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Abstract

Catastrophic forgetting is a problem caused by neural

networks’ inability to learn data in sequence. After learn-

ing two tasks in sequence, performance on the first one

drops significantly. This is a serious disadvantage that pre-

vents many deep learning applications to real-life prob-

lems where not all object classes are known beforehand;

or change in data requires adjustments to the model. To re-

duce this problem we investigate the use of synthetic data,

namely we answer a question: Is it possible to generate

such data synthetically which learned in sequence does not

result in catastrophic forgetting? We propose a method

to generate such data in two-step optimisation process via

meta-gradients. Our experimental results on Split-MNIST

dataset show that training a model on such synthetic data

in sequence does not result in catastrophic forgetting. We

also show that our method of generating data is robust to

different learning scenarios.

1. Introduction

Deep learning methods have succeeded in many differ-

ent domains such as: scene understanding, image gener-

ation, natural language processing [2, 28, 26, 20]. While

deep learning methods differ in architecture choice, ob-

jective function or optimization strategy, they all assume

that the training data is independent and identically dis-

tributed (i.i.d). Methods built on this assumption are ef-

fective for fixed environments with stationary data distribu-

tions – where tasks to be solved do not change over time or

classes present in the dataset are known from the beginning.

However, in most real-life scenarios this assumption is vio-

lated and there is a need for methods that are able to handle

such cases. Among many examples of such scenarios, a few

can be highlighted: new object class is introduced, however

the dataset used to train the baseline model is no longer

available; the data characteristics seem to change season-

ally and model needs to change its predictions accordingly

to these trends. Continual learning [22] is a paradigm where

data is presented sequentially to the algorithm without the

ability to manipulate this sequence. Additionally, there is no

assumption about the structure of the sequence. A success-

ful continual learning algorithm needs to be able to learn a

growing number of tasks, be resistant to catastrophic for-

getting [18] and be able to adapt do distribution shifts. The

memory and computational requirements of such algorithm

should scale reasonably with the incoming data.

Although the problem of continual learning is known for

many years [22, 18], only recently has the field gained sig-

nificant traction and many interesting ideas have been pro-

posed. Most of continual learning contributions can be di-

vided into three categories [13, 21]: optimization, architec-

ture and rehersal. Methods based on optimization modifi-

cations usually add additional regularization terms to ob-

jective function to dampen catastrophic forgetting [9, 12].

Second category gathers methods that propose various ar-

chitectural modifications e.g. Progressive Net [23] where

increasing capacity is obtained by initialising new network

for each task. The last category – rehersal based methods –

consists of methods that assume life-long presence of a sub-

set of historical data that can be re-used to retain knowledge

about past tasks [14, 5].

This work proposes a new data-driven path that is or-

thogonal to existing approaches. Specifically, we would

like to explore the possibility of creating input data artifi-

cially in a coordinated manner in such a way that it reduces
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the catastrophic forgetting phenomena. We achieve this

by combining two separate neural networks connected by

two-step optimisation. We use generative model to create

synthetic dataset and form a sequence of tasks to evaluate

learner model in continual learning scenario. The sequence

of synthetic tasks is used to train the learner network. Then,

the learner network is evaluated on real data. The loss ob-

tained on real data is used to tune the parameters of the gen-

erative network. In the following step, the learning network

is replaced with a new one.

Differently from existing approaches, our method is in-

dependent of training method and task and it can be easily

incorporated to above-mentioned strategies providing addi-

tional gains.

2. Related Work

One line of research for continual learning focuses on

optimization process. It draws inspiration from the biologi-

cal phenomena known as synaptic plasticity [1]. It assumes

that weights (connections) that are important for particular

task become less plastic in order to retain the desired per-

formance on previous tasks. An example of such approach

is Elastic Weight Consolidation (EWC) [9], where regular-

isation term based on Fisher Information matrix is used to

slow down the change of important weights. However ac-

cumulation of these constrains prevents network from learn-

ing longer sequences of tasks. Another optimization based

method is Learning without Forgetting (LwF) [12]. It tries

to retain the knowledge of previous tasks by optimizing lin-

ear combination of current task loss and knowledge distilla-

tion loss. LwF is conceptually simple method that benefits

from knowledge distillation phenomenon [6]. The down-

side of such approach is that applying LwF requires ad-

ditional memory and computation resources for each opti-

mization step.

Methods based on architectural modifications allow to

dynamically expand/shrink networks, select sub-networks,

freeze weights or create additional networks to preserve

knowledge. Authors of [23] propose algorithm that for

each new task creates a separate network (a column) that

is trained to solve particular task. Additionally, connec-

tions between previous columns and the current column are

learned to enable forward transfer of knowledge. This algo-

rithm avoids catastrophic forgetting completely and enables

effective transfer learning. However the computational cost

of this approach is prohibitive for longer sequences of tasks.

Other methods [10, 30] address the problem of computa-

tional cost by expanding single layers/neurons instead of

whole networks, however these methods has less capacity

to solve upcoming tasks. Different approaches that mod-

ify architectures are based on selecting sub-networks used

for solving current task in such a way that only a fraction

of network’s parameters relevant to current task is changed

[17, 16, 3]. The challenge here is to balance the number of

frozen and active weights in such way that network is still

able to learn new tasks and preserve current knowledge.

Rehearsal methods are based on the concept of memory

replay. It is assumed that subset of previously processed

data is stored in memory bank and interleaved with up-

coming data in such a way that neural network learns to

solve current task in addition to preserving current knowl-

edge [14, 29, 5]. A naive rehearsal method would be to

save random data samples that were present during train-

ing. However such approach is inefficient, since samples

are not equally informative, hence the challenge of rehearsal

methods is to choose the most representative samples for a

given dataset, such that minimum storage is occupied. In

[29], authors apply method of dataset distillation based on

meta-gradient optimization to reduce the size of memory

bank. It is possible to represent whole class of examples just

by storing one carefully-optimized example. Unfortunately,

applying this meta-optimization method is computationally

exhaustive. The biggest downside of using rehearsal based

methods is the need to store the actual data which in some

cases can violate data privacy rules or can be computation-

ally prohibitive. To mitigate this issue solution based on

Generative Networks was proposed [31, 24]. Namely, they

use dual model architecture composed of learner network

and generative network. Role of the generative network

is to model data previously experienced by the learner net-

work. Data sampled from the generator network is used as

a rehersal data for learner network to reduce the effect of

catastrophic forgetting.

Our method is also dual architecture model based on

generative network, however the aim of generative network

is radically different. In contrast to authors [31, 24] we do

not aim to capture the statistics of real data, instead we try to

generate entirely synthetic data such that when learner does

learn on a sequence of such data it does not suffer from

catastrophic forgetting.

3. Method

The main idea of our approach is to generate data sam-

ples such that network trained on them in sequence would

not suffer from catastrophic forgetting. One of many ways

to generate artificial data is to use meta-optimization strat-

egy introduced in [15]. It is shown that by applying meta-

learning it is possible to use gradient optimization both to

hyperparameters and to input data. However, this approach

is limited to small problems, since each data point must be

optimised separately. To overcome this bottleneck, authors

of Generative Teaching Networks (GTNs) [27] use gener-

ative network to create artificial data samples instead of

directly optimizing the data input. We adopt similar ap-

proach in our method, namely, we use generative network –

green rectangle ”Generator” in Fig. 2 – to produce synthetic
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Figure 1. Synthetic data created from generator is divided into five tasks according to classes and learner (green) learns tasks sequentially.

The same procedure is applied to learner with real data (red). The right plot shows that accuracy at the end of each task does not decrease

on learned data in contrast to real data where it deteriorates sharply.
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Figure 2. Synthetic data from generator is passed to learner where

the inner optimization is performed and meta-loss is backpropa-

gated to G.

data from noise vectors sampled from a random distribu-

tion. Next, we split the data into separate tasks according

to classes and form a continual learning task for the learner

network – blue rectangle in Fig. 2. Learner network af-

ter completing whole sequence of tasks in evaluated on real

training data. The loss from real data classification after

learning all tasks in sequence is then backpropagated to gen-

erator network to tune the parameters as shown in Fig. 2.

Our approach is similar to one proposed in work [7]. Us-

ing two step meta-learning optimization they try to learn

best representation of input data such that the model learned

in with standard optimization does not suffer from catas-

trophic forgetting.

Differently from [27], we do not use curriculum based

learning as our goal is to have a realistic continual learning

scenario where the order of data sequence is not known be-

forehand. To ensure that the Generator network does not

generate data suitable for particular sequence of tasks at

each meta-optimization we shuffle order of tasks. Precisely,

at each step we generate p samples for each class and then

randomly create a sequence of binary classification tasks

with particular data.

Precisely, let G be a generative neural network, S a

standard convolutional network for classification, t =

(t1, t2, . . . tn) a sequence of tasks, where each tasks is bi-

nary classification task and classes in each task form mutu-

ally disjoint sets.

The inner training loop consists of sequence of tasks,

where generated samples from previous tasks are not re-

played once the task is finished. To achieve this, the se-

quence of tasks t = (t1, t2, . . . tn) must be defined a pri-

ori and samples generated by network G are conditioned on

the information of particular task. For each task ti the net-

work G generates two batches of samples x = G(z,yij) for

j = 1, 2, where z is a batch of noise vectors sampled from

Normal distribution and yij is a class indicator for task ti.

Note that generator networks has access to class indicators

since we aim to learn in continual learning scenario only the

learner network.

Neural network S learns sequentially on following tasks

using standard SGD optimizer with learning rate and mo-

mentum optimized through meta-gradients. At the end

of the sequence t network S is evaluated on real dataset

(xr,yr) obtaining meta-loss as shown in Fig. 2. This meta-

loss is backpropagated through all training inner-loops of

model S to optimize network G. Parameters θ of network G

are updated according to the equation:

θ = θ − η∇θL(S(xr;wm),yr), (1)

where wm are parameters of the network S after m opti-

mization steps, η is fixed learning rate, L is a cross entropy

loss function, xr,yr are real data samples and labels respec-

tively.

4. Experiments

To test our hypothesis we use popular continual learn-

ing benchmark Split-MNIST [11, 25]. In first experiment,

we use 5-fold split with two classes for each task to cre-

ate a moderately difficult sequence of tasks. Network G



Figure 3. Samples generated by network G at the end of meta-

optimisation. Starting from zero (leftmost), each sample to the

right represents the following class.

generates 250 samples per each class. During inner opti-

misation learner network is optimized on batch size formed

with 40 generated images (20 samples per class drawn ran-

domly from the pool of 250 samples per class). We train the

learner network on each task for 5 inner steps with batch

size 40. Once the task is over, samples from this task are

not shown to the network to the end of training. At test

time, after learning on each task the network is evaluated

on part of a test set composed of classes seen in previous

taks. Both networks are simple convolutional neural net-

works with two convolutional layers with addition of one

and two fully connected layers for classification and gen-

erative network respectively. Each layer is followed by a

batch normalisation layer.

As a baseline to compare with, we use simple fully con-

nected network proposed in [8] (’MLP’ – red – in Fig.

4). To further investigate the impact of generated data we

use the same network architectures and optimizer settings

with learning rate and momentum optimized with by a meta

learning process as described in Section 3 but for optimiz-

ing the learner network we use real data (’Real Data’ – yel-

low – in Fig. 4). We also compare our results with GAN-

based data samples. In this scenario we follow the setting

of ’Real Data’ scenario except for the source of data. We

use Conditional-GAN [19] to model the original data distri-

bution and then sample 250 samples per each class (’GAN

based’ – blue – in Fig. 4).

We implement experiments in PyTorch library, which is

well suited for computing higher-order gradients [4].

Results – obtained results support our hypothesis, that it

is possible to generate synthetic data such that, even if net-

works learns this data in sequence (one time per sample),

the learning process does not result in castastrophic forget-

ting.

Figure 4 shows how learning on synthetic data in se-

quence results in less catastrophic forgetting compared to

learning on a sequence of real data samples. Note that ad-

ditional performance could be gained with careful hyper-

parameter tuning, however we did not want to compete for

best performance and rather show the potential of this ap-

proach. Higher accuracy of ’Real data’ scenario over ’MLP’

can be attributed to the effectiveness of optimised learning

rate and momentum parameters, however the main advan-

tage comes from using meta learned data samples. Results

obtained with data generated with GAN are almost identical

to ones obtained with real data. This result is expected as

the data modeled by a GAN resembles original data closely.

An example batch of generated samples is shown in Fig-

ure 3. The samples are ordered according to classes (start-

ing from 0). In contrast to [27] the data samples are ab-

stract blobs, rather than interpretable images. We verify

experimentally that the reason for the lack of structure in

generated samples is the lack of curriculum learning in our

scenario. We skip it intentionally to provide more realistic

continual learning scenario for the learner network.
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Figure 4. Overall accuracy measured on test data subset. After

learning each task, test data subset is made of samples only from

classes seen during recent and previous tasks.
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Figure 5. Overall accuracy measured on test set after learning net-

work S with synthetic data for x inner steps on each task.



Fig. 5 shows the impact of change of learning scenario

of network S after network G is trained. In this experiment

data generated by a network G in first experiment is used.

Here, we investigate how the final accuracy after learning

five consecutive tasks changes with the number of inner op-

timization steps. Note that G was optimised to create sam-

ples that are robust to catastrophic forgetting with inner op-

timization loop of 5 steps. As we can see, in case of longer

learning horizon, network learned on synthetic (green plot

Fig. 5) data suffers significantly less than the same network

learned on real data (yellow plot Fig. 5). Even though accu-

racy of the networks drops with increasing number of inner

steps, the drop is smoother in case of synthetic data.

5. Conclusions

The aim of this work was to answer a question, whether

it is possible to create data that would dampen the effect of

catastrophic forgetting. Experiments show that this hypoth-

esis is true – it is possible to generate such samples, how-

ever usually they do not visually resemble real data. Sur-

prisingly, even applying the method alone can result in high

performing network. Additional interesting advantage of

this synthetic data is the robustness to changes of inner opti-

misation parameters – increasing 15-fold size of a batch and

length on training still results in compelling performance.

We believe that our experiments open a new and exciting

path in continual learning research. As a future work we

plan to adjust current method to datasets of higher complex-

ity and test its effectiveness in online learning scenario.
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