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Abstract

Recently, many continual learning methods have been
proposed, and their performance is usually evaluated based
on their final output such as the class they predicted. How-
ever, this output-based evaluation cannot tell us anything
about how representations the model learned from given
tasks are forgotten during learning process inside the model
although understanding it is important to devise a robust
algorithm to catastrophic forgetting that is an intrinsic
problem in continual learning. In this work, we propose
a representation-based evaluation framework and demon-
strate it can help us better understand the representational
forgetting through intensive experiments on three bench-
mark datasets, which eventually brought us the following
findings: 1) non-negligible amount of representational for-
getting appears at shallow layers of a deep neural network
model, and 2) which tasks are more accurately learned
when representational forgetting occurred depends on the
depth of the layer at which the representational forgetting
is observed.

1. Introduction

In recent continual learning researches, many evaluation
metrics [1, 2, 4, 18] and scenarios [5, 7, 15] have been pro-
posed. In any scenario, these evaluation metrics are essen-
tially based on the final output of a deep neural network
model, e.g., the class it predicted. However, such output-
based evaluations cannot help us understand how interme-
diate representations of a model, i.e., output vectors of its
intermediate layers, are forgotten during a learning pro-
cess although understanding such representational forget-
ting [12, 19] leads to developing an understanding of catas-
trophic forgetting [9, 16] that is an intrinsic problem in con-

tinual learning where the performance of a model for tasks it
previously learned rapidly decreases by learning new tasks.
Understanding it could enable us to devise a robust algo-
rithm to catastrophic forgetting.

In this paper, we focus on the representation-based eval-
uation and propose an evaluation framework based on it.
Besides, through intensive experiments with various contin-
ual learning methods under incremental class learning sce-
nario [7], we demonstrate the proposed framework can help
us understand the representational forgetting in more depth.
Our major findings obtained from those experiments are 1)
we can observe non-negligible amount of representational
forgetting at shallow layers of a deep neural network model,
and 2) which tasks are more accurately learned when repre-
sentational forgetting occurred depends on the depth of the
layer at which it occurred. We actually observed such bi-
ases toward the last executed task at the deepest layer and
the ones toward the first executed task at shallow layers.

2. Evaluation framework

First, we provide some basic notations in this work. We
refer to the output of a specific module of a deep neural
network model as the feature. Given an input vector to the
model, the corresponding output of a module is considered
as a representation of the input. Namely, representations
are instances of the feature and considered to express the
knowledge learned from tasks. We say the bias appears on
a feature if representations only for specific classes are cor-
rectly learned on the feature. Then, representational for-
getting is defined as the phenomenon that the model forgets
representations corresponding to inputs for past tasks. In
other words, the bias toward the current task appears on the
feature if representational forgetting occurred. This relation
between representational forgetting and the bias enables us
to quantitatively evaluate the strength of representational



forgetting.

Next, we introduce our representation-based evaluation
framework that takes the partial retraining approach. Let F;
be the i-th feature of a deep neural network model and O,
be a set of representations that F;; outputs for input vectors
of the model. Besides, let W be a set of all parameters as-
signed to links and units of the model and Wy, C W be
a set of parameters used to make an output of F;. Clearly,
if representational forgetting appears on F};, some elements
in O; are not suitable as an input of the next layer of the
model and could degrade the classification accuracy. To
quantitatively evaluate how the representational forgetting
affects the classification performance under the incremental
class learning scenario, our representation-based evaluation
framework retrains a part of the model focusing on F; as
follows:

1. Train a model in continual learning setting;
2. Initialize all the parameters in W \ Wg,;

3. Retrain the whole model using the data of all the tasks
in offline setting with fixed parameter values in Wr,;

4. Iterate Steps 1 to 3 a certain times while reordering
given tasks and output the average values of given eval-
uation metrics over all iterations.

We refer to this resulting retrained model as the partial re-
trained model for F;, and express it as M;. Our framework
is an extension of the model that Xiong et al. used in their
analysis [19]. We further added Steps 2 and 4 into their
model. Initializing parameters in W \ W, is essential to
properly evaluate the influence of the representational for-
getting on the feature F; because using values resulted from
Step 1 for those parameters would bias the training at Step
3. We need Step 4 to realize the feature-oriented evalua-
tion excluding the influence of the order of task execution.
If given tasks have different complexities, the order of task
execution could affect the bias on the targeted feature. To
exclude such influence, we reorder the task sequence at Step
4. There are many ways of reordering the task sequence.
Random shuffling is one of simplest ways. If the number of
tasks is limited, circular shift that we adopted in this work is
a possible systematic way of reordering. Let 73,75, ..., T5
be the initial task sequence. Then, by rotating it, we can ob-
tain additional 4 sequences such as 75,75, Ty, T5,T1. Av-
eraging values in an evaluation metric over the five itera-
tions with these sequences could exclude the influence of
the complexity of a specific task from the bias analysis.
Finally, we give the definitions of our representation-
based evaluation metrics, Partial Retrain Accuracy and F1.
We define Partial Retrain Accuracy (PRA) as the overall ac-
curacy of M; for test data. The difference in PRA between
M; and the model trained in the offline setting that provides

it with all training data of all tasks at once quantifies the
strength of representational forgetting on the feature F;. On
the other hand, to clarify the direction of the bias on F;, we
define F1 of M; as its micro-F1 with respect to a specific
task. Formally, F1 of M; for task T} is defined as following
equations. Note that, we omitted M; from the equations for
clarity.
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where C} is a set of classes considered in T; and TP, FP,,
and FIN, are the numbers of true positives, false positives,
and false negatives in the test data of class c, respectively.
F1 evaluates the classification performance for a given task,
so a large difference in F1 between two tasks indicates that
the bias toward the task with a higher score appears on F;.

3. Experimental setting

In our experiment, we used three datasets, MNIST [11],
SVHN [17], and CIFAR10 [10]. According to the existing
work [7, 20], we defined one task so that it contains two
consecutive classes. As for the execution order of tasks, we
adopted the rotation strategy and generated 5 task execution
orders by rotating the order. We ran our framework five
times with different random seeds, then we averaged their
five scores to get the final results.

For MNIST, we used a CNN with three convolutional
layers with ReLU activation, followed by a dense layer,
and considered the output of each convolutional layer af-
ter the activation as a feature. For SVHN and CIFARI10,
we used a reduced ResNetl8 [14] having 6 modules and
defined the output of each module as a feature. Thus, the
CNN and ResNet18 respectively have 4 and 6 features in-
cluding the final output of the model, which were numbered
according to the depth of the corresponding layer or mod-
ule. We trained these networks with Adam optimizer [8]
using learning rate of 0.001 and set the number of epochs
per task to 5, 10, and 10 on MNIST, SVHN, and CIFARI10,
respectively. We used the same number of epochs when re-
training a model using all data. In addition, at the beginning
of both learning phases of our evaluation framework, we
initialized the parameters of convolutional layers by He ini-
tialization [6] and those of dense layers by the normal dis-
tribution with the standard deviation 0.01. We conducted all
experiments with single-headed setup [5].
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Figure 1. Scores and standard deviations of PRA for each partial retrained model on the datasets (left: MNIST, middle: SVHN, right:
CIFAR10). Error bars of standard deviations are not visible due to too small values.

With the above experimental settings, we compared four
continual learning methods: Synaptic Intelligence (SI) [20],
Learning without Forgetting (LwF) [13], Gradient Episodic
Memory [14], and Experience Replay (ER) [3] that is also
called as Naive Rehearsal [7]. Furthermore, we adopted
Fine-tuning (FT) and Offline. FT trains a model on all tasks
sequentially in the standard way, so it gives a lower bound
in a performance metric. On the other hand, Offline trains a
model using the data of all tasks in offline setting and gives
the upper bound in the metric. As for the hyper parameters
of these methods, we set the regularization coefficient in SI
and LwF to 1.0, and the number of stored samples per class
in GEM and ER to 128, 128, and 512 for MNIST, SVHN
and CIFARI1O, respectively. Note that, we applied random
sampling strategy for ER as with [7], while we took the
FIFO strategy for GEM according to its original paper [14].

4. Experimental results

We firstly investigate the resulting scores in PRA shown
in Figure 1, where the scores at the largest feature index cor-
respond to the accuracy of the model resulted from applying
continual learning to it. Note that the results for Offline that
does not involve retraining are a fixed value regardless of
feature indices on every dataset. Comparing the other re-
sults with them, we can know at which feature representa-
tional forgetting occurs and how strong it is. In fact, on each
dataset, it is observed that the strength of representational
forgetting is getting larger as the depth of feature becomes
deeper. Here, it is worth noting that, on MNIST, we can
observe the difference between Offline and the other meth-
ods only at the 4th feature corresponding to the output layer
of the model. This implies that, in this case, catastrophic
forgetting occurs, but representational forgetting does not.
Thus, we exclude the results on MNIST from the succeed-
ing investigation. By contrast, we can find representational
forgetting occurs on SVHN and CIFARI10, but the results
on them exhibit different tendencies. The smallest feature
index at which we can find a negligible difference between
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Figure 2. Scores and standard deviations of F1 for each task on
SVHN (upper: 4th feature, lower: Sth feature).

Offline and the other methods is 2 on CIFAR10, while 4 on
SVHN. Hereafter, we refer to the feature having this small-
est index as the starting feature. Considering the complexity
of the task, these results suggest that representational for-
getting occurs at a shallower feature as given tasks become
more complex. The baseline upper-bound score given by
Offline for CIFAR10 is smaller than that for SVHN, which
means the classification tasks in CIFAR10 are more com-
plex and difficult than those in SVHN.

Next, we consider the differences between the learning
methods in terms of the strength of representational for-
getting. In Figure 1, it can be seen that the strength of
representational forgetting depends on both the dataset and
the learning method unlike the starting feature that depends
only on the dataset. More specifically, both on SVHN and
CIFARI1O0, there exists a large difference between ER and
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Figure 3. Scores and standard deviations of F1 for each task on CIFAR10 (left: 3rd feature, middle: 4th feature, right: Sth feature).

FT in the strength of representational forgetting. Compar-
ing with FT, it is found that also SI, LwF, and GEM succeed
in alleviating the representational forgetting at the 5th fea-
ture. However, unfortunately, SI and LwF cannot reduce
the catastrophic forgetting at the output layer. These results
suggest that the regularization based methods such as ST and
LwF can alleviate representational forgetting at a deep fea-
ture, but they are less effective on catastrophic forgetting,
while the sample reuse based methods such as GEM and
ER are effective for alleviating both representational forget-
ting at a deep layer and catastrophic forgetting. Especially,
ER is highly effective for reducing catastrophic forgetting.
In contrary, there is little difference between the methods in
the strength of representational forgetting at a feature that is
closer to the starting one, say the 2nd or the 3rd feature on
CIFAR10. This observation indicates that the advantage of
the sophisticated continual learning methods over the other
ones is limited to the features close to the output layer.

We next show the scores of F1 for each dataset for
the features on which representational forgetting that has
strength of a certain degree is observed. Figure 2 shows
the scores of F1 for the 4th and 5th features on SVHN. For
the 4th feature, only FT shows the strong bias toward the
5th executed task. On the other hand, most of the methods
exhibit an increasing tendency for the 5th feature, which
implies that there exist the biases toward the later tasks on
the 5th feature. Figure 3 shows the scores of F1 on the 3rd,
4th, and 5th features on CIFAR10. We first found that all
the methods exhibit the monotonically increasing tendency
for the 5th feature as with the case of SVHN. In contrast, all
the methods except for FT display the valley-like shape for
the 3rd feature, which implies the existence of the biases to-
ward both the 1st and 5th executed tasks. In particular, ER
takes a much greater value for the 1st executed task than
the value for the 5th executed task, so we can say ER has a
strong bias toward the 1st executed task on the 3rd feature.
As for the 4th feature, the direction of the bias is different
according to the method. GEM only shows the bias toward
the new tasks, on the other hand, SI and ER still show the

biases toward the 1st and 5th executed tasks. Note that FT
shows the biases toward the later tasks on all the features.

In summary, these results suggest that the biases toward
the later tasks are getting stronger as the depth of the feature
becomes deeper, while the biases toward the 1st executed
task appears on other features for the learning methods that
have a mechanism to alleviate catastrophic forgetting. Note
that the biases toward the former tasks never appear on all
the features in the case of FT that has no such mechanism.
This finding indicates that these models tend to forget rep-
resentations for the past tasks on the features at deep lay-
ers, while keeping some useful representations for the past
tasks, especially for the 1st executed one, on the features
at the middle layers. It is worth noting that, although the
ability to mitigate catastrophic forgetting could allow us to
preserve representations for past tasks at middle layers of a
model, at the same time, it prevents the model from learning
new tasks at those layers. This is justified by the fact that
the scores of F1 for the later tasks are relatively low on the
features at the middle layer. In other words, these contin-
ual learning methods cannot consolidate representations for
new tasks into ones for past tasks well at the middle layers.

5. Conclusion

In this paper, we proposed a representation-based evalu-
ation framework and demonstrated it can help us understand
representational forgetting in more depth. We believe that
the findings in this study could provide a new insight into
catastrophic forgetting and contribute to developing more
robust algorithms to catastrophic forgetting. The datasets
used in our experiments only have 5 binary classification
tasks. Thus, to generalize our findings, we are planning to
conduct further experiments using longer task sequences as
one of immediate future work. Besides, based on the obser-
vations in this work, we will also devise a continual learning
algorithm that can merge representations for a new task into
ones for past tasks without degrading F1 scores at middle
layers.
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