10]
made available in [1]. This modification improves accuracy
of all the methods, making CWR* and AR1* able to learn
also in the case of 391 single class batches. Batch Renor-
malization hyperparameters and their schedule have been
experimentally set as follows:

e Batch 1: for the first 48 iterations we keep 70, = 1,
dmaz = 0 to startup the global moments; then, we pro-
gressively move 7,4, to 3 and d,,4, to 5 (as suggested
in [8]). The weight of the past when updating the mov-
ing averages was set to 0.99 (as suggested for (1 — o)
in [8]).

e Subsequent batches: global moments computed on
batch 1 are inherited by batch 2 and slowly updated
across the batch sequence. In this case we noted that
continual learning over small non i.i.d. batches benefits
from more stable moments, and therefore the weight
of the past for updating moving averages was set to
0.9999. Here we have no startup phase for the global
moment so the values of 7,4, and d,, 4, are kept fixed
across all the iterations of the batches. While using
the suggested values of 7,4, = 3 and d;,q, = 5 still
works, we noted that reducing them (i.e. relaxing batch
renormalization constrains) brings some befits. More
details about the experiments and the hyperparameters
used are provided in the additional materials of [19].

For all the techniques we also applied depthwise layer
freezing (as introduced in Section 2.3) starting from Batch 2.
This can be simply implemented by setting learning rate to 0
for the 14 non pointwise convolution layers (13 depthwise +
1 3D) in MobileNet v1 architecture. While in NICv2 experi-
ments this had a negligible impact on the accuracy, we found
it can be advantageous in other scenarios (see NI curves in
Figure 2) and, in general, this reduces computations/storage
during SGD (less gradient calculations, lower memory to
accumulate per weight extra-data, etc.).

Figure 4 shows the results of our experiments on NICv2-
79, NICv2-196 and NICv2-391. The curves are averaged
over 10 runs where the training batch order is randomly shuf-
fled. Hyperparameters of the methods have been coarsely
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Figure 4: Continual learning accuracy over NICv2-79, NICv2-196 and NICv2-391. Each experiment was averaged on 10 runs. Colored
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of all batches), not reported for visual convenience, is ~85%. Results in tabular form are made available for download at https:

//vlomonaco.github.io/core50.

tuned (i.e., without any systematic grid search) on run 0 and
then kept fixed for the other 9 runs. It can be noted that
CWR* and AR1* show a very good learning trend across
training batches, with only a minor drop in accuracy when
the batch granularity decreases. The accuracy near linearly
increases for most of the batches and slows down in the final
part of the sequences; we believe this is not caused by the
saturation of learning capabilities but is more likely due to
the absence of example of new classes in the final part of
the sequences (see Figure 3b). Standard deviation across
runs is also quite small denoting a good stability. Naive,
LWF and EWC exhibit fair performance on 79 batches but
their efficacy significantly decreases with 196 batches and
are not able to learn in the most challenging case of 391
single-class batches. DSLDA accuracy is quite good and
stable but remains lower than CWR* and AR1* in all the
three settings. The advantage of AR1* over CWR* (due
to the extra freedom to improve the representation) reduces
as the batch size decreases and is null for 391 batches. We
speculate that, in this case, the gradient steps induced by
small and highly non i.i.d. mini-batches tend to overfit the
mini-batches themselves with no improvement in terms of
generalization.

Figure 5 compares AR1* accuracy in the configuration
with Batch Normalization and Batch Renormalization. It is
evident that for 391 batches Batch Normalization heavily
hurt the learning capabilities. However, it is worth noting that
Batch Renormalization brings some advantages to continual
learning even when using larger batches that may include
patterns from more than one class.

In order to better understand and compare the perfor-
mance of the proposed continual learning strategies, in Table

Table 2: Total run time (in minutes, for both training and test),
memory overhead (in terms of maximum data storage for rehearsal
and number of additional trainable parameters introduced) for each
strategy on the NICv2-391 protocol. Please note that: (i) all the
rehearsal-free strategy hereby listed have a constant memory /
computational overhead which is fixed and independent from the
number of training batches processed; (ii) the Cumulative metrics
are computed considering a re-training from scratch after each
incremental batch.

Memory Overhead
Strat. Run Time (m) Data (MB) Params (MB)
CWR* 214 0 0,2
Naive 25,6 0 0
LWF 27,8 0 0
EWC 31,2 0 24.4
ARI1* 39,9 0 12,2
DSLDA 79,1 0 0,2
Cumul. 2826,2 4712,3 0

2 we also report the total run time, the maximum exter-
nal memory size (where patterns from previous batches are
stored) and the number of additional trainable parameters
introduced while learning across the NICv2-391 batches. All
the metrics are averaged across 10 runs.

Rehearsal-free approaches show a remarkable advantage
w.r.t. the cumulative upper bound (where the model is re-
trained from scratch after each incremental batch on the
cumulated data), both in terms of speed-up and in terms
of total memory overhead. Among them, AR1* shows the
best trade-off between accuracy and efficiency with about 40
minutes to complete the run and a fixed memory overhead
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Figure 5: Comparing AR1* accuracy results in the Batch Normalization vs Batch Renormalization configurations.

of only 12.4 MB for handling the additional parameters of
the learning rate modulation introduced in Section 2.4. We
would also underline that the current Synaptic Intelligence
implementation embedded in AR1* is not optimized (gradi-
ent is recomputed in python outside the Caffe framework)
without exploiting the data already available from SGD. We
believe that upon proper optimization, AR1* efficiency can
be very close to Naive one.

Finally, it is worth noting that the advantage of weight
constraining by learning rate modulation (introduced in Sec-
tion 2.4) for AR1* is negligible in terms of accuracy (less
than 0.1% average improvement in NICv2-79) but relevant
in terms of per weight storage since we do not need to store
about 3,2 millions §;; values.

5. Conclusions

In this paper, we showed that rehearsal-free continual
learning techniques can learn over long sequences of small
and highly correlated batches, even in the challenging case
of one class at a time. In fact, CWR* and AR1* displayed a
good (near linear) learning trend across the training batches
and proved to be very robust even with small one-class
batches. On the other hand, well known CL techniques
such as EWC and LWF were not able to learn effectively
in our experiments. We speculate that: (i) a regularization
technique alone is not effective to protect important weights
in the upper levels when dealing with a large number of
small batches; (ii) learning the upper layer(s) “in isolation”,
as CWR* and AR1* do, is very important for continual
learning, especially in SIT setting. DSLDA, that recently
achieved state-of-art accuracy on some continual learning
benckmarks, performed quite well in our experiments, but
its accuracy and efficiency are lower than CWR* and AR1*.

Of course, other continual learning approaches should be

considered in the future for a more comprehensive analy-
sis. For example, here we did not consider rehearsal based
approaches such as ICARL [30] and GEM [20] because,
even if the use of an external memory to store past data
may simplify the task, it brings drawbacks in terms of extra
storage/computations. Actually, some preliminary compar-
isons of CWR+, AR1 and DSLDA with rehearsal-based
approaches have been reported in [22] and [6] for CORe50
(NC scenario) showing that the proposed rehearsal-free ap-
proaches are still competitive when a moderate number of
patterns is maintained in the external memory by ICARL
and GEM (2,500-4,500 training images). Another interest-
ing technique, reporting good results on CORe50, is the
Dual-Memory Recurrent Self-Organization proposed in [25]:
however, results included in that work are not directly com-
parable with our achievements because the aforementioned
approach also exploits the temporal dimension of CORe50
videos (by using temporal windows instead of single frames).

The top accuracy reached by AR1* at the end of the train-
ing sequence is in the range 55-65% depending on the batch
granularity, and the gap w.r.t. cumulative training (~85%)
exploiting all the data at one time is quite relevant (>20%).
In the future, we would like to improve the proposed CL
techniques to reduce this gap as much as possible. Pseudo-
rehearsal, i.e., generating past data without explicit storage,
is the main path we intend to explore. Finally, porting con-
tinual learning at the edge, i.e. running end-to-end training
algorithms on light architectures with neither remote server
support nor on-board GPUs, is another topic of interest for us.
In the near future, we plan to release a CWR*/AR1* embed-
ded implementation for smart-phones devices and embedded
robotics platforms.
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