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Abstract

Skeletonization is the process of reducing a shape im-

age to its approximate medial axis representation while pre-

serving the topology and geometry of the image. Skele-

tonization is an important step for topological and geo-

metric shape analysis. In this paper a novel skeleton ex-

traction architecture - Subpixel Dense Refinement Network

is introduced which is trained and evaluated on the Pixel

SkelNetOn Challenge dataset. The proposed architecture

is a three-stage encoder-decoder network with dense inter-

connections between the decoder networks of each stage.

The architecture replaces general up-sampling layers and

transposed convolution layers with subpixel convolutions

for minimizing the information loss during up-sampling of

the encoded features. The deep network is trained end-to-

end with intermediate supervision in each stage. The pro-

posed single architecture achieved an F1-score of 0.7708 on

the validation set of the Pixel SkelNetOn Challenge dataset.

1. Introduction

Over the years, deep learning has made significant ad-

vancement in the three main fields of computer vision – im-

age recognition, object detection, and image segmentation.

Although state-of-the-art deep learning approaches are ca-

pable of competing with human-level performance in nu-

merous tasks in these fields, not much research is done on

topological and geometric shape analysis. In this paper, a

deep learning based approach is proposed to advance the

state-of-the-art in skeletonization task for shape understand-

ing and abstraction.

Skeletonization is the process of extracting or generat-

ing an approximate geometric representation (skeleton) of

a shape by reducing it to clean skeleton pixels which pre-

serves the extent and connectivity of the original shape.

Skeletonization incorporates a fusion of both local and

global knowledge of the shape. A skeleton is a compact

and intuitive medial axis representation of a shape which

retains the topology and geometry of the shape. This repre-

sentation of the shape is used for various purposes such as

modelling, manipulation, synthesis, matching, registration,

compression, and analysis.

Image Processing based computational skeletonization

algorithms are sensitive to boundary noise and require hu-

man intervention for manual parameter tuning for decent

skeleton extraction from shapes. This is a time-consuming

process and requires a lot of human effort and skills. Deep

neural networks can automate this task and learn to output

better skeleton representations directly without being sus-

ceptible to noise. A few deep learning based approaches in

the literature are explored in the following section. Most of

them use a segmentation approach to solve this problem.

The task of skeleton segmentation is much difficult than

standard image segmentation tasks as the extracted skele-

ton is expected to be of 1-pixel width and must retain the

topology and geometry of the shape.

We pose this problem of skeleton extraction as a segmen-

tation task where a semantic segmentation network learns to

classify the pixels of a shape into skeleton pixels or back-

ground. In this paper, a three-stage encoder-decoder net-

work – Subpixel Dense Refinement Network is introduced.

It consists of three key components to improve its capability

of extracting skeleton pixels from pre-segmented shape im-

ages – dense interconnection among the decoder networks,

subpixel convolution layers for efficient up-sampling and

intermediate supervision for stable learning. The proposed

model is trained end-to-end with intermediate supervision

and currently achieves the highest F1-score in the literature.

The model is tested on the validation set of the Pixel Skel-

NetOn Challenge dataset [1] and it achieves an F1-score of

0.7708. In this paper, we provide a detailed description of

the model and a comparative analysis of the previous skele-

tonization approaches on the Pixel SkelNetOn Challenge

dataset.

2. Related Work

In this section, a few published approaches for the Pixel

SkelNetOn-2019 competition are explored. There are other



works on skeletonization but most of them are not related

to the domain of geometric shape understanding. The fol-

lowing are the top-ranked methods on the Pixel SkelNetOn

competition dataset and thus serves as competitors for con-

sistent benchmark comparisons.

Demir I. et al. [1] in 2019 introduced a baseline model

for the Pixel SkelNetOn competition in which they used a

vanilla pix2pix network for image translation from distance

transformed binary shapes to their approximate skeleton.

Their model achieved an F1-score of 0.6244 on the Pixel

SkelNetOn validation dataset.

Jiang N. et al. [2] in 2019 proposed their Feature Hour-

glass Network (FHN) for skeleton extraction. Their model

decreases the residual between the prediction and ground

truth by integrating side-outputs hierarchically in a deep-to-

shallow manner. Their model achieved an F-score of 0.6325

on the Pixel SkelNetOn validation dataset.

Nathan S. et al. [3] in 2019 proposed a custom U-Net ar-

chitecture with a redesigned decoder in the format of HED

architecture. They used 4 side layers fused to one dilated

convolution layer for increased performance. Their model

achieved an F-score of 0.7480 on the Pixel SkelNetOn vali-

dation dataset.

Panichev O. et al. [4] in 2019 proposed their custom

U-Net network with residual blocks in encoder and decoder

and trained their model with focal-loss to minimize the class

imbalance problem. Their model achieved an F-score of

0.7500 on the Pixel SkelNetOn validation dataset.

3. Proposed Method

3.1. Dataset

The Pixel SkelNetOn Challenge dataset is used for the

experiment. The dataset contains 1725 single-channel seg-

mented binary shape images and their corresponding binary

skeleton images. The images are in portable network graph-

ics format each having a dimension of 256x256. The dataset

is split into a training set of 1218 samples, a validation set of

241 samples and a test set of 266 test samples. The ground

truth skeleton images are provided only for the training set.

The validation set and the test set are used for evaluation

on the CodaLab evaluation server of SkelNetOn challenge.

Since only the ground truth images are available only for

the training set, the original training set is further divided

into a training split of 1000 samples and a validation split

of 218 samples. The model is trained on this training split

and tuned on the validation split. The model is tested on the

original validation set on the evaluation server. Since the

test set is not made available until the last phase of the com-

petition, it is not used for comparison. All the comparisons

provided for each method in this paper are the validation set

scores.

The images are normalized between 0-1 and that’s the

only pre-processing done. Since only 1000 samples are

available for training, we use data augmentation to increase

the number of samples to 3000. Spatial-level transforms si-

multaneously applied on both the input images as well as

the skeleton images is used for this purpose. This is an es-

sential step to prevent the model from overfitting. A combi-

nation of random flip, random rotation, random transpose,

random shift, random scaling, elastic transform, grid distor-

tion and piecewise affine transform is used for augmenta-

tion.

Figure 1. Sample images and their ground truth skeletons

3.2. Architecture

The proposed Subpixel Dense Refinement Network,

shown in Fig. 2, is a three-stage segmentation architecture

which builds upon the U-Net [5, 6] design. The concept of

stacking architectures [7] is not new, but the simple stack-

ing strategy doesn’t help much in the skeletonization task.

We propose a novel stacked architecture design specializing

in skeleton extraction which outperforms all the previous

methods of skeleton extraction.

In this three-stage architecture, the feature map from the

penultimate layer of the first stage is passed on to the sec-

ond stage. The feature map of the penultimate layer con-

tains more information than the last layer output. This fea-

ture map is concatenated with the original shape image and

is passed to the input of the second stage. Concatenating

the original shape image with the previous feature map im-

proves the refinement of the predictions. Similarly, the fea-

ture map from the penultimate layer of the second stage is

passed on to the third stage and concatenated with the origi-

nal input image. The final predictions are obtained from the

output layer of the third stage



Figure 2. Proposed SDRNet Architecture

The interpolation-based up-sampling method or the

learnable transposed convolution method is replaced by the

efficient subpixel convolutions [8]. A subpixel convolution

layer, shown in Fig. 3, is just a standard 1x1 convolution

layer followed by a pixel shuffling operation which rear-

ranges the pixels from depth dimension to the spatial dimen-

sion. Subpixel convolution unlike the previous interpolation

methods or the transposed convolution method minimizes

the loss of information during the up-sampling of images in

the decoder network.

Figure 3. Subpixel Convolution Layer

The parallel layers of the three decoder networks are

connected via dense connections [9, 10, 11]. This improves

the spatial knowledge transfer through the model by allow-

ing the decoders of each stage to use the feature maps from

the decoders of previous stages. Each subsequent stage is

shallower than its previous stage as it uses a lot of prior

knowledge from the earlier stages. Each stage has its own

output layer and the model is trained end-to-end with inter-

mediate supervision in each stage which helps in efficient

training and improves convergence.

Figure 4. A decoder block from stage-3



3.3. Loss Function

Pixel-wise Binary Cross-entropy is a widely used loss

function for semantic segmentation since it evaluates the

class predictions for each pixel individually. Another

widely used loss function is the Dice loss which measures

the overlap between samples. Pixel-wise cross-entropy loss

suffers from class imbalance while the Dice loss has a nor-

malizing effect and is not affected by class imbalance. A

combination of Binary Cross-entropy and Dice Loss (Bce-

Dice Loss) is used to train the model.

BCE Loss = −[y log p+ (1− y) log(1− p)] (1)

DiceLoss = 2×
| A ∩B |

| A ∪B |
(2)

BCE −DiceLoss = BCE Loss+DiceLoss (3)

3.4. Evaluation Metric

The spatial representation of the skeleton pixels in each

image is much lower than the background pixels. This is

why F1-score is used for evaluation which takes into ac-

count the class imbalance. This is also the most widely

used evaluation metric on the literature and thus allows con-

sistent benchmark comparisons. F1-score is the harmonic

mean of precision and recall.

F1Score = 2×
Precision×Recall

Precision+Recall
(4)

4. Experimental Evaluation

The model is trained end to end on 3000 augmented sam-

ples. It takes around 3 hours to train the model on Google

Colab running a 16 GB NVIDIA Tesla P100. The 218 sam-

ples of the validation split that was made from the origi-

nal training set are used for validating and fine-tuning the

model. The model is tested on the original validation set

on the SkelNetOn competition evaluation platform on Co-

daLab, thus guaranteeing consistent evaluation score. The

model is trained on original size images (256x256) and the

batch size is set to 5 to compensate for the hardware lim-

itations. Adam optimizer is used with the initial learning

rate set to 0.001. The learning rate is reduced by a factor of

0.1 on reaching a plateau and similarly, training is stopped

when the validation loss doesn’t decrease for 7 consecutive

epochs.

The model achieves an F1-score of 0.7708 on the origi-

nal validation set of the Pixel SkelNetOn Challenge dataset

which is currently the best score in the literature and the

competition. A quantitative analysis of the results is shown

in the following tables.

S/N F1-score S/N F1-score

Exp-1 0.770798 Exp-6 0.770595

Exp-2 0.769658 Exp-7 0.77006

Exp-3 0.770756 Exp-8 0.770731

Exp-4 0.770171 Exp-9 0.769901

Exp-5 0.770213 Exp-10 0.770142

Table 1. Results for 10 experiments with random initializations

Models F1-score

UNet 0.6987

UNet + Subpixel 0.7130

UNet + Subpixel +

Stacked

0.7358

UNet + Subpixel +

Stacked + Dense

Interconnections

0.7577

UNet + Subpixel +

Stacked + Dense

Interconnections +

Intermediate

Supervision

0.7708

Table 2. Ablation Study

Method F1-score

pix2pix (baseline) [1] 0.6244

Jiang [2] 0.6325

Nathan [3] 0.7480

Panichev [4] 0.7500

Proposed method 0.7708

Table 3. Comparison of results with existing literature



Figure 5. From top to bottom: Images, Ground Truth Skeleton, Predicted Skeleton

Teams F1-score

acdart 0.6535

sabarinathan 0.7279

HeBowei 0.7358

gro 0.7358

Proposed method 0.7708

Table 4. CodaLab Leaderboard Results as on 31st March 2020

5. Conclusion

In this paper, we introduced a novel architecture for

skeletal image extraction from pre-segmented shape im-

ages. The Subpixel Dense Refinement Network proposed

here outperforms all the state-of-the-art methods for skeletal

shape extraction till date and achieves an F1-score of 0.7708

on the Pixel SkelNetOn Challenge validation dataset. The

three-stage refinement, interstage spatial knowledge trans-

fer through dense connections, lossless up-sampling using

subpixel convolution and intermediate supervision, all of

these together complements each other producing a supe-

rior skeleton extraction network and setting a new bench-

mark for the skeletonization task.
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