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Abstract

Recently, many continual learning methods have been

proposed, and their performance is usually evaluated based

on their final output such as the class they predicted. How-

ever, this output-based evaluation cannot tell us anything

about how representations the model learned from given

tasks are forgotten during learning process inside the model

although understanding it is important to devise a robust

algorithm to catastrophic forgetting that is an intrinsic

problem in continual learning. In this work, we propose

a representation-based evaluation framework and demon-

strate it can help us better understand the representational

forgetting through intensive experiments on three bench-

mark datasets, which eventually brought us the following

findings: 1) non-negligible amount of representational for-

getting appears at shallow layers of a deep neural network

model, and 2) which tasks are more accurately learned

when representational forgetting occurred depends on the

depth of the layer at which the representational forgetting

is observed.

1. Introduction

In recent continual learning researches, many evaluation

metrics [1, 2, 4, 18] and scenarios [5, 7, 15] have been pro-

posed. In any scenario, these evaluation metrics are essen-

tially based on the final output of a deep neural network

model, e.g., the class it predicted. However, such output-

based evaluations cannot help us understand how interme-

diate representations of a model, i.e., output vectors of its

intermediate layers, are forgotten during a learning pro-

cess although understanding such representational forget-

ting [12, 19] leads to developing an understanding of catas-

trophic forgetting [9, 16] that is an intrinsic problem in con-

tinual learning where the performance of a model for tasks it

previously learned rapidly decreases by learning new tasks.

Understanding it could enable us to devise a robust algo-

rithm to catastrophic forgetting.

In this paper, we focus on the representation-based eval-

uation and propose an evaluation framework based on it.

Besides, through intensive experiments with various contin-

ual learning methods under incremental class learning sce-

nario [7], we demonstrate the proposed framework can help

us understand the representational forgetting in more depth.

Our major findings obtained from those experiments are 1)

we can observe non-negligible amount of representational

forgetting at shallow layers of a deep neural network model,

and 2) which tasks are more accurately learned when repre-

sentational forgetting occurred depends on the depth of the

layer at which it occurred. We actually observed such bi-

ases toward the last executed task at the deepest layer and

the ones toward the first executed task at shallow layers.

2. Evaluation framework

First, we provide some basic notations in this work. We

refer to the output of a specific module of a deep neural

network model as the feature. Given an input vector to the

model, the corresponding output of a module is considered

as a representation of the input. Namely, representations

are instances of the feature and considered to express the

knowledge learned from tasks. We say the bias appears on

a feature if representations only for specific classes are cor-

rectly learned on the feature. Then, representational for-

getting is defined as the phenomenon that the model forgets

representations corresponding to inputs for past tasks. In

other words, the bias toward the current task appears on the

feature if representational forgetting occurred. This relation

between representational forgetting and the bias enables us

to quantitatively evaluate the strength of representational
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forgetting.

Next, we introduce our representation-based evaluation

framework that takes the partial retraining approach. Let Fi

be the i-th feature of a deep neural network model and Oi

be a set of representations that Fi outputs for input vectors

of the model. Besides, let W be a set of all parameters as-

signed to links and units of the model and WFi
⊆ W be

a set of parameters used to make an output of Fi. Clearly,

if representational forgetting appears on Fi, some elements

in Oi are not suitable as an input of the next layer of the

model and could degrade the classification accuracy. To

quantitatively evaluate how the representational forgetting

affects the classification performance under the incremental

class learning scenario, our representation-based evaluation

framework retrains a part of the model focusing on Fi as

follows:

1. Train a model in continual learning setting;

2. Initialize all the parameters in W \WFi
;

3. Retrain the whole model using the data of all the tasks

in offline setting with fixed parameter values in WFi
;

4. Iterate Steps 1 to 3 a certain times while reordering

given tasks and output the average values of given eval-

uation metrics over all iterations.

We refer to this resulting retrained model as the partial re-

trained model for Fi, and express it as Mi. Our framework

is an extension of the model that Xiong et al. used in their

analysis [19]. We further added Steps 2 and 4 into their

model. Initializing parameters in W \ WFi
is essential to

properly evaluate the influence of the representational for-

getting on the feature Fi because using values resulted from

Step 1 for those parameters would bias the training at Step

3. We need Step 4 to realize the feature-oriented evalua-

tion excluding the influence of the order of task execution.

If given tasks have different complexities, the order of task

execution could affect the bias on the targeted feature. To

exclude such influence, we reorder the task sequence at Step

4. There are many ways of reordering the task sequence.

Random shuffling is one of simplest ways. If the number of

tasks is limited, circular shift that we adopted in this work is

a possible systematic way of reordering. Let T1, T2, . . . , T5

be the initial task sequence. Then, by rotating it, we can ob-

tain additional 4 sequences such as T2, T3, T4, T5, T1. Av-

eraging values in an evaluation metric over the five itera-

tions with these sequences could exclude the influence of

the complexity of a specific task from the bias analysis.

Finally, we give the definitions of our representation-

based evaluation metrics, Partial Retrain Accuracy and F1.

We define Partial Retrain Accuracy (PRA) as the overall ac-

curacy of Mi for test data. The difference in PRA between

Mi and the model trained in the offline setting that provides

it with all training data of all tasks at once quantifies the

strength of representational forgetting on the feature Fi. On

the other hand, to clarify the direction of the bias on Fi, we

define F1 of Mi as its micro-F1 with respect to a specific

task. Formally, F1 of Mi for task Tj is defined as following

equations. Note that, we omitted Mi from the equations for

clarity.

F1(Tj) =
2Recall(Tj) · Precision(Tj)

Recall(Tj) + Precision(Tj)
, (1)

Recall(Tj) =

∑

c∈Cj
TPc

(

∑

c′∈Cj
TPc′

)

+
(

∑

c′∈Cj
FNc′

) ,

(2)

Precision(Tj) =

∑

c∈Cj
TPc

(

∑

c′∈Cj
TPc′

)

+
(

∑

c′∈Cj
FPc′

) ,

(3)

where Cj is a set of classes considered in Tj and TPc, FPc,

and FNc are the numbers of true positives, false positives,

and false negatives in the test data of class c, respectively.

F1 evaluates the classification performance for a given task,

so a large difference in F1 between two tasks indicates that

the bias toward the task with a higher score appears on Fi.

3. Experimental setting

In our experiment, we used three datasets, MNIST [11],

SVHN [17], and CIFAR10 [10]. According to the existing

work [7, 20], we defined one task so that it contains two

consecutive classes. As for the execution order of tasks, we

adopted the rotation strategy and generated 5 task execution

orders by rotating the order. We ran our framework five

times with different random seeds, then we averaged their

five scores to get the final results.

For MNIST, we used a CNN with three convolutional

layers with ReLU activation, followed by a dense layer,

and considered the output of each convolutional layer af-

ter the activation as a feature. For SVHN and CIFAR10,

we used a reduced ResNet18 [14] having 6 modules and

defined the output of each module as a feature. Thus, the

CNN and ResNet18 respectively have 4 and 6 features in-

cluding the final output of the model, which were numbered

according to the depth of the corresponding layer or mod-

ule. We trained these networks with Adam optimizer [8]

using learning rate of 0.001 and set the number of epochs

per task to 5, 10, and 10 on MNIST, SVHN, and CIFAR10,

respectively. We used the same number of epochs when re-

training a model using all data. In addition, at the beginning

of both learning phases of our evaluation framework, we

initialized the parameters of convolutional layers by He ini-

tialization [6] and those of dense layers by the normal dis-

tribution with the standard deviation 0.01. We conducted all

experiments with single-headed setup [5].
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Figure 1. Scores and standard deviations of PRA for each partial retrained model on the datasets (left: MNIST, middle: SVHN, right:

CIFAR10). Error bars of standard deviations are not visible due to too small values.

With the above experimental settings, we compared four

continual learning methods: Synaptic Intelligence (SI) [20],

Learning without Forgetting (LwF) [13], Gradient Episodic

Memory [14], and Experience Replay (ER) [3] that is also

called as Naive Rehearsal [7]. Furthermore, we adopted

Fine-tuning (FT) and Offline. FT trains a model on all tasks

sequentially in the standard way, so it gives a lower bound

in a performance metric. On the other hand, Offline trains a

model using the data of all tasks in offline setting and gives

the upper bound in the metric. As for the hyper parameters

of these methods, we set the regularization coefficient in SI

and LwF to 1.0, and the number of stored samples per class

in GEM and ER to 128, 128, and 512 for MNIST, SVHN

and CIFAR10, respectively. Note that, we applied random

sampling strategy for ER as with [7], while we took the

FIFO strategy for GEM according to its original paper [14].

4. Experimental results

We firstly investigate the resulting scores in PRA shown

in Figure 1, where the scores at the largest feature index cor-

respond to the accuracy of the model resulted from applying

continual learning to it. Note that the results for Offline that

does not involve retraining are a fixed value regardless of

feature indices on every dataset. Comparing the other re-

sults with them, we can know at which feature representa-

tional forgetting occurs and how strong it is. In fact, on each

dataset, it is observed that the strength of representational

forgetting is getting larger as the depth of feature becomes

deeper. Here, it is worth noting that, on MNIST, we can

observe the difference between Offline and the other meth-

ods only at the 4th feature corresponding to the output layer

of the model. This implies that, in this case, catastrophic

forgetting occurs, but representational forgetting does not.

Thus, we exclude the results on MNIST from the succeed-

ing investigation. By contrast, we can find representational

forgetting occurs on SVHN and CIFAR10, but the results

on them exhibit different tendencies. The smallest feature

index at which we can find a negligible difference between
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Figure 2. Scores and standard deviations of F1 for each task on

SVHN (upper: 4th feature, lower: 5th feature).

Offline and the other methods is 2 on CIFAR10, while 4 on

SVHN. Hereafter, we refer to the feature having this small-

est index as the starting feature. Considering the complexity

of the task, these results suggest that representational for-

getting occurs at a shallower feature as given tasks become

more complex. The baseline upper-bound score given by

Offline for CIFAR10 is smaller than that for SVHN, which

means the classification tasks in CIFAR10 are more com-

plex and difficult than those in SVHN.

Next, we consider the differences between the learning

methods in terms of the strength of representational for-

getting. In Figure 1, it can be seen that the strength of

representational forgetting depends on both the dataset and

the learning method unlike the starting feature that depends

only on the dataset. More specifically, both on SVHN and

CIFAR10, there exists a large difference between ER and
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Figure 3. Scores and standard deviations of F1 for each task on CIFAR10 (left: 3rd feature, middle: 4th feature, right: 5th feature).

FT in the strength of representational forgetting. Compar-

ing with FT, it is found that also SI, LwF, and GEM succeed

in alleviating the representational forgetting at the 5th fea-

ture. However, unfortunately, SI and LwF cannot reduce

the catastrophic forgetting at the output layer. These results

suggest that the regularization based methods such as SI and

LwF can alleviate representational forgetting at a deep fea-

ture, but they are less effective on catastrophic forgetting,

while the sample reuse based methods such as GEM and

ER are effective for alleviating both representational forget-

ting at a deep layer and catastrophic forgetting. Especially,

ER is highly effective for reducing catastrophic forgetting.

In contrary, there is little difference between the methods in

the strength of representational forgetting at a feature that is

closer to the starting one, say the 2nd or the 3rd feature on

CIFAR10. This observation indicates that the advantage of

the sophisticated continual learning methods over the other

ones is limited to the features close to the output layer.

We next show the scores of F1 for each dataset for

the features on which representational forgetting that has

strength of a certain degree is observed. Figure 2 shows

the scores of F1 for the 4th and 5th features on SVHN. For

the 4th feature, only FT shows the strong bias toward the

5th executed task. On the other hand, most of the methods

exhibit an increasing tendency for the 5th feature, which

implies that there exist the biases toward the later tasks on

the 5th feature. Figure 3 shows the scores of F1 on the 3rd,

4th, and 5th features on CIFAR10. We first found that all

the methods exhibit the monotonically increasing tendency

for the 5th feature as with the case of SVHN. In contrast, all

the methods except for FT display the valley-like shape for

the 3rd feature, which implies the existence of the biases to-

ward both the 1st and 5th executed tasks. In particular, ER

takes a much greater value for the 1st executed task than

the value for the 5th executed task, so we can say ER has a

strong bias toward the 1st executed task on the 3rd feature.

As for the 4th feature, the direction of the bias is different

according to the method. GEM only shows the bias toward

the new tasks, on the other hand, SI and ER still show the

biases toward the 1st and 5th executed tasks. Note that FT

shows the biases toward the later tasks on all the features.

In summary, these results suggest that the biases toward

the later tasks are getting stronger as the depth of the feature

becomes deeper, while the biases toward the 1st executed

task appears on other features for the learning methods that

have a mechanism to alleviate catastrophic forgetting. Note

that the biases toward the former tasks never appear on all

the features in the case of FT that has no such mechanism.

This finding indicates that these models tend to forget rep-

resentations for the past tasks on the features at deep lay-

ers, while keeping some useful representations for the past

tasks, especially for the 1st executed one, on the features

at the middle layers. It is worth noting that, although the

ability to mitigate catastrophic forgetting could allow us to

preserve representations for past tasks at middle layers of a

model, at the same time, it prevents the model from learning

new tasks at those layers. This is justified by the fact that

the scores of F1 for the later tasks are relatively low on the

features at the middle layer. In other words, these contin-

ual learning methods cannot consolidate representations for

new tasks into ones for past tasks well at the middle layers.

5. Conclusion

In this paper, we proposed a representation-based evalu-

ation framework and demonstrated it can help us understand

representational forgetting in more depth. We believe that

the findings in this study could provide a new insight into

catastrophic forgetting and contribute to developing more

robust algorithms to catastrophic forgetting. The datasets

used in our experiments only have 5 binary classification

tasks. Thus, to generalize our findings, we are planning to

conduct further experiments using longer task sequences as

one of immediate future work. Besides, based on the obser-

vations in this work, we will also devise a continual learning

algorithm that can merge representations for a new task into

ones for past tasks without degrading F1 scores at middle

layers.
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