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Abstract

Deep neural networks are popular for visual percep-

tion tasks such as image classification and object detec-

tion. Once trained and deployed in a real-time environ-

ment, these models struggle to identify novel inputs not

initially represented in the training distribution. Fur-

ther, they cannot be easily updated on new information

or they will catastrophically forget previously learned

knowledge. While there has been much interest in de-

veloping models capable of overcoming forgetting, most

research has focused on incrementally learning from com-

mon image classification datasets broken up into large

batches. Online streaming learning is a more realistic

paradigm where a model must learn one sample at a time

from temporally correlated data streams. Although there

are a few datasets designed specifically for this protocol,

most have limitations such as few classes or poor image

quality. In this work, we introduce Stream-51, a new

dataset for streaming classification consisting of tempo-

rally correlated images from 51 distinct object categories

and additional evaluation classes outside of the train-

ing distribution to test novelty recognition. We establish

unique evaluation protocols, experimental metrics, and

baselines for our dataset in the streaming paradigm1.

1. Introduction

Agents operating in real-time environments must be

capable of learning from dynamic, open-ended data

streams. Further, agents should be able to recognize

novel, unknown concepts and learn from new informa-

tion, while retaining knowledge of previous tasks. Deep

neural networks (DNNs) are a dominant approach for

perception tasks, but when trained on changing, non in-

dependent and identically distributed (iid) data distribu-

tions, they suffer from catastrophic forgetting of previous

*denotes equal contribution.
1https://github.com/tyler-hayes/Stream-51

Figure 1: Popular training paradigms for incremental

learners. Stream-51 requires agents to learn from real-

time video streams of natural scenes.

knowledge [30]. Moreover, they struggle to identify un-

learned concepts as novel on large-scale datasets [37],

which is an important skill for safety critical applications

such as self-driving cars.

Recently, much research has focused on overcoming

catastrophic forgetting in the incremental batch learning

paradigm [6, 7, 18, 21, 22, 26, 36, 41, 42], where DNNs

are updated incrementally with new information, but the

agent is allowed to batch through data and can only be

evaluated after it has finished learning the previous batch.

This scenario is not realistic for embedded agents that

are deployed for long periods of time and must be tested

on new information immediately. Online learning in a

single pass with severe memory and compute constraints,

also called streaming learning [2, 5, 10, 13, 14, 20, 35],

more closely matches how embedded agents must learn

and make inferences in real-time. However, streaming

learners still suffer from catastrophic forgetting when
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Figure 2: The Stream-51 protocol poses unique challenges, requiring agents to learn from temporally correlated data

streams and recognize unlearned concepts as novel. Training data can be ordered either just by instance or by both class

and instance. Evaluation data includes a set of novel examples from classes unseen during training.

trained on non-stationary data distributions, which is a

result of the stability-plasticity dilemma [1].

While streaming learning is more amenable to real-

time learning, part of the limitation in developing models

in this paradigm has been the lack of large-scale, many-

class datasets with temporal correlations. This lack of

diversity makes it difficult to test the generalization ca-

pabilities of learners. Further, there are a lack of explicit

protocols designed to test the novelty detection capabili-

ties of learners. Here, we introduce the Stream-51 dataset

for streaming image classification. Stream-51 consists

of temporally correlated videos, which resemble how

humans, animals, and other embedded agents receive

information in the real-world. Moreover, Stream-51’s

evaluation protocol tests an agent’s ability to learn new

concepts and identify novel samples from classes not

seen during training.

This paper makes the following contributions:

1. We introduce a large-scale streaming dataset with

training instances drawn from 51 unique classes

and an evaluation set containing images from the in

distribution classes, as well as 43 classes outside of

the training distribution for novelty detection.

2. We establish strong classification baselines on our

dataset using two different data ordering scenarios

known to induce catastrophic forgetting in DNNs.

3. We establish new protocols, baselines, and metrics

to test a streaming agent’s ability to identify novel

inputs, making it easy to compare existing methods.

2. Problem Formulation

In incremental batch learning, an agent is required

to learn a dataset D, that is broken up into T distinct

batches Bt, each of size Nt. At time t, the learner only

has access to Bt, but it may loop over this batch as many

times as necessary and can only be tested after the batch

has been learned. Conversely, in streaming learning,

an agent is required to learn examples one at a time

(Nt = 1) from only a single pass through the labeled

dataset. This paradigm is advantageous in developing

embedded agents since the agent can be evaluated at any

point during training and it cannot infinitely loop over

any portion of the dataset. Here, we focus on comparing

streaming learners that must correctly classify previously

learned classes, while also identifying inputs that are

outside of the agent’s learned distribution, i.e., novelty

detection or open set classification (see Fig. 2).

3. Related Work

Several evaluation paradigms have been proposed for

developing agents capable of mitigating catastrophic for-

getting, however, many are not applicable for real-time

agents that learn from temporally correlated data. Ad-

ditionally, there are few existing video datasets that are

ideal for testing streaming learners and none containing

explicit protocols for novelty detection.

3.1. Existing Incremental Learning Evaluations

Two popular evaluation schemes for incremental batch

learning are the Permuted MNIST [22, 23] and Split



Table 1: Streaming dataset statistics including information about the videos and their acquisition (acq).

VIDEOS/ AVG FRAMES/

DATASET CLASSES IMAGES VIDEOS CLASS VIDEO ACQ

iCub-1 [12] 10 8,000 40 4 200 hand held

iCub-T [33] 20 400,000 2,000 100 200 hand held

CORe50 [28] 10 165,000 550 55 300 hand held

ToyBox [40] 12 2,300,000 540 45 4,200 hand held

Stream-51 51 150,736 1,136 11-37 132.69 natural/wild

MNIST [7, 22] experiments. In Permuted MNIST, each

task consists of a different, but fixed, permutation of the

784 image pixels and the agent must learn to classify

the permuted digits given the permutation label. This

approach can only be used to evaluate agents with fully-

connected layers, the task (permutation) label is required

at test time, and this paradigm is equivalent to scram-

bling up the spatial input space of an agent and requir-

ing it to perform classification, which is unrealistic. In

Split MNIST, the MNIST dataset is split into disjoint

groups (tasks) of classes and the agent must learn the

groups incrementally. While Split MNIST is closer to

how animals learn than Permuted MNIST, things that

work well on MNIST usually do not scale up to larger

datasets [22]. Similar to Split MNIST, other popular

evaluation schemes include Split CUB-200 [8, 21, 22],

Split CIFAR-100 [6, 7, 18, 21, 36, 41], and Split Ima-

geNet [6, 18, 36, 41]. While these paradigms contain

more classes and natural imagery than MNIST, they

are still unrealistic for agents operating in real-time be-

cause 1) there is no inherent temporal dependence be-

tween frames, 2) classes are never revisited once they are

learned, and 3) agents are provided large batches of data

for each task, where batches are naturally iid. Examples

of several popular training paradigms are shown in Fig. 1.

Figure 3: Example images from comparison datasets.

3.2. Existing Streaming Datasets

An ideal streaming classification dataset would con-

sist of temporally correlated videos of objects from a

large variety of classes. Dataset statistics for the most

well-known streaming datatsets are in Table 1 and exam-

ple images are in Fig. 3. Some of the earliest streaming

datasets were collected from the iCub robot including

iCub World 1.0 (iCub-1) [12] and iCub World Trans-

formations (iCub-T) [33]. However, both datasets con-

tain 20 or fewer classes. More recent datasets include

CORe50 and ToyBox, but they only have 10 and 12 ob-

ject categories, respectively. All of the aforementioned

datasets are limited to 20 or fewer classes and all were

collected by having a person move each object around

with their hand. Additionally, the datasets are too small

and too easy to adequately test an agent’s generalization

capabilities. Similarly, there is not enough standardiza-

tion among the datasets, i.e., researchers use different

evaluation paradigms and metrics across datasets making

it difficult to compare approaches.

Although there are many video datasets from the ob-

ject detection [38] and tracking [11, 19] communities,

they cannot be used naturally for streaming image classi-

fication. Object tracking datasets often contain objects

that take up a small portion of the image frame, making it

hard to identify objects for classification purposes. Simi-

larly, tracking datasets often have many objects within a

frame that are not mutually exclusive, which is necessary

for standard classification tasks. In 2015 the ILSVRC

Object Detection from Video (VID) dataset [38] was

introduced, which contains video sequences of up to 3

unique objects per frame, but it is limited to only 30 total

classes. Moreover, none of the aforementioned stream-

ing, object detection, or tracking datasets have evaluation

samples that are explicitly outside of the training set

classes for testing novelty detection capabilities.

4. Stream-51

Stream-51 is a large-scale image classification dataset

with training images drawn from videos to mimic the



Figure 4: Example images from each of the 51 classes in Stream-51.

way real-time agents would experience new objects. It is

significantly larger than existing streaming classification

datasets with 51 classes drawn from familiar animal and

vehicle object classes. The temporal correlation between

subsequent frames is difficult for DNNs, which tradi-

tionally assume that data are sampled iid during training.

Additionally, the Stream-51 test set contains samples

from classes not included in the training distribution to

test a model’s novelty detection capabilities.

4.1. Curation Process

4.1.1 Downloading Object Detection and Tracking

Datasets

Stream-51 was curated from a variety of existing, video-

based object detection and tracking datasets including:

the Generic Object Tracking (GOT-10K) dataset [19], the

VID dataset [38], and the Large Single Object Tracking

(LaSOT) dataset [11]. The goal in combining snippets

from each of these datasets was to maximize the number

of independent categories with a sufficient number of

unique videos and overall frames per class. The GOT-

10K dataset served as the main source of images (46.1%

of overall frames). While it has 563 unique classes,

many of these classes did not have enough total video

sequences per class to curate a robust dataset. For these

reasons, we also used the major-class labels which as-

sign each image to one of 115 super classes. Overall,

GOT-10K provided data for 34 of the 51 classes. The

VID dataset served as the second major source of video

frames (27.3% of the total) and provided us with 13 ad-

ditional unique classes. Finally, we used videos from

the LaSOT dataset (26.6% of the total), which supplied

4 unique classes. There were many instances of class

overlap among the source datasets, which allowed us to

increase the total number of videos for those classes. All

videos for overlapping classes were verified to be unique.

4.1.2 Filtering Training Videos

At this point in curation, the raw frames from the source

datasets are not useful for training an image classification

model. One problem is that many of the full frames con-

tain multiple objects often from multiple classes, which

creates too much label noise. A second problem is the res-

olution of the classes of interest in the full frame videos

varies too widely, often with the object of interest contain-

ing very few pixels in the full frame. To overcome these

limitations, we filtered the images using bounding box

information included in the source dataset annotations.

Since typical convolutional neural networks (CNNs)

require moderately sized images (e.g., 224×224 for the

ResNet architectures [16]), we limited the resolution of

the bounding boxes to cover at least an area of 1024

pixels (∼32×32 image). Frames which didn’t meet this

threshold were removed and the videos were divided into



shorter, temporally coherent clips. This bounding box

threshold was found to be a good trade off to ensure

adequate resolution of the object, but not too limiting to

exclude large portions of the underlying videos.

When generating Stream-51 from the underlying ob-

ject tracking datasets, we also limited the length of indi-

vidual snippets to no more than 300 frames per video clip

and no fewer than 50 frames (sampled at approximately

10 fps). When videos from the underlying datasets were

longer than these limits, we broke the longer video up

into smaller sub-clips within the limits. If video clips

were shorter than the minimum length, we discarded

the clips. We first filled every class with the highest

resolution unique videos and then supplemented with

non-unique clips as needed. We limited each class to

have no more than ∼3,000 total frames per class with all

clips ranging from 50 to 300 frames.

Determining the final class list for Stream-51 involved

first building a larger list of possible independent classes

from the datasets above. The list of classes was then se-

lected by reducing semantic overlap using the Wu-Palmer

Similarity metric [29], which computes the relatedness of

two words using WordNet. Stream-51 statistics are pro-

vided in Table 1. Overall, the average clip length in the

training dataset is 133 frames and the average resolution

is 0.3 megapixels (∼550×550).

4.1.3 Curating the Test Set

Streaming learning requires agents to learn categories

from temporally correlated data, however, we also desire

to evaluate the generalization capabilities of these agents.

For this reason, we curated a distinct set of static images

for each class to use for evaluation. This allowed us to

maximize the total number of videos available for the

training set and to make a larger, more diverse, test set.

To curate the test set, we used well-known static image

datasets that contained at least 50 unique images for each

category in our training set. We used 21 classes from the

ImageNet object detection dataset [38], 18 classes from

the ImageNet classification dataset [38], and 12 classes

from OpenImages V5 [24]. We then added ∼60 unique

images from 43 additional categories not represented

in the training set to serve as a source for evaluating

novelty detection. 23 of these novel classes were from

the ImageNet object detection dataset, 11 were from the

ImageNet classification dataset, and 9 were from the

OpenImages V5 dataset. In total there are 5,100 total

images in the evaluation set (50 samples per training

class and 2,550 novel samples).

Figure 5: Per class video statistics for Stream-51. Colors

denote counts of the number of clips with various lengths

in seconds. Best viewed in color.

4.2. What’s in Stream­51?

Stream-51 has a wide variety of object categories with

41 animal classes and 10 vehicle classes under various

environmental conditions, e.g., indoor scenes and outdoor

scenes like desert, water, and sky. Example images from

each class in the training set are shown in Fig. 4. Fig. 5

shows the number of unique videos per class in Stream-51

and each video’s respective length in seconds.

5. Baseline Experimental Protocol

We train models to predict the category ŷt,classification:

ŷt,classification = argmax
k

F (G(Xt, k)) , (1)

where k ∈ K is the class label from K possible labels,

Xt is the input at time t, G (·) consists of the first L

layers of the neural network with parameters θG, and

F (·) consists of the last fully-connected layer of the

network with parameters θF . We distinguish between

two types of streaming learning algorithms: 1) those

that only train the top of the network F (·), which can

be thought of as a decoder, and 2) those that train the

entire network F (G (·)), where the function G (·) can be

thought of as an encoder consisting of the lower layers

of the network. Given an input tensor Xt at time t, the

output of the encoder is given by zt = G (Xt), where

zt ∈ R
d represents the d-dimensional embedding of



the input tensor. The class decoder F (zt) outputs a K-

dimensional vector used to predict ŷt,classification.

In addition to being able to correctly classify inputs, a

critical skill for an agent is to recognize when a test input

is outside of its learned categories. Traditional closed-set

models do not have this capability and instead assign

a label of one of the learned categories to novel inputs.

The ability of an agent to recognize inputs outside of

its training distribution could facilitate automatic class

discovery [39, 44] or open world learning [3].

Formally, an agent must learn a classifier H(Xt) =
F (G(Xt)) such that it can be used to distinguish learned

inputs from novel inputs, i.e.,

ŷt,novel =

{

1 if S (H(Xt)) ≥ δ

0 if S (H(Xt)) < δ
, (2)

where S (·) is an acceptance score function that uses

a threshold δ to determine if an input belongs to the

training distribution. We use the confidence threshold-

ing algorithm [17] for computing S (·), which is a simple

approach to detecting novel inputs. It determines a thresh-

old for the softmax probabilities output by a model based

on correctly classified training inputs. This approach as-

sumes that samples from the known classes seen during

training will have much larger maximum class probability

than novel inputs. Our protocol is shown in Fig. 2.

5.1. Baseline Models Evaluated

Our effort is on comparing streaming methods, and

not CNN architectures, so all methods use the same CNN

architecture (ResNet-18 [16]). However, any architecture

can be used with Stream-51. We evaluate the following:

• Fine-Tuning (No Buffer) – This model trains the

CNN one example at a time with a single epoch.

Since the model does not have a buffer for replay, it

suffers from catastrophic forgetting.

• SLDA – Streaming Linear Discriminant Analaysis

is a popular model in the data mining community

and it was recently shown to work well on deep

CNN features [15]. SLDA updates a running mean

vector per class and a shared running covariance

matrix. To make predictions, it assigns to an input

the label of the closest Gaussian computed using the

means and covariance matrix. SLDA is one way to

update the output layer of the CNN (θF ).

• ExStream – The Exemplar Streaming algorithm

was proposed for updating the fully-connected lay-

ers of a neural network and achieved state-of-the-art

performance on the iCub-1 and CORe50 streaming

datasets [14]. ExStream uses a form of partial re-

hearsal to mitigate forgetting by storing a buffer of

features for exemplars to replay during later training

sessions. The method stores the incoming features

and merges the two closest exemplars in its buffer.

It then replays all examples stored for a single itera-

tion and uses stochastic gradient descent to update

the weights in fully-connected layers (θF ).

• Full Rehearsal – Full rehearsal is a baseline that

uses replay mechanisms to mitigate forgetting and

was shown to work well in [14]. Full rehearsal

stores all input examples in a memory buffer and

fine-tunes the CNN on all previous examples, which

is expensive in terms of memory and compute.

• Offline – The offline model serves as an upper

bound. Offline uses the traditional procedure for

updating a CNN by training on all previous data

with multiple epochs through the dataset. It is not

trained incrementally and is initialized from scratch.

We evaluate two versions of fine-tuning, full rehearsal,

and offline: 1) update only the output layer (θF ) and

2) update the entire network (θF and θG). This setup

mirrors how neural networks, especially CNNs, are used

in practice for many machine learning applications. For it

to work successfully, the parameters of G (·) must already

have established representations that will enable F (·)
to perform well. For image classification, a common

approach is for G (·) to be pre-trained on a large image

classification dataset (e.g., ImageNet), and then either

F (·) is updated alone or both the encoder and decoder are

jointly updated. Another approach is to use self-taught

learning to train G (·) on another dataset [34].

5.2. Dataset Orderings

Since the temporal structure of the training stream

affects a learner’s performance, we assess all models on

the two most realistic data ordering scenarios given in

[14]: instance where videos are temporally ordered by

object instances and class instance where videos are orga-

nized by class, but organized by temporal video instances

within each class. Both orderings are similar to how

humans perceive data streams and are known to induce

catastrophic forgetting in DNNs.

5.3. Performance Evaluation

We use two metrics: one to capture an agent’s overall

classification performance and one to capture its ability

to detect novel inputs, while still correctly classifying

in-distribution samples. Embedded agents operating for

long periods of time must have low memory and compute

costs, so we also report memory and time requirements.

For overall classification performance, we use the



ΩClassif. metric from [14] which is computed as:

ΩClassif. = min

(

1,
1

T

T
∑

t=1

αt

αoffline,t

)

, (3)

where T is the total number of testing events, αt is the

accuracy of the streaming learner at time t, and αoffline,t

is the accuracy of an optimized offline model at time t.

This metric normalizes a streaming learner’s performance

to an optimized offline learner and measures how well an

agent is able to classify inputs. Normalizing the stream-

ing learner’s performance to an offline learner makes the

metric easier to interpret across various orderings.

For novelty detection, we propose an incremental vari-

ant of the open set classification curve (OSC) metric [9],

which has been used for offline open set recognition.

The OSC metric computes the correct classification rate

among known classes as a function of the false positive

rate for distinguishing between seen and novel categories.

The resulting correct classification rate is the difference

in model accuracy and the false negative rate for novelty

detection. The OSC metric is more informative than a

traditional ROC curve for detecting novel classes since

it accounts for the correct classification of true positive

samples. That is, OSC rewards methods that reject incor-

rectly classified positive samples more than methods that

reject correctly classified samples. Formally, we propose

an incremental variant of the area under the OSC curve

(AUOSC) which normalizes an incremental learner’s per-

formance to an optimized offline baseline, i.e.,

ΩAUOSC = min

(

1,
1

T

T
∑

t=1

γt

γoffline,t

)

, (4)

where T is the total number of testing events, γt is the

AUOSC score of the incremental learner at time t, and

γoffline,t is the AUOSC score of the optimized offline

learner at time t. The explicit equation for γ can be

found in [9] and computes performance based on novelty

detection capabilities, as well as correct classification of

in-distribution samples. The ΩAUOSC metric tests two

capabilities: 1) the agent’s ability to identify inputs that

are outside of its training distribution and 2) its ability

to correctly classify inputs identified as belonging to its

training distribution. ΩAUOSC of 1 indicates that the in-

cremental learner performed as well as the offline learner.

5.4. Experimental Setup

In many applications, it has become common practice

to initialize the parameters of a CNN on the large-scale

ImageNet classification dataset before training on another

dataset. However, many of the categories in the Stream-

51 training set and classes in the novelty detection test

set overlap with ImageNet, so for our baselines, we ini-

tialize G(·) using pre-trained weights on the Places-365

dataset [43]. Places-365 consists of 1.8 million training

images of 365 different scene-based categories. We sug-

gest using an initialization dataset without overlap since

a classifier pre-trained on any of the Stream-51 classes

would already have rich features for those classes and

then the true learning and novelty detection capabilities

of the streaming learner would not be tested thoroughly.

After initialization, ordered examples from Stream-51

are input into the model one at a time. For the instance

ordering, classification performance is computed on all

classes in the training set after every 30,000 examples

have been learned. For the class instance ordering, clas-

sification performance is computed on only the classes

trained after every 10 classes have been learned. We

report ΩClassif. with top-1 accuracy.

For novelty detection, we evaluate the ability of an

agent to identify classes on which it has not yet been

trained, as well as samples entirely outside of its training

distribution. Recognizing unseen classes as novel has

been common practice, often under the label of open set

recognition [4, 31, 32], which is a difficult task [27]. Life-

long novelty detection is a critical step towards automatic

class discovery [39, 44] and open world learning [3].

We perform novelty detection experiments using the

class instance ordering of Stream-51. Similar to the

classification experiments, we initialize G(·) with pre-

trained Places-365 weights. We then stream examples

into the network one at a time and evaluate the model

after every 10 classes. For the novelty detection experi-

ments, the agent is required to determine if a sample is

in-distribution or out-of-distribution from the training set,

and if the sample is in-distribution, then the agent must

correctly classify it. For the in-distribution test set, we

select all images from previously learned classes in the

test set. For the out-of-distribution test set, we select all

test images of unseen classes and combine them with the

2,550 test images explicitly outside of the training set.

6. Baseline Results

ΩClassif. and ΩAUOSC are normalized to an offline

learner that achieves 76.9% final accuracy and 0.710 fi-

nal AUOSC respectively on the class instance ordering of

Stream-51. For all models except SLDA, we use stochas-

tic gradient descent with momentum of 0.9, learning rate

of 0.01, weight decay of 1e-4, and batch size of 256.

SLDA uses shrinkage of 1e-4. ExStream stores 50 clus-

ters per class. Offline and full rehearsal are trained for



Table 2: ΩClassif. and ΩAUOSC results on Stream-51. We report the amount of memory required beyond the CNN for

each model in MB and the run time in seconds as the average over all runs. We denote the plastic (plas.) portion of the

network for each model. Results are the average of three runs with different permutations of the Stream-51 orderings.

INST CLS INST

METHOD PLAS. ΩClassif. ΩClassif. ΩAUOSC MEMORY TIME

Fine-Tune θF 0.422 0.066 0.051 0.00 498

Fine-Tune θF , θG 0.030 0.050 0.022 0.00 2242

SLDA [15] θF 0.856 0.865 0.661 1.05 485

ExStream [14] θF 0.829 0.825 0.721 5.22 2039

Full Rehearsal θF 0.818 0.846 0.777 77.77 9855

Full Rehearsal θF , θG 0.952 0.953 0.941 22865 11970

Offline θF 0.806 0.835 0.771 77.77 12363

Offline θF , θG 1.000 1.000 1.000 22865 11652

10 epochs on data batches. For all models, we use the

bounding box crops and resize the images to 224×224.

6.1. Streaming Classification

Our main results for all orderings of Stream-51 from

Places-365 pre-trained weights are summarized in Ta-

ble 2. It is not surprising that the full rehearsal models

perform well since they store all previous data for replay,

however, these models are memory and computationally

expensive to train. The more lightweight SLDA model

is a top performer for both orderings since its indepen-

dent class means allow it to remain robust to forgetting.

ExStream also performed relatively well for both order-

ings. In general, the models that were fine-tuned without

a buffer performed poorly since they did not have any

mechanisms to mitigate forgetting.

6.2. Streaming Novelty Detection

A learning curve for AUOSC performance as a func-

tion of number of classes trained is in Fig. 6. The full

rehearsal model was the top performer for the novelty

detection experiment, but it is slow to train and memory

intensive. ExStream was a top performer for the novelty

Figure 6: AUOSC Learning Curve.

experiment, while being more efficient than full rehearsal.

Although SLDA was a top performer for streaming clas-

sification, it did not perform as well as other methods for

detecting novel samples. In general, methods which rely

on fixed representations and train only the classification

layer of a model performed closest to the offline model,

however, even offline performance for detecting novel

samples is poor due to the simplistic baseline method

used. More sophisticated techniques for detecting novel

inputs have been developed in recent years [4, 25, 27],

however, adapting these techniques to streaming models

remains an area for future research.

7. Conclusion

We introduced the Stream-51 dataset for learning from

temporally ordered videos collected from natural environ-

ments that mimic how humans perceive data. Stream-51

contains more classes and unique videos than existing

datasets, making it ideal for developing streaming agents.

We also provided baselines and experimental metrics for

standard classification and novelty detection tasks. Both

of these tasks are needed by agents learning in real-time.

The SLDA and ExStream baselines provide a good start-

ing point for Stream-51 demonstrating a compromise

between classification performance, novelty detection,

memory, and computational requirements.
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evolving data streams. In International Symposium on

Intelligent Data Analysis, pages 249–260. Springer, 2009.

1

[6] Francisco M Castro, Manuel J Marı́n-Jiménez, Nicolás
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