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Abstract

Robotic vision is a field where continual learning can play

a significant role. An embodied agent operating in a complex

environment subject to frequent and unpredictable changes

is required to learn and adapt continuously. In the context

of object recognition, for example, a robot should be able to

learn (without forgetting) objects of never before seen classes

as well as improving its recognition capabilities as new in-

stances of already known classes are discovered. Ideally,

continual learning should be triggered by the availability

of short videos of single objects and performed on-line on

on-board hardware with fine-grained updates. In this paper,

we introduce a novel continual learning protocol based on

the CORe50 benchmark and propose two rehearsal-free con-

tinual learning techniques, CWR* and AR1*, that can learn

effectively even in the challenging case of nearly 400 small

non-i.i.d. incremental batches. In particular, our experi-

ments show that AR1* can outperform other state-of-the-art

rehearsal-free techniques by more than 15% accuracy in

some cases, with a very light and constant computational

and memory overhead across training batches.

1. Introduction

Consolidating and preserving past memories while being

able to learn new concepts and skills is a well-known chal-

lenge for both artificial and biological learning systems, gen-

erally acknowledged as the plasticity-stability dilemma [23].

In particular, gradient-based architectures are often skewed

towards plasticity and prone to catastrophic forgetting when

learning over a stream of non-stationary data [4, 32, 12].

A simple solution to deal with this issue would be storing

all the data, and cyclically re-train the entire model from

scratch [11]. However, this approach is rather impractical

when learning from high-dimensional streaming data, es-

pecially in highly constrained computational platforms and

embedded systems [15, 34].

In recent years, a number of continual learning (CL)

strategies have been proposed for deep architectures based

Figure 1: Example images of the 50 objects in CORe50, the con-

tinual learning video benchmark used in this paper. Each column

denotes one of the 10 categories. Classification experiments in this

paper are object-based, so each object corresponds to a class.

on regularization, architectural or rehearsal approaches

[24, 17, 2]. Most of the proposals target a Multi-Task

(MT) setting where a sequence of independent and tasks

are encountered over time. However, for many practical

applications, such as natural object recognition, a Single-

Incremental-Task (SIT) setting may appear more appropriate

[22]. In the SIT setting, we can distinguish three different

cases, based on the training batches composition:

1. New Instances (NI): new training patterns of the same

classes become available in subsequent batches with

new poses and environment conditions (illumination,

background, occlusions, etc.).

2. New Classes (NC): new training patterns belonging to

different, previously unseen, classes become available

in subsequent batches. This is also known as class-

incremental learning.

3. New Instances and Classes (NIC): new training pat-

terns belonging to both known and new classes become

available in subsequent training batches. To the best

of our knowledge, almost no study explicitly addresses

the NIC scenario, which we deem as the most natural

setting for many applications such as robotics vision,

where: i) a large number of small non-i.i.d. training



batches are encountered over time; ii) training batches

may contain objects already seen before as well as com-

pletely new objects.

Although some researchers pointed out that reducing the

size of training batches makes continual learning more chal-

lenging [22, 5, 30], we still do not know what is the lower

bound for the size of training batches and if it is actually

feasible to train a system by gradient descent with very small

non-i.i.d. incremental batches each containing few images

of a single class. It is well known that stochastic gradient

descent (SGD) works well with large and i.i.d. mini-batches,

but this assumption is difficult to meet. Let us consider a

robot that is learning to recognize some objects shown by an

operator (one at the time). In an ideal application, when a

new object is shown, the robot acquires a short video and im-

mediately updates its knowledge to become able to recognize

the new object. The frames extracted from the video would

constitute one or more small mini-batches containing highly

correlated patterns from a single class: a rather challeng-

ing setting to face with standard SGD-based optimization

techniques.

Some rehearsal-based techniques have been proposed in

order to mitigate this problem: by maintaining some repre-

sentative patterns from past experiences, new frames can be

interleaved with past ones in each mini-batch. However, this

involves extra memory (to store the past data) and computa-

tion (due to an higher number of forward/backward steps):

in this work we ask ourselves weather continual learning

over small non-i.i.d. batches is feasible without rehearsal.

The contributions of this paper can be summarized as

follows:

• we propose two rehearsal-free continual learning strate-

gies, CWR* and AR1*, as extensions of the CWR+ and

AR1 strategies originally proposed for the NC scenario

in [22], making them agnostic to the batches composi-

tion.

• we show that replacing Batch Normalization with Batch

Renormalization [8] allows SGD to continually learn

even in the challenging case of very small and non i.i.d.

batches.

• we introduce two different approaches, namely depth-

wise layer freezing and weight constraining by learning

rate modulation aimed at reducing storage/computation

of existing continual learning techniques without hin-

dering accuracy.

• we design and openly release at https://

vlomonaco.github.io/core50 a new NIC pro-

tocol based on CORe50 [18] to explicitly address non-

i.i.d continual learning scenarios (with 79, 196 and 391

training batches). To the best of our knowledge, this

is one of the first attempts to scale continual learning

techniques over hundreds of small training batches with

real-world highly correlated images.

• we run several experiments to evaluate the proposed

strategies (CWR* and AR1*) and to compare them

with two baselines and three state-of-the-art rehearsal-

free approaches (such as EWC [14], LWF [16] and

DSLDA [6]), also in terms of computation and memory

efficiency.

2. Continual Learning Strategies

In [22] it was showed that a simple approach like CWR+,

where the fully connected layer is implemented as a double

memory, is quite effective to control forgetting in the SIT -

NC scenario. However, after the first training batch, CWR+

freezes all the layers except the last one, thus losing the

benefit of an incremental adaptation of the underlying rep-

resentation. AR1 [22] was then proposed to extend CWR+

by enabling end-to-end continual training throughout the

entire network; to this purpose the Synaptic Intelligence [36]

regularization approach (similar to EWC [14]) is adopted

to constrain the change of critical weights. In the following

subsections we:

1. adapt CWR+ to the NIC scenario, thus making it able

to reload past weights for already known classes and

to adapt them with weighted contributions from differ-

ent batches. As AR1 incorporates CWR+ in its main

algorithm, this modification will result in two continual

learning strategies hereby denoted as CWR* and AR1*

(Section 2.1).

2. show that in a complex scenario with small and non

i.i.d. batches, Batch Normalization layers thwart the

continual learning process and replacing them with

Batch Renormalization [8] can effectively tackle this

problem (Section 2.2).

3. propose a selective weight freeze for the CNN models

adopting Depth-Wise Separable Convolutions (Section

2.3).

4. reduce the computational and storage complexity of

AR1 (and in general of EWC like approaches), by intro-

ducing an alternative way to implement weights update

starting from the Fisher matrix (Section 2.4).

While 1. is specific to CWR+, 2., 3. and 4. can be applied

to several other CL approaches as well.

2.1. From CWR+ to CWR*

CWR+, whose pseudo-code is reported in Algorithm 2

of [22] and in the supplementary materials of this work,

maintains two sets of weights for the output classification

layer: cw are the consolidated weights used for inference and

tw the temporary weights used for training; cw are initialized



to 0 before the first batch and then iteratively updated, while

tw are reset to 0 before each training batch.

In Algorithm 1, we propose an extension of CWR+ called

CWR* which works both under NC and NIC update type; in

particular, under NIC the coming batches include patterns

of both new and already encountered classes. For already

known classes, instead of resetting weights to 0, we reload

the consolidated weights (see line 7). Furthermore, in the

consolidation step (line 13) a weighted sum is now used: the

first term represents the weight of the past and the second

term is the contribution from the current training batch. The

weight wpastj used for the first term is proportional to the

ratio
pastj
curj

, where pastj is the total number of patterns of

class j encountered in past batches whereas curj is their

count in the current batch. In case of a large number of small

non-i.i.d. training batches, the weight for the most recent

batches may be too low thus hindering the learning process.

In order to avoid this, a square root is used in order to smooth

the final value of wpastj .

Algorithm 1 CWR* pseudocode: Θ̄ are the class-shared parame-

ters of the representation layers; the notation cw[j] / tw[j] is used

to denote the groups of consolidated / temporary weights corre-

sponding to class j. Note that this version continues to work under

NC, which is seen here a special case of NIC; in fact, since in NC

the classes in the current batch were never encountered before, the

step at line 7 loads 0 values for classes in Bi because cwj were ini-

tialized to 0 and in the consolidation step (line 13) wpastj values

are always 0.

1: procedure CWR*

2: cw = 0
3: past = 0
4: init Θ̄ random or from pre-trained model (e.g. on ImageNet)

5: for each training batch Bi:

6: expand output layer with neurons for the new classes in Bi

never seen before

7: tw[j] =

{

cw[j], if class j in Bi

0, otherwise

8: train the model with SGD on the si classes of Bi:

9: if Bi = B1 learn both Θ̄ and tw

10: else learn tw while keeping Θ̄ fixed

11: for each class j in Bi:

12: wpastj =

√

pastj

curj
, where curj is the number of patterns

of class j in Bi

13: cw[j] =
cw[j]·wpastj+(tw[j]−avg(tw))

wpastj+1

14: pastj = pastj + curj
15: test the model by using Θ̄ and cw

2.2. Replacing Batch Normalization with Batch
Renormalization

Batch Normalization (BN) [9] is widely used in modern

deep neural networks to control internal covariate shift thus

making learning faster and more robust. In BN the mini-

batch moments (i.e., mean µmb and variance σ2

mb) are used

to normalize the input values xi as:

x̂i =
xi − µmb
√

σ2

mb + ǫ
(1)

where ǫ is a small constant added for numerical stability, and

the normalization is per-channel. However, if mini-batches

are small and/or non i.i.d. the mini-batch moments are not

stable and BN can fail. A natural solution to reduce the mo-

ment fluctuations would be replacing µmb, σ2

mb with global

values µ, σ computed as moving averages over an initial

(large-enough) training batch. After all, this is the standard

approach when switching from training to inference. How-

ever, as argued in [9], using moving averages to perform the

normalization during training does not produce the desired

effects since gradient optimization and the normalization

counteract each other, possibly leading the model to diverge.

Batch Renormalization (BRN) was proposed in [8] to

deal with small and non i.i.d. mini-batches. In BRN the

normalization takes place as follows:

x̂i =
xi − µmb

σmb

· r + d (2)

r =
σmb

σ
, d =

µmb − µ

σ
(3)

where µ, σ are computed as moving averages during training.

By expanding r and d in the equation 2, we obtain x̂i =
xi−µ
σ

which clearly highlights the dependency on the global

moments. A further step is suggested in [8] to clip r in

[ 1

rmax
, rmax] and d in [−dmax, dmax]. It is worth noting

that when r = 1 and d = 0, then BRN≡BN; hence, by

properly setting rmax and dmax the behavior of BRN can

be moved from a pure BN to a more stable normalization

based on global statistics. In practice, the author of [8]

recommend to perform an initial stage by keeping rmax = 1,

dmax = 0 in order to stabilize the moving averages µ, σ

and then progressively increasing rmax and dmax to 3 and

5, respectively.

Continual learning over small batches is an emblematic

case of small and non i.i.d. minibatches. For example, in

NICv2-391 (introduced in Section 3) each training batch

includes 300 patterns from a single class, and even using

a mini-batch size of 300 (the full batch) patterns remain

strongly correlated. Our first attempts to learn continuously

over a so long sequence of one-class batches were totally

unsatisfactory. Even for the most accurate strategies (e.g.,

AR1*) accuracy slightly increased in the first batches from

13% to 15% but then remained steady and lower than 16-

17%. We initially though that the reason were the single-

class mini-batches, making the problem a sort of one-class

classification with no negative examples. However, upon

replacement of BN with BRN and a proper parametrization,

we were able to continuously learn over small batches with



Figure 2: Continual Learning on CORe50, SIT – NI scenario. In

the NI scenario all the 50 classes are discovered in the first batch

and successive training batches provide new instances of the already

known classes; however, since past instances are not retained, the

incremental process is prone to forgetting. In this experiment a

MobileNet (pre-trained on ImageNet) is incrementally tuned (naïve

strategy) over 8 batches with different weight freeze strategies.

Each curve is averaged over 10 runs where the batch order is

randomly permuted.

unexpected efficacy (see Section 4 for optimal parametriza-

tion and results).

2.3. Depthwise Layer Freezing

Depth-Wise Separable Convolutions (DWSC) are quite

popular nowadays in many successful CNN architectures

such as MobileNet [7, 33], Xception [3], EfficientNet [35].

Classical filters in CNN are shaped as 3D volumes. For

example, a 5×5×32 filter spans a spatial neighborhood of

5×5 along 32 feature maps; on the contrary, in DWSC we

first perform 32 5×5×1 spatial convolutions (an indepen-

dent convolution on each feature maps) and then combine

results with a 1×1×32 filter working as a feature map pooler.

Advantages in terms of computation and weight reduction

have been pointed out by several researchers.

Inspired by previous finding with Hierarchical Temporal

Memories [31, 21] where gradient descent by HSR only

affects coincidence pooling, here we propose to fine-tune

DWSC architectures by freezing depthwise spatial filters and

leaving pointwise poolers free to learn. We speculate that

modifying a spatial filter (i.e. the way a local neighborhood

is processed) can be detrimental in terms of forgetting during

continual learning, because it alters the semantics of what

upper layers have already learned; on the other hand, feature

map pooling, which can be seen as a way to promote feature

invariance, is less prone to concept drifts.

A simple experiment is illustrated in figure 2, where a

MobileNet is incrementally fine-tuned along the 8 learning

batches of CORe50, SIT – NI scenario [18]. Here, no spe-

cific measure is put in place to control forgetting except early

stopping the gradient descent after 1 epoch (naïve strategy).

The four curves denote the classification accuracy when: i)

all the weights are tuned; ii) weights of depthwise convolu-

tion layers are frozen; iii) weights of pointwise convolution

layers are frozen; iv) weights of all convolution layers are

frozen. Note that weights of fully connected layers (e.g.

output layer) are never frozen. The proposed strategy (case

ii) achieves the best result and, with respect to a full tuning,

allows skipping some gradient computations and can reduce

the amount of memory used to store weight associated data1.

The complementary strategy (case iii) is the worst one, thus

confirming that altering spatial filters has a strong impact in

terms of forgetting.

2.4. Weight Constraining by Learning Rate Modu­
lation

The Elastic Weight Consolidation (EWC) approach [14]

tries to control forgetting by selectively constraining the

model weights which are deemed to be important for the

previous tasks. To this purpose, in a classification approach,

a regularization term is added to the conventional cross-

entropy loss, where the weights θk of the model are pulled

back to their optimal value θ∗k with a strength Fk proportional

to their importance for the past:

L = Lcross(·) +
λ

2
·

∑

k

Fk · (θk − θ∗k)
2. (4)

Synaptic Intelligence (SI) [36] is a lightweight variant of

EWC where, instead of updating the Fisher matrix F at the

end of each batch2, Fk are obtained by integrating the loss

over the weight trajectories exploiting information already

available during gradient descent. For both approaches, the

weight update rule corresponding to equation 4 is:

θ
′

k = θk − η ·

∂Lcross(·)

∂θk
− η · Fk · (θk − θ∗k) (5)

where η is the learning rate. This equation has two draw-

backs. Firstly, the value of λ must be carefully calibrated:

in fact, if its value is too high the optimal value of some

parameters could be overshoot, leading to divergence (see

discussion in Section 2 of [22]). Secondly, two copies of

all model weights must be maintained to store both θk and

θ∗k, leading to double memory consumption for each weight.

1In per-weight adaptive learning rate methods (such as Adam [13]) extra

values (i.e. running averages) need to be stored for each “free” weight.

Further, if a regularization method based on Fisher matrix is used (such as

EWC [14]) we need to store the optimal value for previous tasks and the

Fisher value for each weight.
2In this paper, for the EWC and AR1 implementations we use a single

Fisher matrix updated over time, following the approach described in [22].



Figure 3: Classes encountered over time in the first run of NIC (left) and NICv2-79 (right). Each row denotes a class; colors are used to

group the 50 classes in the 10 categories. Each column denotes a training batch. A colored block in a (row, column) cell is used to indicate

that at least one training session of the row class is present in the column batch. Each row contains a maximum of 8 colored blocks, because

each class has 8 training sessions in the training set (the remaining 3 sessions are left out for the test set). The red-framed cells denote the

first introduction of a class. Gray vertical bands highlight batches where at least one class is seen for the first time. Class presentation

ordering for the first run of NICv2-196 and NICv2-391 is also reported in the additional materials of [19].

To overcome the above problems, we propose to replace the

update rule of equation 5 with:

θ
′

k = θk − η · (1−
Fk

maxF

) ·
∂Lcross(·)

∂θk
(6)

where maxF is the maximum value for weight importance

(we clip to maxF the Fk values larger than maxF ). Basi-

cally, the learning rate is reduced to 0 (i.e., complete freez-

ing) for weights of highest importance (Fk = maxF ) and

maintained to η for weights whose Fk = 0. It is worth not-

ing that these two updated rules work differently: the former

still moves weights with high Fk in direction opposite to the

gradient and then makes a step in direction of the past (op-

timal) values; the latter tends to completely freeze weights

with high Fk. However, in our experiments with AR1 the

two approaches lead to similar results, and therefore the

second one is preferable since it solves the aforementioned

drawbacks.

3. CORe50 NICv2

CORe50 [18] was specifically designed as an object

recognition video benchmark for continual learning. It con-

sists of 164,866 128×128 images of 50 domestic objects

belonging to 10 categories (see Figure 1); for each object the

dataset includes 11 video sessions (∼300 frames recorded

with a Kinect 2 at 20 fps) characterized by relevant variations

in terms of lighting, background, pose and occlusions. The

egocentric vision of hand-held objects allows emulating a

scenario where a robot has to incrementally learn to recog-

nize objects while manipulating them. Objects are presented

to the robot by a human operator who can also provide the

labels, thus enabling a supervised classification (such an

applicative scenario is well described in [28, 26, 27]).

A NIC protocol was initially introduced for CORe50 [18]

where the first training batch contains 10 classes (∼3,000

images) and each of the subsequent 78 incremental batches

includes about 1,500 images of 5 classes. However, as shown

in Figure 3 (left), the random generation procedure used in

[18] produced a sequence where almost all the classes are

introduced in the first 10-15 batches making this protocol

very close to an NI scenario.

To make the benchmark more challenging and closer

to a real application where new objects can be discovered

also later in time, we propose a new three-way protocol

(denoted as NICv2) where classes first introduction is more

balanced over the training batches (see Figure 3, right) and

the batch size is progressively reduced, leading to a higher

number of fine-grained updates (see Table 1). In particular,

in NICv2-391 each of the 390 incremental batches includes

only one training session (∼300 images) of a single class.

The pseudo-code used to generate the NICv2 protocol is

reported in Algorithm 3 of the additional materials of [19].

The test set used for NICv2 is the default test set shared

by all the CORe50 protocols [18]; it includes 3 sessions for

each class, with null intersection with training batches. Ac-

tually, in order to speed up the large number of evaluations

(which requires one evaluation after each training batch, re-

peated for 10 runs) we sub-sampled the test set by selecting

1 frame every second (from the original 20 fps). Because

of the high correlation among successive frames in the se-

quences, such a strong sub-sampling is not reducing the test

set variability and the accuracy results on the original and

the down sampled version are very close. We made avail-



Table 1: Batch number and composition in NIC and NICv2.

Protocol # batches Initial batch Incremental Batches

# Classes # Images # Classes # Images

NIC 79 10 3,000 5 1,500

NICv2-79 79 10 3,000 5 1,500

NICv2-196 196 10 3,000 2 600

NICv2-391 391 10 3,000 1 300

able at https://vlomonaco.github.io/core50

all the file lists of the new NICv2 protocols along with the

down-sampled test set.

4. Experimental Results

We run several experiments on CORe50 NICv2, to val-

idate the approaches introduced in Section 2 and to com-

pare them with a naïve baseline and three state-of-the-art

rehearsal-free approaches. In particular, for all the experi-

ments, the following techniques have been considered:

• CWR*: the extension of CWR+ introduced in Section

2.

• AR1*: the approach introduced in [22], here imple-

mented by replacing CWR+ with CWR* and by adopt-

ing the weight constraining by learning rate modulation

introduced in Section 2.4.

• Naïve: a baseline technique where we simply continue

gradient descent along the training batches and the only

measure to control forgetting is early stopping.

• EWC and LWF: the techniques originally introduced in

[14] and [16] and adapted to continual learning in SIT

scenario as detailed in [22].

• DSLDA: the strategy recently proposed in [6], where an

on-line extension of the Linear Discriminant Analysis

(LDA) classifier [29] is trained on the top of a fixed deep

learning feature extractor. DSLDA obtained state-of-

the art accuracy on CORe50 (10 categories setting) [6],

even outperforming rehearsal based techniques such as

ICARL [30] and ExStream [5].

• Cumulative: this is a sort of upper bound in terms of

accuracy because the model is trained on the union of

the current batch and all the past data.

For all the experiments we used a MobileNet v1 [7] with:

width multiplier = 1, resolution multiplier = 0.5
(input 128 × 128), pre-trained on ImageNet. MobileNet

architectures provide a good tradeoff in terms of accu-

racy/efficiency and, in our opinion, are well suited for porting

continual learning at the edge.

For all the above techniques the MobileNet v1 architec-

ture was modified by replacing the 27 Batch Normalization

layers with corresponding Batch Renormalization layers and

using (for training) a mini-batch size of 128 patterns. We

used Batch Renormalization implementation for Caffe [10]

made available in [1]. This modification improves accuracy

of all the methods, making CWR* and AR1* able to learn

also in the case of 391 single class batches. Batch Renor-

malization hyperparameters and their schedule have been

experimentally set as follows:

• Batch 1: for the first 48 iterations we keep rmax = 1,

dmax = 0 to startup the global moments; then, we pro-

gressively move rmax to 3 and dmax to 5 (as suggested

in [8]). The weight of the past when updating the mov-

ing averages was set to 0.99 (as suggested for (1− α)

in [8]).

• Subsequent batches: global moments computed on

batch 1 are inherited by batch 2 and slowly updated

across the batch sequence. In this case we noted that

continual learning over small non i.i.d. batches benefits

from more stable moments, and therefore the weight

of the past for updating moving averages was set to

0.9999. Here we have no startup phase for the global

moment so the values of rmax and dmax are kept fixed

across all the iterations of the batches. While using

the suggested values of rmax = 3 and dmax = 5 still

works, we noted that reducing them (i.e. relaxing batch

renormalization constrains) brings some befits. More

details about the experiments and the hyperparameters

used are provided in the additional materials of [19].

For all the techniques we also applied depthwise layer

freezing (as introduced in Section 2.3) starting from Batch 2.

This can be simply implemented by setting learning rate to 0

for the 14 non pointwise convolution layers (13 depthwise +

1 3D) in MobileNet v1 architecture. While in NICv2 experi-

ments this had a negligible impact on the accuracy, we found

it can be advantageous in other scenarios (see NI curves in

Figure 2) and, in general, this reduces computations/storage

during SGD (less gradient calculations, lower memory to

accumulate per weight extra-data, etc.).

Figure 4 shows the results of our experiments on NICv2-

79, NICv2-196 and NICv2-391. The curves are averaged

over 10 runs where the training batch order is randomly shuf-

fled. Hyperparameters of the methods have been coarsely



Figure 4: Continual learning accuracy over NICv2-79, NICv2-196 and NICv2-391. Each experiment was averaged on 10 runs. Colored

areas represent the standard deviation of each curve. Accuracy performance for the cumulative upper bound (trained on the union

of all batches), not reported for visual convenience, is ∼85%. Results in tabular form are made available for download at https:

//vlomonaco.github.io/core50.

tuned (i.e., without any systematic grid search) on run 0 and

then kept fixed for the other 9 runs. It can be noted that

CWR* and AR1* show a very good learning trend across

training batches, with only a minor drop in accuracy when

the batch granularity decreases. The accuracy near linearly

increases for most of the batches and slows down in the final

part of the sequences; we believe this is not caused by the

saturation of learning capabilities but is more likely due to

the absence of example of new classes in the final part of

the sequences (see Figure 3b). Standard deviation across

runs is also quite small denoting a good stability. Naïve,

LWF and EWC exhibit fair performance on 79 batches but

their efficacy significantly decreases with 196 batches and

are not able to learn in the most challenging case of 391

single-class batches. DSLDA accuracy is quite good and

stable but remains lower than CWR* and AR1* in all the

three settings. The advantage of AR1* over CWR* (due

to the extra freedom to improve the representation) reduces

as the batch size decreases and is null for 391 batches. We

speculate that, in this case, the gradient steps induced by

small and highly non i.i.d. mini-batches tend to overfit the

mini-batches themselves with no improvement in terms of

generalization.

Figure 5 compares AR1* accuracy in the configuration

with Batch Normalization and Batch Renormalization. It is

evident that for 391 batches Batch Normalization heavily

hurt the learning capabilities. However, it is worth noting that

Batch Renormalization brings some advantages to continual

learning even when using larger batches that may include

patterns from more than one class.

In order to better understand and compare the perfor-

mance of the proposed continual learning strategies, in Table

Table 2: Total run time (in minutes, for both training and test),

memory overhead (in terms of maximum data storage for rehearsal

and number of additional trainable parameters introduced) for each

strategy on the NICv2-391 protocol. Please note that: (i) all the

rehearsal-free strategy hereby listed have a constant memory /

computational overhead which is fixed and independent from the

number of training batches processed; (ii) the Cumulative metrics

are computed considering a re-training from scratch after each

incremental batch.

Memory Overhead

Strat. Run Time (m) Data (MB) Params (MB)

CWR* 21,4 0 0,2

Naive 25,6 0 0

LWF 27,8 0 0

EWC 31,2 0 24,4

AR1* 39,9 0 12,2

DSLDA 79,1 0 0,2

Cumul. 2826,2 4712,3 0

2 we also report the total run time, the maximum exter-

nal memory size (where patterns from previous batches are

stored) and the number of additional trainable parameters

introduced while learning across the NICv2-391 batches. All

the metrics are averaged across 10 runs.

Rehearsal-free approaches show a remarkable advantage

w.r.t. the cumulative upper bound (where the model is re-

trained from scratch after each incremental batch on the

cumulated data), both in terms of speed-up and in terms

of total memory overhead. Among them, AR1* shows the

best trade-off between accuracy and efficiency with about 40

minutes to complete the run and a fixed memory overhead



Figure 5: Comparing AR1* accuracy results in the Batch Normalization vs Batch Renormalization configurations.

of only 12.4 MB for handling the additional parameters of

the learning rate modulation introduced in Section 2.4. We

would also underline that the current Synaptic Intelligence

implementation embedded in AR1* is not optimized (gradi-

ent is recomputed in python outside the Caffe framework)

without exploiting the data already available from SGD. We

believe that upon proper optimization, AR1* efficiency can

be very close to Naive one.

Finally, it is worth noting that the advantage of weight

constraining by learning rate modulation (introduced in Sec-

tion 2.4) for AR1* is negligible in terms of accuracy (less

than 0.1% average improvement in NICv2-79) but relevant

in terms of per weight storage since we do not need to store

about 3,2 millions θ∗k values.

5. Conclusions

In this paper, we showed that rehearsal-free continual

learning techniques can learn over long sequences of small

and highly correlated batches, even in the challenging case

of one class at a time. In fact, CWR* and AR1* displayed a

good (near linear) learning trend across the training batches

and proved to be very robust even with small one-class

batches. On the other hand, well known CL techniques

such as EWC and LWF were not able to learn effectively

in our experiments. We speculate that: (i) a regularization

technique alone is not effective to protect important weights

in the upper levels when dealing with a large number of

small batches; (ii) learning the upper layer(s) “in isolation”,

as CWR* and AR1* do, is very important for continual

learning, especially in SIT setting. DSLDA, that recently

achieved state-of-art accuracy on some continual learning

benckmarks, performed quite well in our experiments, but

its accuracy and efficiency are lower than CWR* and AR1*.

Of course, other continual learning approaches should be

considered in the future for a more comprehensive analy-

sis. For example, here we did not consider rehearsal based

approaches such as ICARL [30] and GEM [20] because,

even if the use of an external memory to store past data

may simplify the task, it brings drawbacks in terms of extra

storage/computations. Actually, some preliminary compar-

isons of CWR+, AR1 and DSLDA with rehearsal-based

approaches have been reported in [22] and [6] for CORe50

(NC scenario) showing that the proposed rehearsal-free ap-

proaches are still competitive when a moderate number of

patterns is maintained in the external memory by ICARL

and GEM (2,500-4,500 training images). Another interest-

ing technique, reporting good results on CORe50, is the

Dual-Memory Recurrent Self-Organization proposed in [25]:

however, results included in that work are not directly com-

parable with our achievements because the aforementioned

approach also exploits the temporal dimension of CORe50

videos (by using temporal windows instead of single frames).

The top accuracy reached by AR1* at the end of the train-

ing sequence is in the range 55-65% depending on the batch

granularity, and the gap w.r.t. cumulative training (∼85%)

exploiting all the data at one time is quite relevant (>20%).

In the future, we would like to improve the proposed CL

techniques to reduce this gap as much as possible. Pseudo-

rehearsal, i.e., generating past data without explicit storage,

is the main path we intend to explore. Finally, porting con-

tinual learning at the edge, i.e. running end-to-end training

algorithms on light architectures with neither remote server

support nor on-board GPUs, is another topic of interest for us.

In the near future, we plan to release a CWR*/AR1* embed-

ded implementation for smart-phones devices and embedded

robotics platforms.
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