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Abstract

Continual learning (CL) is concerned with the persistent

and cumulative nature of learning. This requires a method

of successfully consolidating new knowledge into long-term

memory without the loss of prior knowledge. Prior research

has addressed this CL retention problem through the effi-

cient rehearsal of prior examples while learning the exam-

ples of a new task within a long-term Multiple Task Learn-

ing (MTL) network. The approach maintains or improves

prior knowledge while allowing its representation to remain

plastic for the integration of new task examples. Preferably,

rehearsal is done using pseudo examples synthesized by

the MTL network; eliminating the need to retain prior task

training examples or a generate them with an additional

model. Previous work has shown that to properly retain

knowledge the pseudo examples must adhere to the input

probability distribution of those original examples. Two ap-

proaches are investigated for creating appropriate pseudo

examples from a Restricted Boltzmann Machine (RBM) au-

toencoder, which can reside in the lowest layers of the long-

term MTL Deep Belief network. We show that appropriate

pseudo examples can be reconstructed by passing uniform

random examples to a generative RBM model and select-

ing only those with reconstruction error less than the mean

training error. These pseudo examples are shown to adhere

to the probability distribution of the input variables of the

original training examples and retain prior task knowledge

during rehearsal as well as those examples. As part of the

research, we develop and test a new metric called the Au-

toencoder Divergence Measure for comparing the probabil-

ity distributions of two datasets given to a generative RBM

network based on their reconstruction mean squared error.

1. Introduction

A human learns new knowledge throughout her life

while retaining prior knowledge. Similarly, a Continual

Learning (CL) system should be able to retain prior task

knowledge over a long time while integrating, or consoli-

dating new task’s knowledge periodically [21]. The chal-

lenge in consolidation lies in the process of retaining the

old information while integrating the new information. This

is known as the stability-plasticity dilemma [6]. Stability

refers to the learning system’s need to retain prior knowl-

edge effectively (accurately) and efficiently (minimal mem-

ory and time). Plasticity refers to the learning system’s need

to accommodate new knowledge effectively and efficiently.

A solution to the stability-plasticity problem has previously

been proposed and tested using back-propagation multiple

task learning (MTL) neural networks and a technique called

sweep task rehearsal [20]. The approach rehearses exam-

ples of prior tasks while learning the examples of a new

task. Recently, this has been referred to as replaying prior

training examples [23, 19], but its approach dates back to

work from the 1990s [16, 17] using the better psychologi-

cal term of rehearsal. Sweep task rehearsal has been shown

to maintaining functional knowledge of prior tasks within a

neural network while changing its representation to accom-

modate new knowledge. In this way the networks provide

functional stability as well as representational plasticity.

Sweep task rehearsal works well, but it requires training

examples of prior tasks that preserve the probability dis-

tribution over the input variables [20]. One approach is

to store a set of examples from the training set for each

task. The problem with this approach is that it’s complexity

grows linearly with the number of tasks, each time length-

ening the number of retained examples and network training

time. A more efficient approach is to (1) generate pseudo

examples (PE) using the consolidated MTL model of prior

tasks and knowledge of the input variable distribution, and

(2) weight the derivatives of the backward propagated er-

ror for the PEs to give them equal opportunity to effect the

representation of the network along with the new examples.

This paper seeks to advance the sweep task rehearsal con-

solidation approach by finding a method that does not re-

quire keeping explicit knowledge such as prior training ex-

amples or the probability distribution over those examples.



The contributions of this paper are: (1) an approach

to generating accurate PEs of prior tasks, using generative

components of a MTL network, such that those PEs adhere

to the probability distribution of the input variables of the

original training examples; (2) a demonstration using PEs

generated in this manner to rehearse a prior task within a

MTL network while successfully consolidating a new task;

and (3) the development of a simple measure for comparing

the similarity of the probability distributions of two sets of

examples, called the Autoencoder Divergence Measure.

This paper has the following sections. Section 2 pro-

vides background knowledge on CL, Restricted Boltzmann

Machines (RBM), consolidation, rehearsal, and the metrics

used for selecting and evaluating pseudo examples. Section

3 discusses recent related work. Section 4 presents our the-

ory for generating pseudo examples such that they adhere to

the probability distribution of the input variables of training

examples. Sections 5 and 6 present empirical studies of the

approaches for generating pseudo examples on a synthetic

and a real-world domain of tasks. Section 7 demonstrates

the value of using the more accurate PEs when consolidat-

ing one task with a prior task. Section 8 presents the find-

ings of this research and potential future work.

2. Background

This section provides the necessary background for the

development of our theory and approach.

Continual Learning: CL deals with systems that can

retain knowledge of many tasks from a domain over time

and can selectively transfer that knowledge when learning

a new task and improve upon prior knowledge as new tasks

are learned [21]. CL can be characterized by being com-

posed of two tightly integrated phases: transfer learning

and consolidation.

Transfer Learning: Transfer learning refers to using the

existing information of the learning system to facilitate new

learning [17]. Formally, let D be the domain of source and

target tasks, ts be the source task (the model from which the

knowledge transfer occurs), tt be the target task (the model

to which transfer is received) and ts 6= tt . Then transfer

learning occurs when the performance of a model for task

tt with transfer from ts improves over a model for task tt
without transfer [12].

Consolidation: Consolidation of information is a prin-

ciple requirement of a CL system that enables integration of

new information into the representation of the system. The

main challenge with consolidation is preventing the catas-

trophic forgetting of prior learned knowledge and overcom-

ing the stability-plasticity dilemma. Catastrophic forgetting

can be defined as the disruption or loss of the prior training

information while integrating new information to a trained

model [16]. The stability-plasticity dilemma deals with how

to eliminate or reduce the affect of catastrophic forgetting.

Multiple Task Learning: MTL is the learning of two

or more tasks within the same machine learning system,

typically a neural network with the intention of developing

shared internal representation that is beneficial to the devel-

opment of both tasks, in this way transferring knowledge

from one task to the other [3].

Consolidation via Rehearsal and Pseudorehearsal:

To reduce the affect of catastrophic forgetting, Robins in-

troduces rehearsal of a subset of the prior training exam-

ples while training on new examples [16]. The addition of

the prior examples forces the learning system to maintain

functional accuracy for both old and new training examples.

This is a powerful concept supported by cognitive and neu-

ral science [18]. Robins also introduced pseudo-rehearsal

which uses pseudo examples, or PEs, created by passing

random input vectors through the learning system and then

recording the output generated as the label for that exam-

ple. This prevents having to retain real examples; the PE

can be generated by the current model and added to the real

examples of the new tasks as needed. Robins also discusses

different pseudo-rehearsal approaches, and amongst them

sweep pseudo-rehearsal is the most efficient and effective.

Sweep pseudo-rehearsal is the process where each time new

examples are to be learned by the system, a set of PE are

randomly created and for each training iteration a subset of

these example are randomly chosen for rehearsal.

The rehearsal and pseudo-rehearsal approaches have

been used with CL MTL networks to learn a sequence of

tasks with transfer from prior knowledge. In [20] up to

twenty tasks are trained in a row with little or no loss of

prior tasks accuracy, and at times the accuracy of prior tasks

is shown to improve as new task examples are consolidated.

This work also shows that it very important to create PEs

that adhere to the probability distribution of the training

data; only then can one be guaranteed that rehearsal will

maintain prior task knowledge.

Restricted Boltzmann Machine (RBM): A Restricted

Boltzmann Machine (RBM) is an unsupervised generative

neural network model that is trained to reconstruct whatever

is presented at its inputs (visual layer) after passing these in-

puts to a hidden layer and back. RBM networks form a bi-

partite graph; where a neuron in one layer is connected to all

the neurons in the next layer, however connections between

neurons in the same layer are not allowed. A RBM uses a

gradient descent algorithm called contrastive divergence to

minimize the error between the reconstructed values at the

visual layer and the training examples [8].

Maximum Mean Discrepancy (MMD): The probabil-

ity distribution over the input variables of a dataset is rep-

resented by the probability density function of a vector

{x1, x2, ..., xn} from an input feature space X . Compar-

ing probability distributions of different data, we make the

assumption that the data have originated from the same fea-

ture space X . MMD is a measure for comparing the prob-



ability distributions of two given datasets based on their

mean and variance statistics. The MMD-based hypothesis

test provides the degree of confidence that one set of exam-

ples agrees with another set of examples in terms of their

variable distributions [5]. The MMD test returns a Value

and a Bound. As long as the Value is less than the Bound,

the null hypothesis that the two distributions are the same is

accepted. MMD is used in our research for comparing the

probability distributions of the generated pseudo examples

for a task and it’s original training examples.

3. Related Work

Recently, there has been considerable interest in Contin-

ual Learning as a function of the success of deep learning

and the development of rich feature spaces within deep neu-

ral networks [13]. This has brought about renewed interest

in the problem of catastrophic forgetting and the stability-

plasticity dilemma as the importance of consolidation in CL

systems becomes more apparent [10].

Kirkpatrick et al. [9] presents a novel algorithm, elas-

tic weight wonsolidation (EWC), which avoids catastrophic

forgetting of prior knowledge during the integration of

new examples into the model. EWC can selectively de-

crease the plasticity of weights while training on new ex-

amples, thus protecting prior knowledge in the network.

Srivastava et al [22] show that interference among pat-

terns leads to catastrophic forgetting when the number of

stored patterns exceed a critical limit. They demonstrate

an approach that eliminates catastrophic forgetting using

Gram-Schmidt orthogonalization combined with a Hebb-

Hopfield-type model. He et al [7] propose a variant of the

backpropagation algorithm, called conceptor-aided back-

prop, where conceptors are used to protect the gradients of

prior trained tasks from degradation.

Rebuffi et al [15] develop a class-incremental learning

strategy named iCaRL (incremental classifier and represen-

tation learning), which stores exemplars representing the

examples of the previously learned classes and the weight

vector associated with the classes. iCARL adjusts the exem-

plar set when it comes across new classes. Though iCARL

does not need to store the training data for the learned

classes, still it needs the exemplars and the weight vector

associated with the new classes, which requires substantial

storage. Lopez-paz et al [11] develop a continual learning

strategy called Gradient Episodic Memory (GEM) which

stores a subset of the examples from the previous tasks,

which again requires substantial storage.

De Lange et al [10] provide a comparative study between

current CL methods and four baseline methods. The paper

deals with task-incremental classification, where different

tasks are learned sequentially. Parisi et al [14] present a re-

view of research on CL with neural networks. The authors

identify that the current research is still lacking in terms of

flexibility, robustness, and scalability shown in biological

systems. They also point out that the most research fo-

cuses on supervised domains of tasks which requires large

amounts of labelled data, and that this does not capture the

real challenge faced by the lifelong learning agents; to build

a base of low level features of which future learning can take

advantage.

Recent research by Atkinson and Robins et al [1] use

pseudo-rehearsal with a Generative Adversarial Network

(GAN). Every time a new task is presented, pseudo-

rehearsal on the GAN model is achieved by generating

pseudo-images from the GAN and mixing them with the

current task examples. They termed this process pseudo-

recursal as it can be repeated recursively. Atkinson and

Robins et al [2] develop a Reinforcement-Pseudo-Rehearsal

model (RePR) using pseudo-rehearsal and a GAN to

achieve iterative learning in reinforcement learning tasks.

The RePR model can be used to effectively learn multiple

sequential tasks, without increasing model complexity and

without having to store training data for prior tasks. This

work is closest to the the research reported in this paper, but

the method requires the use of GAN model to generate the

PEs that are in addition to the consolidated task model.

4. Theory

A method is required to generate PEs having the same

probability distribution over the input variables as the train-

ing examples of the prior tasks. Preferably, the solution uses

the knowledge retained in the long-term consolidated MTL

neural network used to model the supervised tasks. We wish

to avoid having to use a separate network to generate the

PEs as this would add computational time and storage re-

quirements as per some of the related work.

To achieve this, we consider MTL Deep Belief Net-

works, that use stacked unsupervised RBMs in the lower

layers of a network to develop representations that are use-

ful for training supervised back-propagation representations

in the upper layers of that network. After a RBM model

has been trained to a low reconstruction error, the model

has learned the probability distribution of the training data.

This is because the algorithm works to develop a model that

learns the p(h|v) at each hidden node and p(v|h) at each

visible node; where h is the set of hidden nodes, and v is

the set of visible input nodes [8]. Such a network config-

uration is exactly what is needed to develop rich internal

representations for a domain, to generate appropriate PEs,

and to learn multiple tasks. We propose two approaches for

using RBMs to generating appropriate PEs.

4.1. Approaches Considered

Relaxation of a Trained RBM: Ideally, when a uniform

random set of examples is fed to a trained RBM model, after

each example has settled to equilibrium following several



oscillations between visible and hidden units, the recon-

structed example should adhere to the training data distribu-

tion. We initially considered that any random input vector

would converge to be similar to an original example. Unfor-

tunately, we discovered that for even low dimensional data,

this approach fails to generate accurate PEs based on tests

using the MMD measure. The method generated examples

concentrating in the centre of each high probability region

of the training data distribution, but do not capture the char-

acter of the full distribution. For this reason, the application

of this approach will not be reported in this paper.

Reconstruction Error from a Trained RBM: An accu-

rately trained RBM can reconstruct a training example with

low MSE. This means, after one oscillation of feeding a uni-

form random set of examples into an RBM model, the best

pseudo examples (those most adhering to the distribution of

the training examples) are those with the lowest reconstruc-

tion error. The lower the error, the higher the probability

that the example is from the original training distribution.

However, because not all randomly generate examples ad-

here to the training data distribution after one oscillation,

we must select those examples based on some metric and

tolerance level.

4.2. Selection of Metrics and Tolerance Levels

We considered two selection metrics: Euclidean dis-

tance, Mean Squared Error (MSE). The Euclidean distance

between the uniform random input example and its corre-

sponding reconstruction was calculated and if the distance

was less than a defined tolerance, δ, the example was con-

sidered a PE. Similarly, the MSE between the uniform ran-

dom input example and its corresponding reconstruction

was calculated and if the error was less than a defined tol-

erance, ǫ, the example was considered a PE. In this way, a

collection of pseudo examples for prior tasks can be gen-

erated for rehearsal when consolidating a new task into the

long-term network. The mean Euclidean distance and MSE

for the RBM training data reconstruction was used as the

initial tolerance levels for δ and ǫ.

The probability density functions for the actual train-

ing examples and the generated PEs from a RBM trained

model are shown in Figure 1. The blue probability density

function (pdf) represents the one-dimensional training ex-

amples. The red pdf represents the 700 selected pseudo ex-

amples from the reconstruction of a uniform random set of

3000 examples using a trained RBM model and the mean

Euclidean distance metric. The figure shows that the se-

lected pseudo examples adhere to the input regions in the

training data. So we conclude that, the pseudo examples

match the training data input variable distribution.

4.3. Autoencoder­based Divergence Measure:

To evaluate the success of the adherence of the PE dis-

tribution to the training data distribution, we require some

measure of similarity over the sets of examples. The MMD

measure can be used but it requires retaining all of the train-

ing examples, which would defeat the purpose of generat-

ing PEs. Instead, we defined a measure that requires saving

only the reconstruction error of the trained RBM model on

the training set after each consolidation.

Figure 1: Probability density functions of actual training

examples and selected pseudo examples.

We considered an unsupervised autoencoder approach

to measure the difference between two probability distri-

butions. If our model has been accurately trained, we can

measure the relative degree of similarity between a recon-

structed test set and the original training set probability dis-

tributions based on the ratio of their reconstruction error.

We defined the Autoencoder-based Divergence Measure

(ADM) as follows: Let, MSETRN = the MSE of the con-

solidation training data on the RBM model and MSETST

= the MSE of the test data given to the trained RBM model,

then ADM = MSETST

MSETRN
.

Thus, if the test dataset is the training data set, then

ADM = 1. And if the input is from a very different proba-

bility distribution compared to the training data distribution,

then the MSETST is higher than MSETRN . So the value

of ADM is much higher than 1.

We verified the ADM measure over multiple experi-

ments using two-dimensional synthetic training and test

datasets; including where we made various pathological

changes to the test or training dataset in an effort to trick

the measure. In all cases, the test data with very different

probability distributions compared to the training data had

higher ADM values than test data with small variations from

the training dataset. To summarize, 0 < ADM < 1 signi-

fies the same probability distribution as the training data;

1 < ADM < 2 signifies similar to or containing part of the

training data distribution; ADM > 2 signifies an increas-



ingly different distribution than the training data.

5. Empirical Study 1: Generating PEs for a

Synthetic Domain of Tasks

The purpose of this experiment is to test the Reconstruc-

tion Error approach to generating PEs and compare the two

metrics for selecting PEs: Euclidean distance and MSE.

Three different synthetic tasks were created using a Gaus-

sian generator: a one-variable (one-dimensional) task (see

Figure 1), a two-dimensional task, and a four-dimensional

task (see Figure 2). These tasks we consider a good starting

point for examining the proposed methods. Each task had

1 to 3 Gaussians of random mean and variance spread over

the range [0,1]. A one layer RBM autoencoder was trained

on each task using 1000 training examples. Following this,

uniformly distributed random data was fed into each trained

RBM and the PEs were selected based on their reconstruc-

tion error. We report on the details of the most challeng-

ing four-dimensional task. See1 for details on the hardware

used.

Tolerance Level Measured by MSE Metric: As per

Section 4.2, one measure for selecting the initial tolerance

level is the sum of squared error between the training ex-

ample and its corresponding reconstruction after one oscil-

lation. If the squared error falls below the MSETRN toler-

ance level the example is selected as a PE.

The four-dimensional synthetic training data set of 1000

examples produced a RBM with a mean reconstruction er-

ror of MSETRN = 0.000395. Some 80 PEs were selected

from the reconstructed set of 5000 uniform random exam-

ples passed through the trained RBM model. This generated

a ADM = MSEV E

MSETRN
= 0.000228

0.000395 = 0.5772. As per Section

4.3, this value signifies that the pseudo examples are from

the same probability distribution as the training data.

Tolerance Level Measured by Euclidean Distance Met-

ric: As per Section 4.2, the other measure for selecting

the initial tolerance level is the mean Euclidean distance be-

tween the training data and its corresponding reconstruc-

tion after one oscillation. If the difference falls below the

MSEED tolerance level the example is selected as a PE.

The same training data used for the previous measure

is used for this experiment as well. The four-dimensional

training set of 1000 examples produced a RBM model with

a mean Euclidean distance of EDTRN = 0.017452. Some

52 PEs were selected based on the EDTRN tolerance level

1All experiments were conducted on a Dell desktop with a 3.4 GHz

Intel Core i7 processor and 16 GB of memory running Windows 8.1. The

only bottleneck was is memory when the MMD metric was used to check

the similarity of the probability distributions of two sets of examples. For-

tunately, this is only done at the end of runs to validate our ADM metric.

from a reconstructed set of 5000 uniform random exam-

ples passed through the trained RBM model. The resulting

ADM = 0.000165
0.000395 = 0.4177, which signifies that the pseudo

examples were from the same probability distribution as the

training data. In Figure 2, the blue probability density func-

tions (pdf) represent the training data. The red pdfs rep-

resent the PEs selected from the reconstructed set uniform

random examples using the trained RBM model.

Figure 2: Exp 1 - Probability density functions for the train-

ing example variables x1(1T ), etc and the selected pseudo

example variables x1(PE), etc using the tolerance level

measured by average Euclidean distance.

Discussion: For both the tolerance level measured by

MSE and the tolerance level measured by Euclidean dis-

tance, the ADM showed that the selected PEs adhere to the

training data distribution for one, two and four dimensional

datasets. The PEs generated by the Euclidean distance-

based method were further validated for their similarity to

the original training set distribution. This was done by com-

puting the MMD statistics: Value = 0.031646 and Bound

= 0.077804. Therefore, the Null hypothesis that the two

distributions are the same is accepted. In comparison the

PEs generated by the MSE-based method did not quite meet

the MMD requirement with Value = 0.042707 and Bound =

0.037726. For this reason we will proceed to favour the Eu-

clidean distance-based method in the remaining studies.

6. Empirical Study 2: Generating PEs for

Real-world Tasks

The purpose of this experiment is to test the Euclidean

distance-based approach to generating PEs for a real-world

task. The real-world dataset deals with the diagnosis of a



Figure 3: Exp 2 - Probability density functions for the training examples T31T , TT41T , T4U1T and the selected PEs T3PE ,

TT4PE , T4UPE using the tolerance level measured by mean Euclidean distance.

Figure 4: Exp 2 - Task A and its actual training and gener-

ated pseudo examples.

thyroid disorder named hypothyroidism [4]. The dataset

contains 3163 patient examples and 26 attributes includ-

ing the classification value. All records with missing val-

ues were discarded leaving 274 examples. A decision tree

was built using the dataset and the following three attributes

were considered the most important for model development

to predict the binary diagnostic outcome: T3, TT4, and

T4U. To make the dataset balanced, we selected all of the

examples having positive target values and then randomly

selected an equal number of examples having negative ex-

amples. We used min-max scaling to normalize the selected

attributes to the range [0,1]. The resulting Hypothyroid

dataset had 274 balanced examples with 3 input attributes.

The target classification had the value of 1 for the presence

of hypothyroidism and value of 0 for the absence of the con-

dition.

Tolerance Level Measured by Euclidean Distance: A

one layer RBM autoencoder was trained using all 274 train-

ing examples. Following this, 2000 uniformly distributed

random examples were fed into the trained RBM and the

PEs were selected based on their reconstruction error. For

this experiment, the tolerance level was set at EDTRN =

0.033149, the mean Euclidean distance between the train-

ing data and its corresponding reconstruction after one os-

cillation. Some 91 PEs with variables T3, TT4, and T4U

were selected from the reconstructed set of examples. This

generated an ADM = 0.000504
0.001876 = 0.2687, which signifies that

the pseudo examples were from the same probability distri-

bution as the training data.

In the Figure 3, the blue probability density functions

(pdf) represent the training data. And the red pdfs represent

the 92 pseudo examples selected from the reconstructed set

of 2000 uniform random examples after one oscillation us-

ing a trained model.

Discussion: As can be seen in Figure 3, the MSE-based

ADM measure used to select the PEs from the reconstructed

set of uniform random examples passed through the RBM

model come close to the probability distribution of the origi-

nal training examples. This was validated by computing the

MMD statistics: Value = 0.002513 and Bound = 0.009934.

Because the value is less than the bound, the Null hypothe-

sis that the two distributions are the same is accepted.

7. Empirical Study 3: Consolidation Using PEs

for a Synthetic Task Domain

The purpose of this study is to test the usability of PEs for

a prior Task A when consolidating a related new Task B into

a Multiple Task Learning (MTL) neural network trained on

task A. We expected the PEs generated by our method for

Task A can be used to maintain the functional accuracy of

that task while integrating in the examples for new Task B.

Further we expect the level of accuracy for both tasks at the

end of consolidation is the same as a model develop using

the actual training examples for both tasks from scratch in a

MTL network.

The first task, Task A, is a 2-variable Boolean concept

task whose examples are classified as follows: define D =
sqrt((x1 − 0.5)2 + (x2 − 0.5)2); if D ≤ 0.1 OR (D ≥
0.3 AND D ≤ 0.4), then the target value is 1, otherwise



Figure 5: Exp 3 - Average classification accuracy on Task A and Task B.

it is 0. Task A and its training examples and generated PEs

are shown in Figure 4.

Similarly, the second task, Task B, is Boolean concept

task whose examples are classified as follows: define D =
sqrt((x1 − 0.6)2 + (x2 − 0.6)2); if D ≤ 0.05 OR (D ≥
0.2 AND D ≤ 0.3), then the target value is 1, otherwise 0.

We created and experimented with nine different mod-

els for Task A and B. For each of the datasets, we built a

MTL network with one hidden layer of 19 nodes. All of the

models used learning rate of 0.05, momentum of 0.9 and

500,000 epochs. Each training sets had 80 examples and

each validation set had 20 examples. All test sets had 1000

instances which made for good estimates of the generaliza-

tion accuracy.

Nine Models Trained and Tested: The single task learn-

ing (STL) models STL:A and STL:B were trained using

only the actual examples of Task A and B, respectively.

STL:PE(A) and STL:PE(B) were trained using the PEs

generated for Task A and Task B, respectively. For all

pseudo example models, a dataset PE(A) was developed by

passing the generated pseudo examples from a trained RBM

model through the Task A target function. The pseudo ex-

amples were generated from the trained model using the

Euclidean distance measure. The MTL:A+B model was

trained using an equal number of actual examples for Task

A and B. The MTL:B+PE(A) model was trained using an

equal number of PE(A) examples and actual examples of

Task B. Similarly, the MTL:A+PE(B) model was trained

using an equal number of PE(B) examples and actual ex-

amples of Task A. For the Random Example models, a

dataset RE(X) was developed by passing a set of uniform

random examples through the Task X target function. The

MTL:B+RE(A) models were trained using an equal num-

ber of RE(A) examples and actual examples of Task B. Sim-

ilarly, MTL:A+RE(B) were trained using an equal number

of RE(B) examples and actual examples of Task A.

Results: Four runs were completed for each model and

a hypothesis t-test comparison was made with the baseline

STL models. Figure 5 shows that the STL models using the

PEs performed reasonably well compared to the STL mod-

els using the actual examples. As expected, the MTL:A+B

model classification accuracy on Task A and B was as good

as or better than their STL models. The MTL:A+PE(B)

and MTL:B+PE(A) models were statistically as accurate as

the MTL:A+B models. The MTL:A+PE(B) models were

statistically more accurate than MTL:A+RE(B) (p-value =

0.02652 and the MTL:B+PE(A) models showed insignifi-

cantly higher accuracy than MTL:B+RE(A). We conclude

that using the PEs generated by our method are as good as

the actual examples and better than random examples for

this problem.

8. Conclusion and Future Work

Summary and Findings: Lifelong Continual Learning is

the logical next step for machine learning because it con-

siders learning a variety of tasks over a lifetime, building

richer internal representation with each new example. A

significant challenge in developing a CL system is retain-

ing prior task knowledge while consolidating in new task

knowledge. Prior research has addressed this CL retention

problem through the efficient sweep rehearsal of pseudo ex-

amples of prior tasks while learning the examples of a new

task within a Multiple Task Learning (MTL) network. The

approach does a good job at over-coming catastrophic for-

getting as long as the pseudo examples adhere to the proba-

bility distribution of the input variables of the original train-

ing examples. This paper seeks to improve the sweep task

rehearsal approach to consolidation by finding a method of

generating accurate PEs directly from the long-term consol-

idated MTL Deep Belief Network.

Our major findings are as follows: (1) Accurate PEs of

prior tasks can be created by a generative RBM layer at

the beginning of a deep MTL network, such that those PEs

adhere to the probability distribution of the input variables



of the original training examples. Such PEs can be recon-

structed by passing uniform random examples to the visible

layer of the RBM model and selecting only those with re-

construction error less than the mean RBM training error.

(2) These PEs can work as well as the actual training exam-

ples for a prior task B when consolidating a new task A into

an MTL network that has been previously trained on task

B. (3) The Autoencoder Divergence Measure, for compar-

ing the similarity of the probability distributions of two sets

of examples based on there RBM reconstruction MSE, is

introduced and shown to work well across several synthetic

and real-world domains.

Future Work: We planned to do more extensive ex-

perimentation using large sequences of tasks on a variety

of task domains to test the sweep task rehearsal approach

while generating PEs based on the RBM reconstruction er-

ror method we have presented. In particular, we would like

to empirically compare our approach against recent work on

EWC by [9] and Pseudo-recursal by [1].

Our long-term goal is to develop a CL system that is

able to selectively transfer knowledge from prior tasks when

learning a new task within a short-term memory network

and then, if sufficiently accurate, to consolidate this new

task knowledge into a long-term memory network.
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