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Abstract

We propose continual instance learning - a method that

applies the concept of continual learning to the task of

distinguishing instances of the same object category. We

specifically focus on the car object, and incrementally learn

to distinguish car instances from each other with met-

ric learning. We begin our paper by evaluating current

techniques. Establishing that catastrophic forgetting is

evident in existing methods, we then propose two reme-

dies. Firstly, we regularise metric learning via Normalised

Cross-Entropy. Secondly, we augment existing models with

synthetic data transfer. Our extensive experiments on three

large-scale datasets, using two different architectures for

five different continual learning methods, reveal that Nor-

malised cross-entropy and synthetic transfer leads to less

forgetting in existing techniques.

1. Introduction

Most computer vision tasks assume access to a full, static

dataset. Regularly, researchers train and test their algo-

rithms on well-established benchmarks [5,17,21]. Although

beneficial from a benchmarking point of view, this setup

neglects the dynamic, ever-changing nature of the visual

world. The world does not present itself as a static set of

objects that remain similar through time. Humans evolved

to be life-long learners [23] and update their visual model

of the world with sensory data. Therefore, continual learn-

ing (CL) is proposed to mimic learning about novel object

categories [14, 16, 20].

A common task for CL is to learn about a new object

(e.g. chair) while retaining performance on the previously

seen (e.g. car, table, bicycle). In this work, we focus on con-

tinuously learning to distinguish between different instances

of the same object category, in our case, cars. Continual in-

stance learning (CIL) is an approach that applies the concept

Figure 1: Two cases for continual learning of object in-

stances. (Top) Retail companies receive thousands of novel

car instances daily. However, these are not always accessi-

ble due to privacy reasons. (Bottom) Surveillance compa-

nies receive long streams of car records, therefore training

from scratch becomes inefficient. In this paper, we propose

continual learning of object instances to tackle such issues

of privacy and inefficiency.

of CL to the task of distinguishing intra-category instances

through metric learning [4, 18, 31].



A continuous stream of car objects is evident in the vi-

sual world, especially for cases of retail and surveillance,

consider Figure 1. For instance, an online car retail com-

pany receives numerous new car advertisements daily. Ide-

ally, a company would continuously learn from the incom-

ing source of car images, for applications such as identi-

fying duplicate ads [36]. However, due to privacy reasons,

companies may need to delete historical user records, which

affects model (re-)training [8, 22]. Likewise, a surveillance

company may aim to learn to re-identify a query vehicle

within the city. However, learning vehicle re-identification

from scratch is not optimal, since the amount of car images

is ever-increasing. We address such scenarios with contin-

ual instance learning.

Our contributions are as follows:

1. We introduce the problem of continual instance learn-

ing by evaluating existing continual learning methods

under the metric learning setup. We show that existing

techniques suffer from catastrophic forgetting.

2. We propose to utilise Normalised Cross-Entropy

(NCE) [3], to reduce the effects of catastrophic for-

getting by mitigating the sensitivity to outliers under

regression losses [11, 31].

3. We augment existing techniques with synthetic visual

data transfer, showing improvements on three bench-

mark datasets over two backbone architectures.

2. Related Work

2.1. Continual Learning

Under different training scenarios, neural networks suf-

fer from catastrophic forgetting [8, 22, 24]. This pitfall has

inspired the research community to reestablish neural net-

works as a system that is not only put on hold once trained

but as one that can improve through time. This has given

rise to continual learning, also known as incremental learn-

ing, formally introduced in [22]. In continual learning, one

does not have access to previously seen data.

Our work follows more closely the New Instances (NI)

setting [22] - new training data of the same classes become

available with new poses and conditions. We differenti-

ate ourselves by presenting new instances of only a single

class object and learn to better distinguish these. We fo-

cus on regularisation approaches since these have shown to

have adequate performances with a low level of complex-

ity [14, 16, 20]. Early attempts regularise the loss function

by maintaining the output of the network as unchanged as

possible while shifting the internal feature representation,

namely Less Forgetting Learning (LFL) [14] and Learning

without Forgetting (LwF) [20]. In Elastic Weight Consoli-

dation (EWC) importance is defined for each model param-

eter via a Bayesian approach [16]. This research is closely

related to [22] and [33] where we differentiate ourselves

from the classification setup and introduce metric learning

to continual learning.

2.2. Instance Learning

In metric learning, we are directly learning a distance

function between objects in a D-dimensional space. Ap-

plications in this domain extend to image retrieval tasks,

specifically, face verification [4], person and vehicle re-

identification (ReID) [18,31]. In this work, we focus on the

vehicle re-identification problem. Common vehicle ReID

learning approaches resort to Siamese CNN [1] with con-

trastive [9] or triplet losses [18, 31]. These introduce an

effective method of separating objects in the embedding

space.

Directly translating CL approaches to metric learning is

not possible due to the different problem formulation - these

approaches build upon regularising classification outputs,

whereas metric learning directly attempts to learn a mani-

fold. This approach is susceptible to outliers [31] due to the

unbounded nature of the gradients. To this end, we propose

Normalised Cross-Entropy [3] as a solution. More specifi-

cally, we treat metric learning as a classification task, where

given a query image, we solve a binary task to estimate

whether a retrieved car image belongs to the same query

under a different viewpoint.

2.3. Transfer Learning from Synthetic Data

The successful effect of using synthetic data for improv-

ing machine learning systems has been reported in [6]. It

reduces the need for labels [26] and has shown to help in

different visual tasks [29,30]. To reduce forgetting, we eval-

uate the effect of pre-training a model on object-specific dis-

criminant features. For this, we propose to utilise synthetic

transfer learning for CIL.

3. Approach

3.1. Continual Learning

Regularisation CL approaches are easily adapted to sys-

tems in production. These do not rely on historical samples

and do not increase the number of model parameters. In our

experiments, we focus on Less Forgetting Learning [14],

Learning without Forgetting [20] and Elastic Weight Con-

solidation [16]. The first two approaches focus on keeping

the decision boundary as unchanged as possible, whereas

the latter targets updating internal representations. For com-

parison, we also run our experiments on baseline CL ap-

proaches, specifically, Naı̈ve and Fine-tuning.

We define Xo and Yo as the input and targets of an old

dataset that is no longer available. Similarly, for a new

dataset, we define Xn and Yn. Additionally, the parame-



ters of a previously trained model and the new model are

defined as θo and θn respectively.

Naı̈ve: The benchmark approach for continual learning is

to simply re-train a model on Xn and Yn given θo. This

training procedure does not require any additional parame-

ters and by definition, it yields θn.

Fine-Tuning (FT): One simple approach to bypass catas-

trophic forgetting is to first train a model on Xo and Yo,

and once we obtain access to Xn and Yn, train a model by

fine-tuning discriminant layers [20].

Less Forgetting Learning (LFL) [14]: One important

characteristic in CL is to ensure that we get similar predic-

tions Ŷ for Xn under θo and θn. To this end, in [14] the

authors propose to improve the re-training process by ini-

tialising a model with θn = θo. Additionally, it is proposed

to freeze the softmax layer so that the decision boundaries

of the model remain similar. The authors train such a model

with the following loss function:

LLFL(xn; θo; θn) = λcLc(xn; θn) + λeLe(xn; θo; θn),
(1)

where Lc and Le are the cross-entropy and the Euclidean

loss functions. The authors constrain feature changes with

the Euclidean loss between the predictions of Xo under θn
and Xo under θo.

Learning without Forgetting (LwF) [20]: Similarly, in

LwF [20], the authors encourage the network to keep its

features as unchanged as possible by using the Knowledge

Distillation loss [12] as opposed to the Euclidean loss in

Equation 1. However, in this approach, θn is randomly ini-

tialised and there is no explicit network freezing.

Elastic Weight Consolidation (EWC) [16]: Restricting

feature extraction capabilities is not optimal since we want

a model to learn from new instances and incrementally im-

prove its object representation. Therefore, in [16] the model

parameters θ take a probabilistic form with the Fisher Infor-

mation matrix, Fi, reflecting weight importance. Under CL,

the model is regularised with the following loss function:

LEWC = Ln +
∑

i

λ

2
Fi(θn,i − θo,i), (2)

where Ln is the loss function for the new task, and λ is

the previous task importance.

3.2. Regression­based Metric Learning

We train the vehicle ReID datasets using a siamese net-

work and the triplet loss [31]. We distance dissimilar vehi-

cles and cluster similar ones in the manifold space. Specifi-

cally, we define an anchor (xa
i ), a positive (xp

i ) and a nega-

tive sample (xn
i ). The loss function is defined as:

N
∑

i

[

‖f (xa
i )− f (xp

i )‖
2

2
− ‖f (xa

i )− f (xn
i )‖

2

2
+ α

]

+

,

(3)

where α is defined as the margin which, similar to [11],

is set to 1. Mining hard negative pairs is highly important

to obtain discriminant features i.e. we want to emphasise

training of instances which are harder to distinguish, such

as two different cars of similar colour and pose, as opposed

to trivially distinct cars.

4. Continual Instance Learning

4.1. Continuous Batches

We define three data streaming approaches for accessing

object instances under CIL, where one time-step, or a new

training set, is a continuous batch. Each approach presents

different restrictions and is suitable for different applica-

tions.

1. Random: Upon acquiring new data, the particular ob-

ject instances in the set are not known a priori. There-

fore, this approach assumes that in each continuous

batch there can be different instances and each of them

can have a different number of data-points. Under the

triplet loss, we do not know the number of negative

instances, or how hard these are to learn from.

2. Balanced: Some tasks can also acquire new instance

data in a balanced fashion i.e. the same number of data-

points are collected in each time step for all instances.

If this is the case, we hypothesize that it is easier to

mine for hard negatives, since we have access to more

negative instances.

3. Incremental: On the other hand, some applications

acquire only some instances at a time i.e. every contin-

uous batch is restricted to only a few instances. This

approach has limited access to negative instances and

is, therefore, the most challenging.

In our experiments, we assume the most challenging sce-

nario, incremental continuous batches, which is also most

closely related to the examples portrayed in section 1.

4.2. Adapting current approaches

We adapt CL approaches to CIL for bench-marking pur-

poses. To achieve this, we propose the following changes:



• For the Naı̈ve and Fine-Tuning approaches, we directly

replace the cross-entropy loss [20] with the triplet loss.

• For LFL and EWC we propose the same approach by

replacing Lc from Equation 1 and Ln from Equation 2

with the triplet loss.

• In the LwF scenario, the authors make use of the

knowledge distillation loss, which encourages proba-

bilities of one network to approximate the output of

another network. Since in the regression-based triplet

loss we are not dealing with probabilities, we are there-

fore not able to adapt this approach.

4.3. Normalised Cross­Entropy Loss (NCE)

Two unwanted features in continual instance learning

are, 1) dealing with a regression setup which is not robust

to outliers and 2) not being able to build upon current CL

approaches, like LwF.

Having an outliers-robust approach allows us to have in-

stances that are extremely different from all others and still

restrict its gradients. This can be a fairly common scenario

in incremental continuous batches. To this end, the triplet

loss is adapted to make use of the normalised cross-entropy

loss [3],

ℓ(zi) = − log
exp(zi/τ)

∑K

j=1
exp(zj/τ)

for i = 1, . . . ,K + 1 (4)

where,

z =
(

xa⊤xp, xa⊤xn
1 . . . , x

a⊤xn
K

)

. (5)

We set the temperature, τ = 1 for simplicity. We do not

resort to offline or online negative mining since we are con-

strained by the number of hard negative samples. However,

we allow for the loss function to include more than one neg-

ative sample at a time [32]. We define the target of z as 1

for the index corresponding to the dot product between the

anchor and the positive pair and 0 for all other pairs

4.4. Synthetic Visual Data Transfer

We first train a model on synthetic instances of the same

object as the real object of interest. We then apply CIL un-

der new real instances. We motivate this approach to ensure

that the model first fully learns fine-grained visual represen-

tations from the synthetic data before training on continuous

batches, which may be of skewed distributions.

5. Experimental Setup

5.1. Datasets

We use three publicly available datasets throughout our

experiments. For each dataset, we split the training data in a

Figure 2: Example images from the three datasets, namely

Cars3D (top), MVCD (middle) and CompCars (bottom).

Cars3D is synthetic and other two datasets are real datasets.

continuous incremental batch fashion. We do not make use

of any dataset-specific procedure (i.e. augmentation) in our

experiments.

Cars3D [28] Consists of 183 car models, for each model

we render 96 data points generated from 24 equally spaced

azimuth directions and 4 elevations. We use 100 car models

for training. For evaluating, we use 83 car models. From

each, we randomly select 10 images for the query set and

86 images for the gallery set. In total, the training set con-

sists of 9600 images, split into 10 incremental batches. The

query and gallery set consist of 830 and 6972 images re-

spectively.

Multi-View Car Dataset [25] (MVCD) Consists of a se-

quence of images from 20 different car models on a rotat-

ing platform. An image was taken every 3 to 4 degrees. For

training, we select 15 car models, comprising of 1737 im-

ages split into 5 incremental batches. From the remaining

5 car models, we select 10 images for the query set and the

remaining for the gallery set.

CompCars [35] We use the surveillance-nature subset

which contains 50,000 car images, captured only from the

frontal view. In total, there are 281 different car models.

The number of images for each model ranges from 50 to

500 different captures. We use 240 car models for our train-

ing set, a total of 36737 images split into 10 incremental

batches. For the query set, we randomly select 20 images of

the unseen cars and use the remaining images as the gallery

set.



LeNet ResNet

Dataset Approach Ref(%) mAP(%↑) Forget(%↓) Ref(%) mAP(%↑) Forget(%↓)

Cars3D

Naı̈ve 68.69 46.28 32.89 70.82 50.01 29.38
FT 68.69 49.36 28.43 70.82 44.98 36.49

LFL 68.69 33.05 52.08 70.82 33.96 52.05
LwF 68.69 − − 70.82 − −
EWC 68.69 46.19 33.02 70.82 50.91 28.11

MVCD

Naı̈ve 83.22 62.31 25.13 94.99 83.77 11.81

FT 83.22 60.65 27.13 94.99 72.75 23.41
LFL 83.22 62.86 24.47 94.99 66.24 30.27
LwF 83.22 − − 94.99 − −
EwC 83.22 61.44 26.18 94.99 81.44 14.26

CompCars

Naı̈ve 29.83 18.25 38.82 54.41 38.60 29.06

FT 29.83 12.51 58.06 54.41 22.63 58.41
LFL 29.83 11.18 62.52 54.41 25.24 53.61
LwF 29.83 − − 54.41 − −
EWC 29.83 17.19 42.37 54.41 37.43 31.21

Table 1: Benchmarking existing techniques.

5.2. Backbone Architectures

We use two different backbone architectures - both

trained from scratch. All models are trained until conver-

gence. We first train a model with the first continuous batch

and then re-train the same model with subsequent continu-

ous batches and a continual instance learning approach. We

repeat this process until all instances are trained.

Unless specifically stated, we use the same training pro-

cedure across all experiments and datasets. We implement

our experiments using the PyTorch framework [27]. We use

the Adam optimizer [15] with β1 = 0.9, β2 = 0.999, ǫ = 10−3

for the LeNet experiments and ǫ = 10−4 for the ResNet ex-

periments.

LeNet - We use a LeNet-5 [19] like architecture with 3 con-

volutional layers and 3 fully connected layers. We apply

batch normalisation [13], ReLU non-linearities and 2 x 2

max-poolings with stride 2. All layers are initialised with

Xavier uniform [7]. For all datasets, we train the network

with the 32 x 32 RGB images and define the last fully con-

nected layer with D-dimension 32.

ResNet - We employ the ResNet-18 [10] with 64 x 64 RGB

images for the Cars3D [28] and the Multi-View Car Dataset

[25], and 128 x 128 RGB images for the CompCars dataset

[35]. We use the last fully connected layer as the metric

extractor with dimension 128.

5.3. Evaluation.

In the re-identification evaluation setup, we have a query

set and a gallery set. For each vehicle in the query set, we

aim to retrieve the same vehicle instances from the gallery

set. We use mean-average-precision (mAP) for evaluating

and comparing our approaches. The mAP is computed as

the Average Precision (AP) across all queries.

Under the continual learning framework, we employ a

similar approach as [22] and compare the relative mAP

w.r.t. the corresponding cumulative approach - training with

all instances - which is hereby referred to as Forget. Our

metrics on a Full Test Set: the query and gallery sets remain

fixed throughout the continuous batches [22].

6. Experiments

Our experiments aim at answering the following ques-

tions Q1) What is the performance of existing continual

instance learning methods for object instance recognition?

Q2) Can Normalised Cross-Entropy improve CIL? Q3) Can

synthetic transfer learning improve CIL?

6.1. Q1: Performance of Existing Techniques

In Table 1, we evaluate the different continual learning

approaches under the CIL setup. Additionally, we provide

the cumulative mAP as an offline reference. Similar to the

continual classification task, CIL also suffers from catas-

trophic forgetting.

In general, the Naı̈ve approach outperforms others. Ad-

ditionally, EWC approach also has good performance. In



LeNet ResNet

Dataset Approach Regression(%↓) w/ NCE(%↓) Regression(%↓) w/ NCE(%↓)

Cars3D

Naı̈ve 32.89 25.64 29.38 30.61
FT 28.43 24.02 36.49 33.71

LFL 52.08 33.50 52.05 43.10
LwF − 18.29 − 30.19
EWC 33.02 23.66 28.11 19.87

MVCD

Naı̈ve 25.13 22.80 11.81 16.10
FT 27.13 20.37 23.41 24.16

LFL 24.47 20.76 30.27 27.11
LwF − 21.36 − 14.59
EWC 26.18 28.44 14.26 13.92

CompCars

Naı̈ve 38.82 35.13 29.06 39.77
FT 58.06 51.66 58.41 52.38

LFL 62.52 58.26 53.61 54.47
LwF − 49.55 − 60.37
EWC 42.37 32.28 31.21 29.13

Table 2: Contribution of Normalised Cross Entropy (NCE) to Continual Instance Learning - Forget ratio.

both approaches, the network is allowed to fully improve its

decision boundary and its feature extraction capacity. The

LFL approach has, in general, the lowest performance. We

hypothesize that keeping the embedding unchanged is not

desirable when we aim to learn the embedding itself. The

ResNet-18 model performs better under the cumulative ap-

proach and suffers from less forgetting when compared to

the LeNet model. The CompCars dataset is the most chal-

lenging set under offline and CIL, whereas the MVCD is the

easiest.

In this experiment, we conclude that Continual Instance

Learning is a challenging problem for current CL ap-

proaches, and the existing methods perform comparably or

inferior to the Naı̈ve approach.

6.2. Q2: Contribution of NCE

In our second experiment, we investigate the effect of

NCE, Table 2. In all experiments, we notice that the more

negatives samples we add, the better the results. We restrict

to nine negative samples.

We identify that most methods benefit from NCE. This

is particularly true for EWC, where the feature extracting

layers benefit the most from bounding the gradients. Over-

all, both architectures gain from NCE. This is more visible

in the LeNet model which is more prone to over-fitting and

more highly impacted by regression outliers.

Integrating NCE to CIL is straightforward and beneficial

to most approaches.

6.3. Q3: Contribution of Synthetic Transfer

In Table 3, we investigate the effects of pre-training a

network on synthetic data on CIL approaches. Synthetic

object instances can be found in publicly available datasets

[2, 34]. Specifically, in our experiments, we pre-train a

model on the entire Cars3D dataset and perform continu-

ous batch training on MVCD and CompCars. We reduced

the learning rate to 10−4 for all continual experiments and

froze the convolutional layers.

All methods, under both architectures, benefit from our

method. Particularly, Naı̈ve and EWC. This is more evi-

dent in MVCD. The gains are not as visible in CompCars.

This is likely due to the differences in the data distribu-

tions. The synthetic dataset consists of car images in dif-

ferent azimuths and elevations. Conversely, CompCars has

only frontal view images. This restricts the visual cues to

features, which are limited in Cars3D, such as the brand,

the frontal grill, and the headlamps. Overall, the ResNet

model benefits the most from synthetic transfer.

Having a relevant distributed synthetic dataset can re-

duce forgetting in CIL in combination with NCE.

7. Conclusion

In this paper, we studied continual learning of object in-

stances. Firstly, we verified that existing techniques suffer

from catastrophic forgetting while learning object instances.

We show that the simple Naı̈ve approach performs competi-

tively to other continual learning techniques. This indicates

that existing methods are unsuitable for continual instance



LeNet ResNet

Dataset Approach Regression(% ↓) w/ NCE+Transfer(%↓) Regression(% ↓) w/ NCE+Transfer(%↓)

MVCD

Naı̈ve 25.13 9.84 11.81 0.48

FT 27.13 10.15 23.41 19.23
LFL 24.47 14.25 30.27 13.16
LwF − 3.08 − 12.12
EWC 26.18 9.22 14.26 2.29

CompCars

Naı̈ve 38.82 37.85 29.06 33.82
FT 58.06 71.74 58.41 70.99

LFL 62.52 61.28 53.61 50.01
LwF − 60.44 − 41.15
EWC 42.37 39.73 31.21 31.35

Table 3: Contribution of Synthetic Transfer to Continual Instance Learning - Forget ratio.

learning, calling for specific techniques. To that end, we

incorporated normalised cross-entropy along with synthetic

visual transfer to existing techniques to circumvent forget-

ting. We observed that indeed cross-entropy regulates the

learning, and synthetic visual data is beneficial, especially

when it is similar to the target data. From our observations,

we foresee two plausible directions for future research. In

this paper, we solely build upon regularisation approaches,

however, replay-based techniques could be promising for

continual instance learning. Secondly, our paper focused on

car instances, and we leave the exploration of other rigid ob-

ject instances, such as household objects, or nonrigid object

instances such as humans or human faces as future work.
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